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Scope of the Series

Modern physiology requires a comprehensive understanding of the integration 
of tissues and organs throughout the mammalian body, including the expression, 
structure, and function of molecular and cellular components. While a daunting 
task, learning is facilitated by our identification of common, effective signaling 
pathways employed by nature to sustain life. As a main example, the cellular inter-
play between intracellular Ca2 increases and changes in plasma membrane potential 
is integral to coordinating blood flow, governing the exocytosis of neurotransmit-
ters and modulating genetic expression. Further, in this manner, understanding 
the systemic interplay between the cardiovascular and nervous systems has now 
become more important than ever as human populations age and mechanisms of 
cellular oxidative signaling are utilized for sustaining life. Altogether, physiological 
research enables our identification of clear and precise points of transition from 
health to development of multi-morbidity during the inevitable aging process (e.g., 
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diabetes, hypertension, chronic kidney disease, heart failure, age-related macular 
degeneration; cancer). With consideration of all organ systems (e.g., brain, heart, 
lung, liver; gut, kidney, eye) and the interactions thereof, this Physiology Series 
will address aims of resolve (1) Aging physiology and progress of chronic diseases 
(2) Examination of key cellular pathways as they relate to calcium, oxidative stress, 
and electrical signaling & (3) how changes in plasma membrane produced by lipid 
peroxidation products affects aging physiology
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Preface

Neurodevelopmental disorders are the new psychiatry. One of the tragedies of the
twentieth century, particularly in child and adolescent psychiatry and to a lesser
extent in adult psychiatry and psychology, was the tradition of blaming families, 
especially mothers, for psychiatric problems. Tragically we had, ‘schizophrenic
mothers’ as causes of schizophrenia and ‘refrigerator mothers’ as causes of autism.

These false theories caused untold distress to mothers and families. It does appear to
me that attachment theorists could be in danger, using a different theory, of repeat-
ing some of these same errors and causing more unnecessary guilt among mothers.

At a clinical level I have seen many children described as having attachment disor-
ders, who actually have classic Asperger syndrome. Asperger’s is still listed in the
International Statistical Classification of Diseases (ICD-10), but has been incorpo-
rated into autism spectrum disorders in the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5).

Over many years, I have observed how it is almost impossible for professionals
trained in the theories of Sigmund Freud and John Bowlby to take on board the
neurodevelopmental disorders of attention deficit hyperactivity disorder (ADHD), 
autism, Asperger syndrome, and so on.

Other disorders, including learning disability, bipolar disorder, and schizophrenia, 
are now recognised as neurodevelopmental. These three cause less difficulty for
clinicians, although Asperger syndrome is often misdiagnosed as bipolar disorder or
borderline personality disorder or schizophrenia.

All of these neurodevelopmental conditions overlap to a greater or lesser extent. 
They are not separate categories, that is, they are not categorised in narrow diagnos-
tic ‘boxes’. They are best seen along overlapping dimensional lines.

It is widely agreed that the current classifications in psychiatry are unsatisfactory. 
People have been aware for some time of the overlap between bipolar and schizo-
phrenia, in relation to the psychotic spectrum [1]. I have quite a number of patients
on the autism spectrum who developed psychosis in adult life, or indeed sooner. 
Overlap of conditions is extremely common and each element of the overlap must
be identified and treated.

All of these disorders have major genetic underpinnings. Indeed some genetic find-
ings overlap between these developmental disorders with other non-overlapping 
findings. 

The future of psychiatry will be neurodevelopmental in large measure. Psychiatrists
will focus on these conditions, while psychotherapists, counsellors and psycholo-
gists will treat mild psychiatric conditions with psychotherapeutic interventions.
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We have a long way to go before we achieve the vision set forth by Thomas Insel, 
former director of the National Institute of Mental Health in the United States 
(NIMH), who stated that future diagnosis in psychiatry should be based on bio-
markers, neuroimaging and laboratory tests [2–4]. This is only aspirational at this 
point.

The first chapter of this book sets out the future of psychiatry in relation to neuro-
developmental disorders and what is basically a new understanding of psychiatry 
in recent decades. Other chapters address topics such as the early recognition of 
schizophrenia, early intervention for babies at risk of neurodevelopmental disor-
ders, epilepsy, and the genetics of ataxia telangiectasia. Finally, this book examines 
the complex issue of systems biology and neurodevelopment.
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Chapter 1

The Future of Psychiatry and 
Neurodevelopmental Disorders: 
A Paradigm Shift
Michael Fitzgerald

Abstract

A paradigm shift is now taking place in psychiatry with the emphasis on neu-
rodevelopmental disorders with a neurobiologic emphasis and early onset includ-
ing autism, ADHD, learning disability, schizophrenia and bipolar disorder. This 
paradigm superseded the attachment paradigm of the second half of the twentieth 
century with so many misguided theories such as, “blaming the mother”—the so-
called refrigerated mother and the schizophrenogenic mother. The new paradigm 
allows more focused treatment interventions.

Keywords: neurodevelopmental disorders, autism, attachment disorders, 
neurobiology

1. Introduction

The future of psychiatry is neurodevelopmental. One of the tragedies of the twen-
tieth century, more particularly in child and adolescent psychiatry, is the tradition of 
blaming families and particularly mothers for psychiatric problems. Tragically, we had 
“schizophrenogenic mothers” as “causes” of schizophrenia and “refrigerated mothers” 
as “causes” of autism. Even more recently, tragically, John Bowlby [1], in discussing 
“causal factors” in relation to autism, mentioned “inappropriate mothering”. This is 
another mother-blaming idea. The current understanding of these disorders, intellec-
tual disability, ADHD, autism, Asperger’s syndrome, tics, etc., is a neurodevelopmen-
tal disorder with schizophrenia and bipolar disorder also being neurodevelopmental, 
and all have significant neurobiological inputs. Some personality disorders should also 
be considered as being on the neurodevelopmental spectrum. The neurodevelopmen-
tal trajectory will include the addition of more neurodevelopmental disorders, e.g., 
bipolar, schizophrenia and depression as the person gets older.

2. Adult autism

All diagnoses of autism have to take a developmental history from childhood, 
which will include persistent deficits in social communication and social interac-
tion from the early developmental period, as well as restricted, repetitive patterns 
of behaviour causing clinically significant impairment in functioning (American 
Psychiatric Association [2]). The problem with adult autism diagnosis will include 
getting a relatively early history from an informant which may be a parent or other, 
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the problem of camouflaging because of treatment or just life experience which 
makes it more difficult to diagnose the adult with autism. They may have learned 
about eye contact, etc. School reports or home videos sometimes help. They will 
often present with comorbidities, for example, depression, (70%), anxiety (40%), 
attention deficit disorder or psychosis. Mazefsky and White [3] “caution against 
excessive reliance on ADOS (Autism Diagnostic Observation Scale), Lord et al. [4] 
for diagnosis”.

3. Autism and schizophrenia

Schizophrenia and bipolar disorder are now seen as neurodevelopmental disor-
ders with a widening of the neurodevelopmental spectrum.

Evans [5] states that the diagnosis of “schizophrenia, psychosis and autism in 
children, were largely interchangeable during the 1940s and 1950s” [6]. They were 
described as separate by Kolvin et al. [7]. This view was not supported [8].

According to Scull [9], Steven Hyman, the former director of NIMH stated that 
DSM 5 “was totally wrong in the way it’s authors could not have imagined. So in 
fact, what they produced was an absolute scientific nightmare. Many people who 
got one diagnosis got five diagnoses, but they did not have five diseases—they 
have one underlying condition”. Thomas Insel [9], who was also the director of 
the NIMH stated that DSM 5 showed “a lack of validity … as long as the research 
community takes DSM 5 to be a bible, we will never make progress. People think 
that everything has to match DSM 5 criteria, but what you know … biology never 
the book, and he went on to point out that in future the NIMH would be, “re-ori-
entating into research away from DSM 5 categories … patients with mental illness 
deserve better”. Indeed, the NIMHS, under their director, Insel, gave up on this 
and aimed at a transdiagnostic study of psychiatric problems, and further studies 
should be based on biomarkers, neuroimaging and laboratory tests. This is a good 
aspiration and research efforts are being made in that direction. Clearly, Hyman 
and Insel were absolutely correct. He [9] proposed Research Domain Criteria to 
collect “genomic, cellular, imaging, social and behavioural information”, and he 
also recommended focusing on the brain and “connectopathies”. Thomas Insel 
noted that psychiatrists “actually believe, (that their diagnoses) are real, but there’s 
no reality. They are just constructs”. The first step is to analyse the huge spectrum of 
empathy and diagnosis.

Rutter [10] states that “the concept of autism as a variety of schizophrenia is 
very probably wrong”. The real answer is that they overlap and are not watertight 
categories. Rutter [11] stated that “infantile autism is not anything to do with 
schizophrenia, is not primarily a disorder of social relationship”. This is incorrect 
because they do overlap and autism is primarily a disorder of social relationships. 
Sullivan et al. [8] point out that “ASD, schizophrenia and bipolar disorder share 
common aetiological factors”. This would be supported by Abel [12] who points out 
that “it has been suggested that, (as for common genetic variants), many of the can-
didate genes identified may not be coding for schizophrenia per se, but for a broader 
construct such as psychosis, or neurocognitive deficits which occur in schizophrenia 
and other conditions”. Rapaport et al. [13] states that many individually rare genetic 
abnormalities affect common pathways containing hundreds of genes that affect 
neuronal development and regulation. Carroll et al. [14] point out that some of the 
specific genetic loci implicated encode proteins, such as neurexins and neuroligins, 
which function in synaptic development and plasticity and therefore represent a 
common biological pathway for disorders. Fatemi [15] points out the pathological 
involvement of Reelin gene or its protein product in autism and schizophrenia. 
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Reelin is a glycoprotein that helps guide brain development in an orderly fashion 
[15]. Fatemi [15] notes that Reelin deficits may cause abnormal corticogenesis and 
alter synaptic plasticity. In addition, Burbach et al. [16] note that contact in associ-
ated protein affects receptor/signalling units and are thought to mediate neuron-
glial cell interactions, neuron migration and dendritic orientation. Contactin is a 
member of the neurexin family, and there are deletions and disruptions in neurexin 
1 in autism and schizophrenia.

Rutter [17] points out that “adult schizophrenia is rare in both parents and 
brothers and sisters of autistic children”. This is incorrect. Stone et al. [18] pointed 
out that there’s evidence that parental diagnosis of schizophrenia was associated 
with elevated rates of autism offspring. Rapaport et al. [13] points out that familial 
schizophrenia like psychosis is a risk factor for “narrowly defined autism”.

Both autism and schizophrenia can show formal thought disorder with poverty 
of content, illogical and loose associations. Solomon et al. [19] pointed out that 
when patients with first episode psychosis were compared to patients with ASD, they 
showed problems with semantics, syntax and coherence, although these deficits are 
more severe in ASD. They also noted that social interactional deficits are part of both 
conditions. Both have theory of mind deficits and problems with eye to eye gaze. 
In addition, they both have problems reading emotions from faces. Chris Frith [20] 
points out that “social withdrawal, stereotyped behaviour, and lack of communica-
tion are all typical features of childhood autism and chronic ‘negative’ schizophre-
nia”. He emphasised mentalisation deficits in schizophrenia, which also occur in 
autism. In fact, they both show a disturbed sense of self. In comparison with schizo-
phrenia, persons with autism show greater problems in reading faces, greater poverty 
of speech, as well as content and more perseveration of language, including echolalia 
and pronominal reversal, and more problems with set shifting and preservation 
of sameness. In comparison with autism, persons with schizophrenia show greater 
illogicality of thought, show more positive symptoms of psychosis, have mostly 
later onset (different from autism), run a more elapsing remitting course, show less 
stereotyped and repetitive behaviour, show less resistance to change, show less chal-
lenging behaviour as on an in-patient ward and show more jumping to conclusions.

Craddock and Owen [21] discuss a gradient of neurodevelopmental psychopathol-
ogy from mental retardation to autism to schizophrenia to schizoaffective disorder to 
bipolar disorder. Nevertheless, the developmental process underlying these similar 
end points in autism and schizophrenia may be very different. Sporn et al. [22] sug-
gest that “autistic behaviour may be a non-specific response to a variety of early devel-
opmental insults, and thus pre-morbid PDD (Pervasive Developmental Disorder) 
features in early onset schizophrenia may be an exaggeration of neurodevelopmental 
abnormalities seen in adult schizophrenia” and that “autism may reflect a separate 
additive risk factor for schizophrenia with very early onset”. Certainly, psychotic risk 
factors are very similar to autistic symptoms, as is the case with schizotaxia, schizo-
typal personality disorder and schizoid personality disorder.

Rutter [23] states that delusions and hallucinations “are quite rare in autistic 
children, even when they reach adolescence and early adult life”. This has not been 
my clinical experience, having diagnosed about 5000 children and adults and 
currently being involved with over 100 persons with autism in in-patient and out-
patient settings.

Simple schizophrenia Kolb [24] is simply autism spectrum disorder. In my view, 
the so-called simple schizophrenia involves a disturbance of emotion, disturbance 
of interest, disturbance of activity, impoverishment of personality, shallowness 
of emotions and eccentricities. This would be classical high-functioning autism or 
what was called Asperger’s syndrome in former classifications ICD 10 [25]. This is 
currently being updated.
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fact, what they produced was an absolute scientific nightmare. Many people who 
got one diagnosis got five diagnoses, but they did not have five diseases—they 
have one underlying condition”. Thomas Insel [9], who was also the director of 
the NIMH stated that DSM 5 showed “a lack of validity … as long as the research 
community takes DSM 5 to be a bible, we will never make progress. People think 
that everything has to match DSM 5 criteria, but what you know … biology never 
the book, and he went on to point out that in future the NIMH would be, “re-ori-
entating into research away from DSM 5 categories … patients with mental illness 
deserve better”. Indeed, the NIMHS, under their director, Insel, gave up on this 
and aimed at a transdiagnostic study of psychiatric problems, and further studies 
should be based on biomarkers, neuroimaging and laboratory tests. This is a good 
aspiration and research efforts are being made in that direction. Clearly, Hyman 
and Insel were absolutely correct. He [9] proposed Research Domain Criteria to 
collect “genomic, cellular, imaging, social and behavioural information”, and he 
also recommended focusing on the brain and “connectopathies”. Thomas Insel 
noted that psychiatrists “actually believe, (that their diagnoses) are real, but there’s 
no reality. They are just constructs”. The first step is to analyse the huge spectrum of 
empathy and diagnosis.

Rutter [10] states that “the concept of autism as a variety of schizophrenia is 
very probably wrong”. The real answer is that they overlap and are not watertight 
categories. Rutter [11] stated that “infantile autism is not anything to do with 
schizophrenia, is not primarily a disorder of social relationship”. This is incorrect 
because they do overlap and autism is primarily a disorder of social relationships. 
Sullivan et al. [8] point out that “ASD, schizophrenia and bipolar disorder share 
common aetiological factors”. This would be supported by Abel [12] who points out 
that “it has been suggested that, (as for common genetic variants), many of the can-
didate genes identified may not be coding for schizophrenia per se, but for a broader 
construct such as psychosis, or neurocognitive deficits which occur in schizophrenia 
and other conditions”. Rapaport et al. [13] states that many individually rare genetic 
abnormalities affect common pathways containing hundreds of genes that affect 
neuronal development and regulation. Carroll et al. [14] point out that some of the 
specific genetic loci implicated encode proteins, such as neurexins and neuroligins, 
which function in synaptic development and plasticity and therefore represent a 
common biological pathway for disorders. Fatemi [15] points out the pathological 
involvement of Reelin gene or its protein product in autism and schizophrenia. 

5

The Future of Psychiatry and Neurodevelopmental Disorders: A Paradigm Shift
DOI: http://dx.doi.org/10.5772/intechopen.88540

Reelin is a glycoprotein that helps guide brain development in an orderly fashion 
[15]. Fatemi [15] notes that Reelin deficits may cause abnormal corticogenesis and 
alter synaptic plasticity. In addition, Burbach et al. [16] note that contact in associ-
ated protein affects receptor/signalling units and are thought to mediate neuron-
glial cell interactions, neuron migration and dendritic orientation. Contactin is a 
member of the neurexin family, and there are deletions and disruptions in neurexin 
1 in autism and schizophrenia.

Rutter [17] points out that “adult schizophrenia is rare in both parents and 
brothers and sisters of autistic children”. This is incorrect. Stone et al. [18] pointed 
out that there’s evidence that parental diagnosis of schizophrenia was associated 
with elevated rates of autism offspring. Rapaport et al. [13] points out that familial 
schizophrenia like psychosis is a risk factor for “narrowly defined autism”.

Both autism and schizophrenia can show formal thought disorder with poverty 
of content, illogical and loose associations. Solomon et al. [19] pointed out that 
when patients with first episode psychosis were compared to patients with ASD, they 
showed problems with semantics, syntax and coherence, although these deficits are 
more severe in ASD. They also noted that social interactional deficits are part of both 
conditions. Both have theory of mind deficits and problems with eye to eye gaze. 
In addition, they both have problems reading emotions from faces. Chris Frith [20] 
points out that “social withdrawal, stereotyped behaviour, and lack of communica-
tion are all typical features of childhood autism and chronic ‘negative’ schizophre-
nia”. He emphasised mentalisation deficits in schizophrenia, which also occur in 
autism. In fact, they both show a disturbed sense of self. In comparison with schizo-
phrenia, persons with autism show greater problems in reading faces, greater poverty 
of speech, as well as content and more perseveration of language, including echolalia 
and pronominal reversal, and more problems with set shifting and preservation 
of sameness. In comparison with autism, persons with schizophrenia show greater 
illogicality of thought, show more positive symptoms of psychosis, have mostly 
later onset (different from autism), run a more elapsing remitting course, show less 
stereotyped and repetitive behaviour, show less resistance to change, show less chal-
lenging behaviour as on an in-patient ward and show more jumping to conclusions.

Craddock and Owen [21] discuss a gradient of neurodevelopmental psychopathol-
ogy from mental retardation to autism to schizophrenia to schizoaffective disorder to 
bipolar disorder. Nevertheless, the developmental process underlying these similar 
end points in autism and schizophrenia may be very different. Sporn et al. [22] sug-
gest that “autistic behaviour may be a non-specific response to a variety of early devel-
opmental insults, and thus pre-morbid PDD (Pervasive Developmental Disorder) 
features in early onset schizophrenia may be an exaggeration of neurodevelopmental 
abnormalities seen in adult schizophrenia” and that “autism may reflect a separate 
additive risk factor for schizophrenia with very early onset”. Certainly, psychotic risk 
factors are very similar to autistic symptoms, as is the case with schizotaxia, schizo-
typal personality disorder and schizoid personality disorder.

Rutter [23] states that delusions and hallucinations “are quite rare in autistic 
children, even when they reach adolescence and early adult life”. This has not been 
my clinical experience, having diagnosed about 5000 children and adults and 
currently being involved with over 100 persons with autism in in-patient and out-
patient settings.

Simple schizophrenia Kolb [24] is simply autism spectrum disorder. In my view, 
the so-called simple schizophrenia involves a disturbance of emotion, disturbance 
of interest, disturbance of activity, impoverishment of personality, shallowness 
of emotions and eccentricities. This would be classical high-functioning autism or 
what was called Asperger’s syndrome in former classifications ICD 10 [25]. This is 
currently being updated.
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Kanner [26] was correct when he pointed out that “the extreme isolation from 
people … infantile autism bears so close a resemblance to schizophrenic withdrawal 
that the relationship between the two conditions deserves serious consideration”. 
Of course other times, he described them as very separate. Asperger [27] pointed 
out that “the schizophrenic patient seems to show progressive loss of contact, the 
children we diagnose (now called Asperger’s syndrome), lack contact from the 
start”. The problem here is that some of the patients with autism do follow this 
pattern, but others have regressive autism, where they develop normally and then 
regress with loss of language, etc. I’ve seen this occurring up to 3 or 4 years of age.

Rutter [11] states that “the social class of parents of autistic children is most 
unlike that of the parents of schizophrenics. A high proportion of the parents of 
autistic children are of above average intelligence and superior socio-economic 
states”. This is incorrect, as shown by Gillberg and Schumann [28]. In my clinical 
practice, I constantly see patients from every social class with autism and observe 
schizophrenia, bipolar disorder, etc. in their family histories.

4. Prevalence

Using narrow criteria of autism ADI-R, etc., Baird et al. [29] found a prevalence 
of 25 per 10,000, but when the broader autism spectrum criterium was used, a 
prevalence of 116 per 10,000 was found. This unfortunately means that over three 
quarters of the persons with autism in the community have what I would call “real” 
autism or clinical autism (autism spectrum disorder) and were missed by these 
narrow-based instruments. Currently, the prevalence of autism is 1/59 CDC and 
1/37 males [30].

5. Differential diagnosis

See Table 1 attached.

6. Tics, obsessive compulsive disorder and ASD

Canitano et al. [31] showed that 22% of ASDs presented with tic disorder, but 
there was a “difficulty in discriminating complex tics and OCD symptoms, and ASD 
symptoms”. Nevertheless, the overlap between neurodevelopmental disorders is 
consistent. This equates with clinical experience and clinical reality. Maybe we need 
a subcategory called ASD plus tics and another category ASD without tics, another 
category with tics with ADHD and another category tics without ADHD, tics without 
OCD, etc. Stein [32] notes the overlap between autism, tics and stereotypic movement 
disorder. There is considerable neurobiological data in relation to OCD spectrum 
disorder. Stein [32] again emphasises the “possibly overlapping phenomenological 
and neurobiological features”. Stein [32] points out that “there is increasing evidence 
that a sub-set of OCD may be genetically related to Tourette’s Disorder, manifests 
with tics or OCD and involving both the serotonin or dopamine systems and the basal 
ganglia”. Meir et al. [33] showed that “individuals diagnosed with OCD displayed a 
nearly four-fold higher risk to be diagnosed with ASD in later life” and that “the high 
co-morbidity sequential risk and shared familial risks between OCD and ASD’s are 
suggestive of partially shared etiological mechanism”. It would appear then that some 
neurosis (OCD) could be neurodevelopmental in origin, at least partly. This again 
shows the lack of sharp delineation between psychiatric diagnoses.
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Kanner [26] was correct when he pointed out that “the extreme isolation from 
people … infantile autism bears so close a resemblance to schizophrenic withdrawal 
that the relationship between the two conditions deserves serious consideration”. 
Of course other times, he described them as very separate. Asperger [27] pointed 
out that “the schizophrenic patient seems to show progressive loss of contact, the 
children we diagnose (now called Asperger’s syndrome), lack contact from the 
start”. The problem here is that some of the patients with autism do follow this 
pattern, but others have regressive autism, where they develop normally and then 
regress with loss of language, etc. I’ve seen this occurring up to 3 or 4 years of age.

Rutter [11] states that “the social class of parents of autistic children is most 
unlike that of the parents of schizophrenics. A high proportion of the parents of 
autistic children are of above average intelligence and superior socio-economic 
states”. This is incorrect, as shown by Gillberg and Schumann [28]. In my clinical 
practice, I constantly see patients from every social class with autism and observe 
schizophrenia, bipolar disorder, etc. in their family histories.

4. Prevalence

Using narrow criteria of autism ADI-R, etc., Baird et al. [29] found a prevalence 
of 25 per 10,000, but when the broader autism spectrum criterium was used, a 
prevalence of 116 per 10,000 was found. This unfortunately means that over three 
quarters of the persons with autism in the community have what I would call “real” 
autism or clinical autism (autism spectrum disorder) and were missed by these 
narrow-based instruments. Currently, the prevalence of autism is 1/59 CDC and 
1/37 males [30].

5. Differential diagnosis

See Table 1 attached.

6. Tics, obsessive compulsive disorder and ASD

Canitano et al. [31] showed that 22% of ASDs presented with tic disorder, but 
there was a “difficulty in discriminating complex tics and OCD symptoms, and ASD 
symptoms”. Nevertheless, the overlap between neurodevelopmental disorders is 
consistent. This equates with clinical experience and clinical reality. Maybe we need 
a subcategory called ASD plus tics and another category ASD without tics, another 
category with tics with ADHD and another category tics without ADHD, tics without 
OCD, etc. Stein [32] notes the overlap between autism, tics and stereotypic movement 
disorder. There is considerable neurobiological data in relation to OCD spectrum 
disorder. Stein [32] again emphasises the “possibly overlapping phenomenological 
and neurobiological features”. Stein [32] points out that “there is increasing evidence 
that a sub-set of OCD may be genetically related to Tourette’s Disorder, manifests 
with tics or OCD and involving both the serotonin or dopamine systems and the basal 
ganglia”. Meir et al. [33] showed that “individuals diagnosed with OCD displayed a 
nearly four-fold higher risk to be diagnosed with ASD in later life” and that “the high 
co-morbidity sequential risk and shared familial risks between OCD and ASD’s are 
suggestive of partially shared etiological mechanism”. It would appear then that some 
neurosis (OCD) could be neurodevelopmental in origin, at least partly. This again 
shows the lack of sharp delineation between psychiatric diagnoses.
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7. Autism and ADHD

There is a very high comorbidity between autism and ADHD. Child psychiatric 
disorders have a comorbidity more than expected by chance [34]. Attention and 
hyperactivity are common in many disorders and, indeed, many more disorders in 
child psychiatry, and there is clearly poor separation of condition at a clinical level. 
Measurement issues are common. In relation to comorbidity, there are shared risks 
factors and one disorder creating an increased risk for another disorder. Neil et al. [35] 
pointed out that there are correlated liabilities where the risk factors of the two disor-
ders correlate. There are social deficits in both ADHD and autism with overlap from 
an etiological point of view, but with ADHD the social deficits are more impulsive, 
and with autism, the social deficits can again be impulsive, but also, they can be due to 
lack of social know-how and theory of mind deficits. There is no sharp division here.

In a study of ADHD combined type, with one or more siblings, the diagnosis 
of autism was excluded at the beginning, and siblings with ADHD were compared 
with siblings without ADHD by Mulligan et al. [36]. They wrote that phenotypic 
correlation of ADHD and autism symptoms was 0.71 and that 32% of this cor-
relation was due to shared familial characteristics but with a higher percentage for 
male ADHD probands. There was a trend for children with high ADHD symp-
toms to have high autism symptoms, as measured by the Social Communication 
Questionnaire. ADHD probands with definite language disorder or motor disorder 
had significantly higher symptoms of autism than those without. This study 
showed that autism symptoms as part of the ADHD phenotype were partly true. 
These were familial. Probands with autistic traits tend to have siblings with autistic 
traits, and probands without autistic traits tend to have affected siblings without 
autistic traits. Finally, latent class analysis of SCQ symptoms in probands with 
ADHD combined type showed the following clusters of autism symptoms: 31% 
with few or no symptoms of autism, 22.5% with repetitive and stereotyped behav-
iour, 21% with communication domain symptoms, 18.5% communication and 
reciprocal interaction domains and 7% who had symptoms in all three domains.

The percentage of phenotypic correlation due to shared familial influences 
(autistic symptoms and ADHD) was 35% for the whole group and 62% for males 
and 12% for females. In a family with a male child with ADHD and comorbid autis-
tic symptoms, a second child with ADHD is also likely to have comorbid autistic 
symptoms (not so female), which suggest a different aetiology according to sex. 
Gillberg’s [37] disorder of attention, motor control and perception would be show-
ing similar findings. Fifty percent of children with DAMP had autistic features.

Children with oppositional defiant disorder and conduct disorder have more 
autistic traits than children without these comorbid disorders and ADHD [38]. 
Children with ADHD have more subthreshold symptoms of autism. Children 
with combined ADHD and social communication deficits are at increased risk of 
motor and language disorders. Overall, this shows the massive heterogeneity that is 
evident in child psychiatry classifications, and clearly, ADHD is not a homogenous 
disorder. Forty two percent of children with ADHD had few symptoms of autism. 
That autism symptoms are part of the ADHD phenotype is partly true. Autistic 
traits in ADHD are familial. This again supports the lack of a sharp overlap between 
neurodevelopmental disorders, here, autism and ADHD.

8. Personal classification system

If I was to plan an assessment programme in child psychiatry again from 
the start, I would assess the following dimensions: social reciprocity, pragmatic 
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language, oppositionality, working memory, delinquency, attention, impulsivity, 
activity, capacity to read non-verbal behaviour, preservation of sameness and 
fixations.

This would be a transdiagnostic approach.

9. Personality disorder as a developmental disorder

A not insignificant number of personality disorders are developmental 
disorders. This will require further research. One example is schizoid personal-
ity disorder. Another is paranoid personality disorder and, another, borderline 
personality disorder. Obsessive compulsive personality disorder could be also 
included in this group. There’s quite a good case for narcissistic personality disorder 
to be included. An older term, anankastic personality disorder [39], could also be 
included. Many individuals with psychopathy have a developmental disorder, and a 
group of these have been called criminal autistic psychopathy [40]. There is a clear 
overlap between psychopathy and autism spectrum disorders. This is despite some 
research showing that persons with psychopathy have good theory of mind skills, 
while persons with autism don’t. Nevertheless, more recent research has shown that 
particularly persons with high IQ can have good theory of mind skills while, at the 
same time, having autism.

10. Cognitive empathy and theory of mind: automatic perspective taking

Blair [41] stated that “cognitive empathy or theory of mind is intact in individu-
als with psychopathy”. These ideas have been very seriously undermined by Drayton 
et al. [42] in relation to automatic perspective taking. Previous research did not take 
the complexity of cognitive empathy into account, and this led to serious misunder-
standings of cognitive empathy. Drayton et al. [42] point out that “automatic theory 
of mind processes are engaged when an individual unintentionally represents the 
perspective of another person,” also called “altercentric interference”. Drayton et al. 
[42] suggest that “psychopathic individuals have a diminished propensity to auto-
matically think from another’s perspective, which may be the cognitive root of their 
deficits in social functioning and moral behaviour”. Drayton et al. [42] raise, for this 
author, the possible failure of previous research on theory of mind and psychopathy, 
failing “to tap into a critical component of normal theory of mind processing; or 
tendency to take other’s perspective automatically”. Drayton et al. [42] defined 
“automatic theory of mind processes” as an individual representing “the thoughts 
and feelings of another person without intending to do so”. They also point out that 
psychopathic individuals have a previously unobserved cognitive deficit that might 
explain their patterns of destructive and anti-social behaviour, that is, … failure “to 
automatically take the perspective of others, but can deliberately (controlled), take 
the perspective of others”. These findings suggest that psychopathic individuals have 
the ability to take the perspective of others but lack the propensity to do so. It seems 
they can pass theory of mind tasks in the research situation but fail to do so in the 
real world situation. This is one of the endless problems of laboratory research not 
translating into the “real world,” that is, the clinical world. This lack of generalisa-
tion can be a serious flaw in academic psychological research. Drayton et al. [42] 
note that “psychopathic individuals do show deficits in their ability to understand 
what others are feeling but this capacity to represent other feelings appears to be 
distinct from capacity to represent what others see and believe”. They also point out 
that “psychopathic individuals appear to represent other’s perspective in a relatively 
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fixations.
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automatically take the perspective of others, but can deliberately (controlled), take 
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the ability to take the perspective of others but lack the propensity to do so. It seems 
they can pass theory of mind tasks in the research situation but fail to do so in the 
real world situation. This is one of the endless problems of laboratory research not 
translating into the “real world,” that is, the clinical world. This lack of generalisa-
tion can be a serious flaw in academic psychological research. Drayton et al. [42] 
note that “psychopathic individuals do show deficits in their ability to understand 
what others are feeling but this capacity to represent other feelings appears to be 
distinct from capacity to represent what others see and believe”. They also point out 
that “psychopathic individuals appear to represent other’s perspective in a relatively 
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typical manner when doing so. It is goal-conducive and yet is able to ignore other’s 
perspective when it is not conducive”. This means that all previous theory of mind 
research on psychopathy missed the fundamental point of the deficit of automatic 
perspective of others. Drayton et al. [42] point out that “this combination of 
relatively intact deliberative Theory of Mind but impaired spontaneous theory of 
mind may allow psychopathic individuals to use information about others’ mental 
states to achieve their own ends, while at the same avoid the, ‘cost,’ of automati-
cally representing other’s mental states, resulting in callous and chronic criminal 
behaviour”. They have no empathic interest in other minds, except getting their own 
egocentric desires met.

In relation to psychiatry, there’s a sharp difference between findings in university 
laboratories and the findings in clinical practice. Research groups are very rarefied 
and very often do not represent what is found in the general population, clini-
cally. An example is autism defined by the Autism Diagnostic Interview or Autism 
Diagnostic Observational Scale which give you a very narrow definition of autism, 
very unlike what you find in the general population which is the broader autism 
phenotype [43].

Asperger originally defined persons with autism as being autistic psycho-
paths, which Frith [44] described as autistic psychopathy or autistic personal-
ity disorder. In actual fact, there is a lot of truth in Asperger’s [27] definition 
of autistic psychopaths. This has been brought back now with the terms criminal 
autistic psychopathy [40, 45]. Indeed, the following could be seen as synonyms, 
autistic psychopathy, autistic personality disorder, high-functioning autism and 
Asperger’s syndrome.

The kind of criminality seen in autism (criminal autistic psychopathy) would 
include arson, stalking, sex offences and strange repetitive crimes. According to 
the Centers for Disease Control [30], developmental disorders are characterised 
by problems with language, mobility, self-help and independent living. There is a 
myth that ASD and personality disorder and psychopathy are completely different. 
There is also a myth that autism and Asperger’s syndrome have little or no relation-
ship with criminality and serious murder. Patricia Howlin [46] stated “little, if any 
significant association between autism and criminal offending”. This is clearly not 
supported by my reading of the literature [40]. Sipponma [47] pointed out that 
27% of adult offenders in her study met criteria for autism spectrum disorder. These 
could be called criminal autistic psychopathy. Ashead and Sarkar [48] described 
correctly personality disorders as “developmental in nature”, and they noted that 
personality regulates social relationships, arousal impulsivity and emotions, as well 
as self-directedness and self-soothing as well as verbal and non-verbal communica-
tion problems. What is of interest is that all of these areas are abnormal in ASD and 
personality disorder.

Ashead and Sarkar [48] note the following clusters of personality disorders: odd, 
eccentric behaviour; anti-social, borderline and narcissistic personality disorders; 
fearful and anxious behaviour; and avoidant, dependent and obsessive compulsive.

All these clusters, clearly at a descriptive level, overlap with ASD. Ashead and 
Sarkar [48] describe the following features of personality disorder:

• Emotional indifference

• Anger, suspicion and fearfulness

• Fears of others attacking and threatening them

• Brief psychotic episodes
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• Odd beliefs

• Magical thinking

• Preoccupation and ruminations

• Identity confusion

• Empathy problems

• Major problems in in-patient units

• Failure to confirm to social norms

• Social relationship problems

• Social reciprocity problems

• Impulsivity

• Irrationality

• Disregard for safety of self and others

• Reduced reaction to upset in other people

• Preoccupation with one or more stereotyped patterns of behaviour

• Problems with emotional processing

• Emotional detection problems

• Reduced observing self

• Reduced self-awareness and capacity to decentre the self

• Egocentricity

• Low affiliation and harm avoidance

All of these features also occur in autism spectrum disorders. Of course, in a 
way, this is not surprising since the boundaries between most psychiatric disorders 
are fluid and we do not have an accurate, categorical diagnosis at this point in time, 
assuming we ever will.

It’s interesting that Wolfe [49], in her group of schizoid disorder overlapping 
with Asperger’s syndrome, found “fraudulent behaviour and pathological lying”; in 
that, 5 out of 13 had “falsely reported their parents of being cruel to them” and “had 
used aliases”.

There is a myth that persons with high-functioning autism cannot lie. This is 
utterly false, as from a clinical perspective, many parents complain to me about 
their children with high-functioning autism being what they call “inveterate liars”. 
Of course, the great majority of persons with autism are the opposite and are 
incredibly honest, open, moral, etc. These features of autism spectrum disorder 
occur in the general population, as do features of personality disorder. It’s only 
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when you get to a certain threshold that you would get a diagnosis of autism or 
personality disorder. In truth, we need a new classification system in psychiatry 
again. The problem is that most of our current disorders overlap and are therefore 
not independent. We need to go back from a classificatory point of view, to a pre-
Kraepelin period and, in a way, that is, what the NIMH is stating with their transdi-
agnostic research.

There are a number of phrases associated with personality disorder, which could 
also be associated with autism spectrum disorder:

i. Schizoid personality, “you can knock, but nobody’s home” [50].

ii. Schizotypal personality, “I’m eccentric, different, strange” [50].

iii. Paranoid personality, “you can’t trust anybody” [50].

iv. Borderline personality, “I will be very angry, if you try to leave me” [50].

v. The sadistic personality, “I will savour your suffering” [50]. This particularly 
refers to criminal autistic psychopathy and serial killers.

vi. Narcissistic personality, “my command is your wish” [50].

11. Conclusion

The future of psychiatry will be neurodevelopmental. Psychiatrists will focus 
on these conditions. Mild psychiatric conditions will be dealt with by psychiatric 
counsellors and psychologists, using psychotherapeutic interventions. This will 
allow psychiatrists to become neuropsychiatrists which they are all already moving 
towards. The “blaming” culture of attributing these disorders to mothers’ inadequa-
cies will then be at an end. The neurodevelopmental spectrum is far wider and far 
more important than suggested by DSM 5 [2, 3].
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Chapter 2

Autism: A Neurodevelopmental 
Disorder and a Stratum for 
Comorbidities
Marwa Mahmoud Saleh and Aya Adel

Abstract

Autism is a neurodevelopmental disorder which is more common in males 
than females. It is characterized by social communication disorders and restricted 
repetitive behaviors. There is wide heterogeneity in its etiology, clinical presenta-
tions, management and consequently prognosis. Although the etiology of autism 
remains unclear, the most currently proven theory is that it is a complex neurode-
velopmental disorder that displays “brain network abnormalities”. fMRI studies 
have shown decreased brain connectivity or functional synchronization between 
frontal and more posterior cortical regions. Dynamic brain activity through high 
resolution electroencephalograghy (EEG) has revealed local overconnectivity and 
long-range underconnectivity. This disrupted connectivity pattern would involve 
connectivity between hemispheres (corpus callosum), together with axonal and 
synaptic connectivity within each hemisphere. Inconsistent morphometric changes 
involving both gray and white matter structure also exist. Clinically, autism is 
associated with multiple comorbidities (somatic, neurologic and psychiatric); 
some of which are attention deficit hyperactivity disorder, dyspraxia, and sensory 
processing disorders.

Keywords: autism, MRI findings, comorbidities

1. Introduction

According to the American Psychiatric Association’s Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5), autism spectrum disorders (ASDs) are char-
acterized by social communication impairment and repetitive restricted behaviors. 
Autism is the commonest neurodevelopmental disorder in the scope of ASD. The 
social impairment affects both verbal and nonverbal communication [1].

1.1 Social deficits

There is lack of social attention and attention shifting in the autistic children in 
parallel with lack of development of joint attention skills [2]. The affected children 
display emotional reactions that do not associate with the surrounding events. They 
show negative emotions more frequently than positive emotions, without justifiable 
cause for inducing either response. Their play patterns are solitary, and they do not 
develop typical interactive social play with other children [3].
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Abnormality in face perception is a core feature in autism. Face processing 
includes unchangeable facial features as those relating to gender and identity and 
changeable facial features such as emotional expression and gaze direction. Autistic 
children ignore looking at faces of others and are unable to understand facial 
expressions. Fixation time on the eye area of the face is reduced in ASD individu-
als. Opposite to what occurs in typically developing individuals, processing of gaze 
direction in autism experimentally produced more activation in fusiform gyrus for 
averted than for direct look. This was termed “covert attention,” as autistic indi-
viduals are visually attentive and perceptive, but in an atypical manner.

During recognition of neutral faces, the autistic children exhibit a reduced acti-
vation of fusiform gyrus, superior temporal sulcus, amygdala, and occipital lobes, 
the primary areas for face recognition. In spite of this fact, autistic children showed 
typical activation when looking at familiar faces like that of a mother. Inferior 
temporal, middle, and inferior frontal gyri are also involved in face processing. It is 
important to note that reduced connectivity in brain networks between areas of face 
processing emerged as a holistic approach to explain the atypical face perception in 
autistic children [4].

The social processing involves social cognition and social motivation. Social 
cognition involves processes like attention, memory, and theory of mind, by which 
the person infers the internal state of others. Social motivation resembles directing 
attention to socially relevant stimuli and enjoying social activities. Both activities 
depend on the function of face processing. So it is related to the areas of face pro-
cessing in addition to striatum (social interaction) and orbitofrontal cortex (social 
motivation) [5]. Impaired connectivity in social executive functions is present in 
ASD children [6].

1.2 Restricted repetitive behavior

Autistic individuals resist change in their daily routine or the familiar surround-
ings. They do not explore while playing, and the toys are manipulated with little 
creativity or symbolic function. They are cognitively inflexible, as they may be 
preoccupied with parts of objects, or attached to unusual objects or movements, 
as watching the rotatory activity of fans. They could show stereotypic repetitive 
behavior that may be injurious to self or others. They tend to have a repetitive sen-
sory motor behavior, insistence on sameness, and sometimes self-injurious acts [7].

2. Body

2.1 Etiologies

Autism has a strong complex genetic basis. Abnormalities in gene expression 
affect the molecular, synaptic, cellular, and brain network levels. There is variability 
in results of brain imaging studies [magnetic resonance imaging (MRI) and diffu-
sion tensor imaging (DTI)] in autism, which report structural cerebral changes and 
functional connectivity disruptions. Alterations in overall gray and white matter 
volume and in regional lobes and gyri were witnessed.

Early brain overgrowth, especially in an early age of 2–3 years old toddlers 
remains, however, one of the most replicated findings. Compared with typically 
developing children, global gray matter (GM) and white matter (WM) volumes 
were significantly increased and also right superior temporal gyrus regional GM 
and WM volumes. Higher fractional anisotropy value was also observed in the 
corpus callosum, posterior cingulate cortex, and limbic lobes of autistic children 
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[8]. The converging findings of structural and white matter abnormalities in 
autism suggest that alterations in neural anatomy of different brain regions may be 
involved in the associated behavioral and cognitive deficits in this disorder.

Nevertheless, recent neural models of autism spectrum disorders have moved 
the focus from a lesion model to connectivity disorder model. Aberrant conduc-
tivity between different brain regions in autism is currently the most frequently 
addressed neurodevelopmental model. Minshew and Williams [9] have implicated 
intra-hemispheric connectivity to be mainly involved in the disorder. Vissers et al. 
[10] have studied functional and structural brain connectivity in individuals 
with high functioning individuals with ASD. They supported the findings that 
long-range cortico-cortical functional and structural pathways displayed weaker 
connectivity in people with ASD than in controls, but with less evidence for local 
overconnectivity. Other researchers have supported a local overconnectivity and 
long-range underconnectivity pattern of brain functioning in autism through the 
use of high-resolution electroencephalography (EEG) [11]. Cortical underconnec-
tivity between brain regions, especially the frontal cortex and more posterior areas, 
is relatively well established in autism. This supports the view that there is weaker 
coordination between different parts of the brain that should be working together 
to accomplish complex social and language tasks. This is opposite to what is occur-
ring during normal development [12].

In this cerebral connectivity disorder of autism, the cerebellum has also been 
strongly implicated. Although the role of cerebellum as error detector and coordi-
nator of movement and balance was the typical portrait of cerebellar function, yet 
recognition of nonmotor functions of the cerebellum has recently come into view. 
While some parts of the cerebellum are predominantly connected to sensorimotor 
cortex, other connections project to cognitive and affective regions and comprise a 
large fraction of cerebellar connectivity [13]. Impairment of these connections was 
also reported in autism.

As a model for aberrant conductivity in autism, we could consider the reported 
comments about deviations in corpus callosum, white matter, and neurotransmit-
ters. So, brain connectivity includes connectivity between the two hemispheres 
done mainly by the corpus callosum (CC), or between multiple areas in the brain 
accomplished by tracts in white matter and by synapses and neurotransmitters. 
People need this connectivity as different regions of the brain need to communicate 
in order to identify a face, understand, and respond to others and to different social 
situations. Disruption of white matter tracts in regions related to social function-
ing is implicated in autism [14]. In autism, defective joint attention was related 
to decreased connectivity and synchronization between posterior involuntary 
attention related to responding to joint attention (RJA) and anterior volitional joint 
attention related to initiating joint attention (IJA) [15].

The corpus callosum (CC) constitutes the main commissural tract between the 
two hemispheres (more than 200 million axons). A study by Hardan et al. [16] 
that investigated the corpus callosum by MRI-based morphometry has identified 
decreased total volume of CC and several of its seven subdivisions. This was found 
in other studies and could reflect in the form of social deficits, repetitive behavior, 
and sensory processing abnormalities.

There are neural circuits for social cognition, which involves attention, memory, 
motivation, and emotion. Abnormalities in social brain structures and circuitry that 
are modulated by several neurotransmitters and neuromodulators have been linked, 
through human fMRI and animal research, to disorders of social functioning as in 
autism [17]. Neurotransmitter systems involved in autism spectrum disorders have 
been identified as GABA, glutamate, serotonin, catecholamines, and acetyl choline 
[18, 19].



Neurodevelopment and Neurodevelopmental Disorder

20

Abnormality in face perception is a core feature in autism. Face processing 
includes unchangeable facial features as those relating to gender and identity and 
changeable facial features such as emotional expression and gaze direction. Autistic 
children ignore looking at faces of others and are unable to understand facial 
expressions. Fixation time on the eye area of the face is reduced in ASD individu-
als. Opposite to what occurs in typically developing individuals, processing of gaze 
direction in autism experimentally produced more activation in fusiform gyrus for 
averted than for direct look. This was termed “covert attention,” as autistic indi-
viduals are visually attentive and perceptive, but in an atypical manner.

During recognition of neutral faces, the autistic children exhibit a reduced acti-
vation of fusiform gyrus, superior temporal sulcus, amygdala, and occipital lobes, 
the primary areas for face recognition. In spite of this fact, autistic children showed 
typical activation when looking at familiar faces like that of a mother. Inferior 
temporal, middle, and inferior frontal gyri are also involved in face processing. It is 
important to note that reduced connectivity in brain networks between areas of face 
processing emerged as a holistic approach to explain the atypical face perception in 
autistic children [4].

The social processing involves social cognition and social motivation. Social 
cognition involves processes like attention, memory, and theory of mind, by which 
the person infers the internal state of others. Social motivation resembles directing 
attention to socially relevant stimuli and enjoying social activities. Both activities 
depend on the function of face processing. So it is related to the areas of face pro-
cessing in addition to striatum (social interaction) and orbitofrontal cortex (social 
motivation) [5]. Impaired connectivity in social executive functions is present in 
ASD children [6].

1.2 Restricted repetitive behavior

Autistic individuals resist change in their daily routine or the familiar surround-
ings. They do not explore while playing, and the toys are manipulated with little 
creativity or symbolic function. They are cognitively inflexible, as they may be 
preoccupied with parts of objects, or attached to unusual objects or movements, 
as watching the rotatory activity of fans. They could show stereotypic repetitive 
behavior that may be injurious to self or others. They tend to have a repetitive sen-
sory motor behavior, insistence on sameness, and sometimes self-injurious acts [7].

2. Body

2.1 Etiologies

Autism has a strong complex genetic basis. Abnormalities in gene expression 
affect the molecular, synaptic, cellular, and brain network levels. There is variability 
in results of brain imaging studies [magnetic resonance imaging (MRI) and diffu-
sion tensor imaging (DTI)] in autism, which report structural cerebral changes and 
functional connectivity disruptions. Alterations in overall gray and white matter 
volume and in regional lobes and gyri were witnessed.

Early brain overgrowth, especially in an early age of 2–3 years old toddlers 
remains, however, one of the most replicated findings. Compared with typically 
developing children, global gray matter (GM) and white matter (WM) volumes 
were significantly increased and also right superior temporal gyrus regional GM 
and WM volumes. Higher fractional anisotropy value was also observed in the 
corpus callosum, posterior cingulate cortex, and limbic lobes of autistic children 

21

Autism: A Neurodevelopmental Disorder and a Stratum for Comorbidities
DOI: http://dx.doi.org/10.5772/intechopen.82496

[8]. The converging findings of structural and white matter abnormalities in 
autism suggest that alterations in neural anatomy of different brain regions may be 
involved in the associated behavioral and cognitive deficits in this disorder.

Nevertheless, recent neural models of autism spectrum disorders have moved 
the focus from a lesion model to connectivity disorder model. Aberrant conduc-
tivity between different brain regions in autism is currently the most frequently 
addressed neurodevelopmental model. Minshew and Williams [9] have implicated 
intra-hemispheric connectivity to be mainly involved in the disorder. Vissers et al. 
[10] have studied functional and structural brain connectivity in individuals 
with high functioning individuals with ASD. They supported the findings that 
long-range cortico-cortical functional and structural pathways displayed weaker 
connectivity in people with ASD than in controls, but with less evidence for local 
overconnectivity. Other researchers have supported a local overconnectivity and 
long-range underconnectivity pattern of brain functioning in autism through the 
use of high-resolution electroencephalography (EEG) [11]. Cortical underconnec-
tivity between brain regions, especially the frontal cortex and more posterior areas, 
is relatively well established in autism. This supports the view that there is weaker 
coordination between different parts of the brain that should be working together 
to accomplish complex social and language tasks. This is opposite to what is occur-
ring during normal development [12].

In this cerebral connectivity disorder of autism, the cerebellum has also been 
strongly implicated. Although the role of cerebellum as error detector and coordi-
nator of movement and balance was the typical portrait of cerebellar function, yet 
recognition of nonmotor functions of the cerebellum has recently come into view. 
While some parts of the cerebellum are predominantly connected to sensorimotor 
cortex, other connections project to cognitive and affective regions and comprise a 
large fraction of cerebellar connectivity [13]. Impairment of these connections was 
also reported in autism.

As a model for aberrant conductivity in autism, we could consider the reported 
comments about deviations in corpus callosum, white matter, and neurotransmit-
ters. So, brain connectivity includes connectivity between the two hemispheres 
done mainly by the corpus callosum (CC), or between multiple areas in the brain 
accomplished by tracts in white matter and by synapses and neurotransmitters. 
People need this connectivity as different regions of the brain need to communicate 
in order to identify a face, understand, and respond to others and to different social 
situations. Disruption of white matter tracts in regions related to social function-
ing is implicated in autism [14]. In autism, defective joint attention was related 
to decreased connectivity and synchronization between posterior involuntary 
attention related to responding to joint attention (RJA) and anterior volitional joint 
attention related to initiating joint attention (IJA) [15].

The corpus callosum (CC) constitutes the main commissural tract between the 
two hemispheres (more than 200 million axons). A study by Hardan et al. [16] 
that investigated the corpus callosum by MRI-based morphometry has identified 
decreased total volume of CC and several of its seven subdivisions. This was found 
in other studies and could reflect in the form of social deficits, repetitive behavior, 
and sensory processing abnormalities.

There are neural circuits for social cognition, which involves attention, memory, 
motivation, and emotion. Abnormalities in social brain structures and circuitry that 
are modulated by several neurotransmitters and neuromodulators have been linked, 
through human fMRI and animal research, to disorders of social functioning as in 
autism [17]. Neurotransmitter systems involved in autism spectrum disorders have 
been identified as GABA, glutamate, serotonin, catecholamines, and acetyl choline 
[18, 19].



Neurodevelopment and Neurodevelopmental Disorder

22

In the area of communication abilities, the gifts of memory, understanding, 
emotional expression, and learning are used on a daily basis. Sometimes, these 
abilities are disrupted due to deviant central nervous system development  
(neurodevelopmental disease), which includes long-range underconnectivity and 
local overconnectivity. Conditions like autism spectrum disorders (ASDs), and 
attention-deficit hyperactivity disorder (ADHD), can emerge secondary to these 
disruptions.

2.2 Comorbidities

Autism is in comorbidity relationship with many disorders as epilepsy [20], 
with intellectual disability and with attention deficit hyperactivity disorder 
(ADHD) [21]. Other disorders such as fragile X, Rett syndrome, and tuberous 
sclerosis are also described. Intellectual disability, epilepsy, and ADHD can share 
a common neurobiological basis and are factors of poor prognosis of autism [22]. 
Comorbidities are the main reasons for referral to outpatient clinics and admission 
to hospitals. Among the most challenging co-existing dysfunctions are cognitive 
impairment, hyperactivity, sensory processing disorders, and dyspraxia. They mask 
and hinder proper diagnosis and are the cause of inadequate management  
[23, 24]. That is why Gadow et al. [25] strongly recommend looking at the presence 
of comorbidities before starting any treatment for autism.

Among the several comorbidities associated with autism, this chapter is going to 
focus on three commonly encountered conditions: ADHD, dyspraxia, and sensory 
processing disorders. ADHD, characterized by symptoms of inattention and 
hyperactivity/impulsivity [1], is frequently associated with autism. The diagnosis 
of this disorder is difficult to make when present concomitant with autism. In fact, 
in previous versions of DSM, ASD and ADHD were regarded as distinct disorders. 
The child was either diagnosed as ASD or ADHD, with a common negative impact 
mainly on semantics and pragmatics in both of their language profiles. A diagnosis 
of ASD was considered an exclusion criterion for the diagnosis of ADHD. However, 
recent research recognizes considerable clinical, genetic, and neuropsychological 
overlap between ASD and ADHD and within the DSM-5, and ADHD can now be 
diagnosed in conjunction with ASD.

Both disorders share a portion of their heritable etiology. About 50–72% of 
the contributing genetic factors overlap between ASD and ADHD. Furthermore, 
similar deficits in executive function, social cognition, and motor speed have been 
linked to both ASD and ADHD [26]. Both diseases have similar neuropathology 
and also share similar symptomatology with considerable overlap in their core 
and associated symptoms and a frequent overlap in their comorbid conditions. 
Consequently, it is apparent that ASD and ADHD diagnoses belong to a broader 
spectrum of neurodevelopmental disorders, an abnormal connectivity spectrum 
disorder, which results from neural long-range underconnectivity and short-range 
overconnectivity. Many psychopathological, neuropsychological, brain imaging, 
genetic, and medical findings have suggested that these disorders are part of a 
continuum [27].

There are some recorded similarities between these two disorders. First, males 
are more commonly affected as having ASD or ADHD than females. A review of 
automated medical records of children revealed the percentages of males evaluated 
in ASD and ADHD groups were 80.4 and 77.7%, respectively [28]. Second, both dis-
orders are often diagnosed later during childhood. The respective median ages for a 
diagnosis of ASD or ADHD were 4.7 and 6.4 years [29]. Third, these disorders share 
symptomatology, showing considerable overlap in the core and associated symp-
toms, that is, issues with attention, impulsivity, repetitive behaviors, impairments 
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in socialization and communication, anxiety, sensory processing abnormalities, 
and ritualistic behaviors, such as counting, ordering, repeating or arranging [30]. 
Fourth, these disorders share neuropathology.

In clinical practice, the often reported co-occurrence of ASD and ADHD might 
link them in several pathways: inattention/impulsivity and social ineptness; hyper-
activity and stereotypic, repetitive behaviors; and the semantic pragmatic language 
deficit. The clinical links between ASD and ADHD are variable and strong, as well 
as the neurodevelopmental basis [31].

Another comorbid disorder that occurs frequently with autism is dyspraxia. 
Praxis is the ability to conceptualize, plan, and successfully complete motor actions 
in novel situations. It is a naturally emerging skill that develops as the child interacts 
successfully with people and objects in the environment and enables the child to 
learn new skills by watching, imitating, and exploring.

Developmental dyspraxia is the failure to acquire the ability to perform appro-
priate complex motor actions. It is related to problems of transitive gestures (panto-
mimed tool use), intransitive actions (symbolic gestures such as waving goodbye), 
imitative actions (such as imitating meaningless hand or body postures), motor 
planning, and difficulty conceptualizing novel ways to interact with objects [32]. 
Many researches have illustrated that children with autism have difficulties in all 
categorizations of developmental dyspraxia [33].

Autistic children have impaired motor function, including clumsy gait, impair-
ments in coordination, balance, and posture, and abnormal performance of skilled 
gestures [34]. The deficient performance of skilled motor gestures secondary to 
command, imitation, or tool use is actually one of the most consistent motor signs 
in autism [35], which is also consistent with “developmental dyspraxia” [36].

Motor praxis concerns have been reported for children with ASD based on scores 
from a variety of motor tests and movement observations. Autistic children have 
been reported to show deficits in their ability to produce meaningful and meaning-
less gestures on command, imitate demonstrated gestures without objects, and 
imitate gestures involving real or imaginary tool use. These praxis abilities require 
the child to interpret sensory information and then formulate internal action 
models. That is why some researchers suggested that impairments in dyspraxia 
may contribute to the primary features of the disorder, including impaired social 
interaction and communication skills [37].

Besides motor praxis dysfunction, speech-language pathologists have observed 
co-occurrence of childhood apraxia of speech (CAS) with autism. CAS is difficulty 
in coordinating volitional motor movements that are required for clear and intel-
ligible speech. It can be witnessed in verbal and nonverbal autistic children in the 
form of defective vowel production, prosody, and difficulty in imitation of speech 
sounds. This definitely augments the problem of social and language delay in autism 
and presents a big obstacle in the pathway of verbal language. The possible presence 
of this obstacle might to be considered and evaluated before the start of therapy 
because comorbidity between autism and CAS is still vague, and verbal language 
remains the ultimate goal of success of therapy from the parents’ perspective.

A recent research, however, has found autism and apraxia of speech to be highly 
comorbid. A 3-year study on 30 children with communication delay has shown that 
63.6% of children originally diagnosed as having autism had speech apraxia and 
36.8% of children originally diagnosed with speech apraxia had autism. The drawn 
conclusion from this study was that two-thirds of the children initially diagnosed 
with autism also had apraxia [38]. It is advisable that children with autism are 
observed for signs of apraxia and children with apraxia are observed for signs of 
autism. This observation in clinical practice translates to the fact that language 
delay in autistic children may not be purely of an “autistic” origin.
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In the area of communication abilities, the gifts of memory, understanding, 
emotional expression, and learning are used on a daily basis. Sometimes, these 
abilities are disrupted due to deviant central nervous system development  
(neurodevelopmental disease), which includes long-range underconnectivity and 
local overconnectivity. Conditions like autism spectrum disorders (ASDs), and 
attention-deficit hyperactivity disorder (ADHD), can emerge secondary to these 
disruptions.
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with intellectual disability and with attention deficit hyperactivity disorder 
(ADHD) [21]. Other disorders such as fragile X, Rett syndrome, and tuberous 
sclerosis are also described. Intellectual disability, epilepsy, and ADHD can share 
a common neurobiological basis and are factors of poor prognosis of autism [22]. 
Comorbidities are the main reasons for referral to outpatient clinics and admission 
to hospitals. Among the most challenging co-existing dysfunctions are cognitive 
impairment, hyperactivity, sensory processing disorders, and dyspraxia. They mask 
and hinder proper diagnosis and are the cause of inadequate management  
[23, 24]. That is why Gadow et al. [25] strongly recommend looking at the presence 
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the contributing genetic factors overlap between ASD and ADHD. Furthermore, 
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and associated symptoms and a frequent overlap in their comorbid conditions. 
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spectrum of neurodevelopmental disorders, an abnormal connectivity spectrum 
disorder, which results from neural long-range underconnectivity and short-range 
overconnectivity. Many psychopathological, neuropsychological, brain imaging, 
genetic, and medical findings have suggested that these disorders are part of a 
continuum [27].
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symptomatology, showing considerable overlap in the core and associated symp-
toms, that is, issues with attention, impulsivity, repetitive behaviors, impairments 
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in socialization and communication, anxiety, sensory processing abnormalities, 
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A third comorbidity commonly occurring with autism is sensory processing 
disorders (SPDs). Sensory processing means the brain’s ability to register, orga-
nize, and make sense of the information received through one’s senses. SPDs are 
commonly encountered with autism and have recently been included among the 
diagnostic criteria in DSM-5. They might even be encountered in children with 
other developmental disabilities and in typically developing children as well. 
When sensory processing is dysfunctional, the individual’s ability to cope with the 
demands of the environment would be disrupted [39].

Suarez [39] have drawn a hierarchical classification of SPD, dividing it into 
three main categories: sensory-based motor disorder (poor motor planning and/
or postural instability resulting from improper processing of information from the 
senses), sensory discrimination disorder (inability to perceive differences and simi-
larities in data received from the senses which can make reading very challenging), 
and sensory modulation disorder (impairment in intensity and nature of behavior 
in response to sensory information). The latter subtype is the one commonly 
encountered in autism, and it has three subcategories: sensory hyperresponsiveness, 
sensory hyporesponsiveness, and sensory seeking.

Consequently, autistic individuals with SPD can be categorized into hypore-
sponsive, hyperresponsive, or sensory seekers. The hyperresponsiveness means 
overreaction to sensations that are typically harmless or not even perceived by 
others. Inappropriate behavior outbursts may be triggered by feeling textures on 
the skin (clothes and food), movement activities (swinging), or hearing sudden 
noises (doorbells). They are overcautious and resist changes in daily routine. The 
hyporesponsiveness requires intense sensory input to attract the attention of the 
child as sustained loud sound. Symptoms include not responding to name, or even 
to painful stimuli. Sensory seeking is characterized by excessive drive for certain 
sensory stimuli, as putting things in the mouth or touching people to the point of 
annoying them. Sensory seeking may be injurious or disrupting to the development 
of meaningful social relationships.

The proposed division of sensory modulation disorder into distinct subcatego-
ries serves theoretical understanding of the problem. Clinically, however, the autis-
tic children show a mixture of symptoms that belong to more than one subcategory. 
They might be annoyed by ordinary sounds to the degree that they cover their ears, 
and they might be attracted to very fine sounds as the sound of turning of a page, or 
they might ignore a very loud sound [40]. Some researchers have reported positive 
associations between hyporeactivity and social communication symptom severity, 
whereas others have found that child hyperreactivity is likely to negatively affect 
family life and social adaptive behaviors of school-age children [41].

Questions have arisen regarding the relation of restricted repetitive behavior 
and sensory processing disorders (SPDs) in autism. Gabriels et al. [42] have sug-
gested the presence of a subgroup with frequent restricted repetitive behavior and 
multiple abnormal sensory responses due to significant relationship between both. 
Hyper- or hyporeactivity to sensory stimuli have actually been included in DSM-5 
as one of the forms that exist under the title of “Restricted Repetitive patterns of 
Behavior.”

3. Conclusion

Autism is a diverse manifold neurodevelopmental disorder affecting many of the 
child’s abilities. Some disabilities are core features, while others are comorbidities. 
The clinical picture therefore differs from one child to another. The main deficit in 
neurodevelopment is that of aberrant connectivity.
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Abstract

Schizophrenia is a heterogenous disorder presenting as episodes of psy-
chosis against a background of cognitive, social, and functional impairments. 
Schizophrenia, a multifaceted neuropsychiatric disorder, is affecting approximately 
1% of the population worldwide. Its onset is the result of a complex interplay of 
genetic predisposition and environmental factors. The clinical staging model of 
psychotic disorders implies that early successful treatment may improve prognosis 
and prevent progression to more severe stages of disorder. So, prevention and early 
intervention of schizophrenia are correlated with the prodromal phase, especially 
with “at risk mental state” (ARMS) and the prediction of their transition to a 
full-blown psychotic disorder. The psychosis prodrome includes nonspecific signs 
and symptoms (such as depressed mood, anxiety, sleep disturbance, and deteriora-
tion in role functioning), “basic symptoms” (thought interference, disturbance of 
receptive language, and visual perception disturbance), attenuated or subthreshold 
psychotic symptoms, neurocognitive deficits, and neurobiological changes mea-
sured via magnetic resonance imaging (MRI). Increasing improvements in the 
identification of those truly at “high risk” for psychotic disorder have paved the way 
of early intervention strategies in this population and increased the possibility of 
minimizing distress and disability and delaying or even preventing the onset of an 
evident psychotic disorder. The treatment (antipsychotic medication, psychologi-
cal and social interventions) for young people who meet ARMS criteria should not 
only focus on the symptoms that constitute the ARMS criteria but also address the 
broader range of difficulties with which the young person might present. There are 
some ethical issues to consider when selecting specific treatment options, and the 
potential risks of treatment have to be balanced against the potential benefits.

Keywords: early recognition, clinical staging model, prodromal phase,  
at risk mental state, prevention

1. Introduction

Schizophrenia is a heterogenous disorder presenting as episodes of psychosis 
against a background of cognitive, social, and functional impairments.

Schizophrenia, a multifaceted neuropsychiatric disorder, is affecting approxi-
mately 1% of the population worldwide. Its onset is the result of a complex interplay 
of genetic predisposition and environmental factors.
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After more than 100 years of studies and clinical psychiatric practice, passing 
through numerous conceptualizations of psychosis and schizophrenia, research 
tries to achieve an evolutionary pattern of psychosis and to establish clear, distinc-
tive diagnostic criteria for every type of psychosis.

Psychosis is unanimously considered essential for understanding the evolution 
and treatment process and also for estimation of prognosis.

Recently, the area of “prodromal” research in schizophrenia and related dis-
orders has grown considerably. From initial retrospective studies of this phase, 
dating back to the early twentieth century, the last decade of the century has seen 
the beginning and expansion of prospective studies aiming to identify the earliest 
manifestations of psychotic illnesses. From identification of these prodromal or 
“ultrahigh-risk”(UHR) individuals, the area has also developed to include inter-
vention studies aiming to prevent, delay, or ameliorate the onset of a full-blown 
psychotic disorder and to investigate underlying processes that cause or contribute 
to the onset [1].

The fact that psychosis disorders, such as schizophrenia, begin with a prodromal 
phase prior to the onset of frank psychotic symptoms has been known since the first 
description of the illness was documented [1].

The pattern of psychosis and of the first episode of psychosis is similar to the 
pattern of schizophrenia but more complex.

Strauss and Carpenter considered that schizophrenia includes an interactive, 
developmental, and systematic model [2–6]. By analogy, the model of the first 
psychotic episode can be considered an interactive, developmental, and systematic 
model.

The arguments to sustain this theory (hypothesis) are:

1. Variables that interact either sequentially or simultaneously and are nonspe-
cific or partly known.

2. Genetic vulnerability is sometimes well known; in the first psychotic 
episode, there is a variety of genetic mechanisms with varying degrees of 
impact and strong expressiveness even from the prodromal or prepsychotic 
period. But for those with well-known genetic vulnerability, clinical expres-
sivity may be missing, and not everyone with genetic predisposition shows 
schizophrenia.

3. Perinatal factors may constitute an independent variable that increases the 
person’s vulnerability to develop a psychotic pathology, and when interacting 
with genetic and environmental factors, the risk increases both in schizophre-
nia and psychosis [7].

Due to the complexity and heterogeneity of the first psychotic episode, to 
conceive and to unanimously recognize it like a coherent and unitary model are 
extremely difficult. The unknowns of this huge puzzle are still numerous despite 
the scientific efforts.

The model of the first psychotic episode has a medium- or long-term impact on 
schizophrenia model and can be of particular relevance to both etiopathogenesis 
and treatment as well as prevention strategies.

Over the last years, the most exciting signs of progress in defining a new con-
ceptualization of psychosis are reported by the genomic studies [8, 9]. Maps of the 
neurobiological circuits of cognitive functions have been designed and have tried to 
explain the ways in which these circuits become dysfunctional in various disorders 
including the psychotic ones.

33

Schizophrenia: Early Recognition and Prevention
DOI: http://dx.doi.org/10.5772/intechopen.88537

2. Description of psychosis

Researchers from the National Institute of Mental Health (NIMH) have reported 
three conclusions:

1. Psychosis is a neurodevelopmental disorder, with onset in adolescence and 
period when the cortex is still in development.

2. For most disorders related to the cortical functions, the changes of cognitive 
and comportamental fields appear (occur) later, suggesting the existence of 
biological dysfunctions long before psychosis.

3. Psychosis like other complex diseases has a multifactorial determinism.

These data have facilitated the explanations of the pattern of psychosis by 
integrating molecular biology, neuroscience, and behavioral sciences. This new 
approach tries to discover finally the new treatment strategies including new 
medications (antipsychotics) and psychological, social, and other potential 
interventions.

The work group for psychosis within DSM-V proposes distinct clinical domains 
for each psychotic disorder correlated with the neuronal circuits [10].

In 2009 Jim van Os, one of the members of work group for psychosis, proposed 
a new syndrome named “salience dysregulation syndrome” as a diagnostic to be 
used [11].

Jim van Os used the psychotic model of Kapur who considers that hallucinations 
and delusional ideas appear because the individual has difficulties in recognizing 
his or her mental experience relevance. Jim van Os used the term syndrome not 
disease, because a syndrome is a set of symptoms that appear simultaneous with-
out having a common cause. The symptoms described are positive and negative 
symptoms, disorganization, developmental cognitive deficits, and depressive and 
maniacal symptoms [11].

The “salience dysregulation syndrome” was divided for diagnosis into:

a. “Salience dysregulation syndrome with developmental cognitive deficits”

b. “Salience dysregulation syndrome with affective expression”

c. “Salience dysregulation syndrome not otherwise specified” [11]

3. Attenuated syndrome

In 2010, Dominguez and collaborators [12] also members of work group for 
psychosis described two new innovative aspects:

• Deconstructing psychosis/schizophrenia disorganization considered as a 
syndrome.

• The attenuation of psychotic symptoms is a favorable predictor for the outcome.

In his study [12], Dominguez considered that the association of negative symp-
toms or of the disorganization with attenuated psychotic symptoms increases the 
risk of developing a psychotic frank syndrome.
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4. The prodrome

Although there is great variability between patients in how their prodromes 
manifest, certain symptoms and signs have been frequently described. These 
include depressed mood, anxiety, irritability and aggressive behavior, suicidal ide-
ation and attempts, and substance use. The most commonly occurring prodromal 
symptoms, according to retrospective studies of patients with schizophrenia and 
schizophreniform disorder, are reduced concentration and attention, reduced drive 
and motivation, depression, sleep disturbance, social withdrawal, suspiciousness, 
deterioration in role functioning, and irritability [1].

Studying these symptoms, we observe two things. First, many of them are 
nonspecific occurring frequently in the prodromes of nonpsychotic threshold 
syndromes. Second, a considerable amount of psychiatric symptoms, disability, 
self-harming, and other health-damaging behaviors, occur during this prodromal 
phase, even in the earliest stages [1, 19, 22, 39].

Cognitive, affective, and social disturbances known as “basic symptoms” are 
also commonly described in the early prodromal phases. This concept of “basic 
symptoms,” developed in the 1960s, has significantly influenced the new area of 
prodromal research [1].

5–10% of the general population experience attenuated or subthreshold form of 
psychotic symptoms like transient perceptual symptoms; suspiciousness; reference 
and bizarre delusional ideas (e.g., the beliefs that others may be thinking badly 
about or laughing at); nonattendance at school, university, or work; and altered 
behavior toward family and friends [1, 16].

The difference between these phenomena and clear psychotic symptoms is due 
to their intensity, frequency, duration, and deleterious effects on the individual 
functionality of the person.

Neurocognitive deficits in particular impaired attention, spatial and verbal 
memory, and speeded information processing are also evident in the prodromal 
phase but at a lower degree of severity comparing to those found in first-degree 
relatives of patients with schizophrenia or in fully affected patients [1].

Specific cognitive deficits may be related more directly to affected brain 
structures and candidate genes and so may be more directly predictive of 
psychosis.

5. Treatment

In the prodromal and in the onset phase of psychosis, neurobiological changes can 
be identified. During the process of transition to psychosis, magnetic resonance imaging 
(MRI) highlights significant bilateral reduction in gray matter volume in the cingulate 
region as well as in the left parahippocampal gyrus, left fusiform gyrus, left orbitofron-
tal cortex, and one region of the left cerebellar cortex [1]. It is important to notify that 
these brain changes were not present in the UHR group that did not develop psychosis.

The differentiation between normal and abnormal has important implications 
for defining the prodromal phase of schizophrenia and the therapeutic interven-
tions at this early stage. Atypical antipsychotics has improved the treatment and 
the outcome of schizophrenia and psychosis due to their low risk for adverse effects 
like extrapyramidal effects, tardive dyskinesia, sedation, weight gain, metabolic 
syndrome, amenorrhea, galactorrhea, sexual dysfunctions, etc.

Psychosocial interventions give optimism regarding the prognosis of disease by 
improving family and social difficulties, stigma avoidance, victimization, isolation, 
and poverty [13].
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If the prodrome can be recognized prospectively and treatment can be provided 
at this stage, then disability could be minimized, some recovery may be possible 
before symptoms and poor functioning become obvious, and the possibility of 
preventing is feasible and realistic. The early intervention aims:

• To slow or possibly to stop further deterioration and even further progression 
to psychosis.

• To reduce the poor functional outcome characterizing many vulnerable 
individuals, whether or not psychosis actually develops.

• To evaluate and prevent secondary morbidity in order to decrease morbidity 
and mortality in the first episode of psychosis.

• To create research opportunities to develop new therapeutic strategies.

• To develop secondary prevention strategies.

Early intervention has to take place in the three important phases of early 
psychosis:

a. In the phase of risk when the symptoms are subtle and can be confused with 
particularities and difficulties specific to adolescence.

b. In the period of frank psychosis in which if the symptoms remain untreated, 
there is a risk of temporal or permanent disability.

c. In the critical period after the onset of the first episode of psychosis, a period 
which can last up to 5 years after the onset, the length of time that treatment 
should be comprehensive and specific.

6. Redefining psychosis

The latest attempts redefining the concept of psychosis have focused particularly 
on the first episode of psychosis and on prodromal stage of schizophrenia.

Arguments for these new concepts can be synthesized as:

• Clinical heterogeneity of patients diagnosed with first psychotic episode.

• The heterogenous outcome of these patients.

• The instability of the diagnosis over time.

• Avoidance of negative prognostic.

• Stigma avoidance.

7. A history of prodrome: benefits of diagnosis of the prodrome

Over 100 years ago, Emil Kraepelin (1896), cited by Patrick McGorry at the 
beginning of the chapter “A stitch in time” [14], wrote “it is of the greatest medical 
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importance to diagnose cases of dementia praecox certainly and at an early stage” 
(Kraepelin, 1896/1987, p. 23).

In 1908, Eugen Bleuler, cited by Patrick McGorry in the same book [14], wrote 
“the sooner the patients can be recovered and the less they are allowed to with-
draw in their own world, the sooner they become socially functional” (Bleuler, 
1908/1987, p. 63).

Coming from 1927 [15], we find the same idea “I feel certain that many incipi-
ent cases might be arrested before the efficient contact with reality is completely 
suspended, and a long stay in institutions made necessary” ([15], p. 135). Meares 
in 1950 wrote “it is not necessary to diagnose early schizophrenia but to diagnose 
prepsychotic schizophrenia ,to prevent damage”.

These statements can be used not only as the foundation stones for any thera-
peutic intervention but also as arguments to emphasize the importance of early 
phases of psychosis.

8. Definition of prodrome

So, the prodrome is a distinct period in the evolution of the first psychotic epi-
sode, mostly unknown or minimized as importance. The onset’s particularities and 
the evolution of the first psychotic episode are involved in the short-, medium-, and 
long-term prognosis. The recovery depends on the early initiation of therapeutic 
strategies.

The prodrome was originally defined as the prepsychotic period preceding a 
relapse in patients already diagnosed with psychosis. Subsequently a distinction was 
made between the initial and the relapse prodrome [16].

Other definitions are [16]:

• “a heterogenous group of behaviors having a temporal relationship with 
psychosis’ onset”.

• “the period from the first symptoms noted until the onset of prominent 
psychotic symptoms”.

All definitions of prodrome phase have in common the presence of symptoms 
and the temporal relationship with the onset of psychosis, with two important prac-
tical consequences. The first implication is the person being symptomatic during 
the prodrome will ask for medical help, so it is possible to establish a diagnosis and 
a therapeutic strategy. The second implication is the person can develop the disease 
after the end of the prodromal phase, suggesting that the transition from prodrome 
to frank psychosis may be detectable.

9. False positives and treatment

However, early attempts at prodromal intervention were hampered, by the 
problem of “false positives” and their implications for preventive intervention. 
“False positives” refer to those who are identified as being prodromal, at risk of 
developing a psychotic disorder in the near future, but who do not do so. Some 
of these people were in fact never “destined” to develop a psychotic disorder (the 
“true false positives”) [1]. These persons may be harmed by being considered as 
“prodromal” or “high risk of psychosis” and may receive treatment unnecessarily 
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[17–19]. In contrast are those individuals who would have developed a psychotic 
disorder were it not for some alteration in their circumstances,such as a treatment 
intervention, stress reduction or cessation of illicit drug use, that preventing this 
form occurring [1]. This latter group has been termed “false false positive” [19]. It 
is virtually impossible to distinguish between these two groups phenotypically at 
baseline and follow-up.

10. Description of prodromal phase

The conceptualization of the prodrome phase uses two methods: a retrospec-
tive/passive method which involves getting information from the patient and his/
her family and a proactive one which includes observation and patient monitoring 
during psychosis.

Yung and McGorry [16] describe the phenomenology of the prodrome phase, 
summarizing the data from the literature with those of the Melbourne Personal 
Assessment and Crisis Evaluation (PACE) approach [20, 21]. The PACE Clinic 
recruits those patients with a perceived need for psychiatric help.

11. Ultrahigh risk

The PACE ultrahigh-risk (UHR) criteria require that a young person aged 
between 14 and 30 is referred for health care to the clinic if the criteria for one or 
more of the following groups are met:

1. Attenuated psychotic symptom (APS) group has experienced subthreshold, 
attenuated positive psychotic symptoms during the past year.

2. Brief limited intermittent psychotic symptom (BLIPS) group has experienced 
episodes of frank psychotic symptoms that have not lasted longer than a week 
and have spontaneously abated.

3. Trait and state risk factor group has a first-degree relative with a psychotic 
disorder or the identified subject with a schizotypal personality disorder and 
has experienced a significant decrease in functioning during the previous year 
[19, 22]

The ultrahigh-risk (UHR) criteria allow the recognition of young people at 
risk of onset of a psychotic disorder (late adolescence/early adulthood) who also 
report mental state disorder suggesting an emerging psychotic process or who 
may have a positive family history of psychosis accompanied by evidence of 
mental ill health.

Necessarily, criteria have also been developed to define the onset of frank 
psychosis. These are not identical to DSM-V criteria [22, 23] but are elaborated 
to define the minimal point at which antipsychotic treatment is indicated. 
This definition is arbitrary but even has a well-defined treatment implication, 
applicable equally to “substance-related symptoms, symptoms that have a mood 
component—either depression or mania—and schizophrenia spectrum disorders.” 
The predictive aim is the first-episode psychosis requiring antipsychotic treat-
ment, arbitrarily defined by the persistence of clear psychotic symptoms, more 
than 1 week [1, 19].
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The intensity of psychotic symptoms characteristic for each of the UHR groups 
was firstly assessed using the following scales: the “Brief Psychiatric Rating Scale 
(BPRS) and the Comprehensive Assessment of Symptoms and History (CASH) 
interview.” To specify the frequency and duration of psychotic symptoms, new 
criteria were needed. So, a new instrument, the Comprehensive Assessment of At 
Risk Mental States (CAARMS) was designed so that all relevant domains (intensity, 
frequency, duration, and recency) could be assessed [1, 24].

The PACE UHR criteria have been adopted and adapted in a large number of 
other settings around the world (USA, UK, Norway, Germany, etc.).

Symptoms associated with prodromal phase.
Yung and McGorry [16] identified eight subtypes of symptoms characteristic of 

prodromal phase:

• Neurotic symptoms: anxiety, irritability, restlessness.

• Affective symptoms: depression, anhedonia, guilt, suicidal ideas, thymic 
oscillations.

• Volitional disturbances: apathy, loss of interest, low energy, fatigue.

• Cognitive deficits: attention deficit, rumination, abstraction difficulties, thought 
blockages, thought interference, thought perseveration, thought pressure.

• Psychotic symptoms: visual and auditory perceptual disturbances, suspicious-
ness or paranoid ideation, derealization, unstable ideas of reference.

• Physical symptoms: somatic symptoms, weight loss, low appetite, sleeping 
disorders.

• Behavioral dysfunctions: social withdrawal, impulsivity, aggressivity, bizarre 
behavior, functional deterioration.

• Other symptoms: sensitivity, odd beliefs or magical thinking, dissociation.

Yung and collaborators [19, 25] have elaborated a set of operational criteria 
to identify individuals at risk for developing a psychotic disorder over the next 
6–24 months as Global Assessment of Functioning (GAF) scale score <51, BPRS 
score >2, and Hamilton Depression Rating Scale (HRDS) score >18 [19, 25].

12. Risk factors to developing psychosis

During the years, several research teams have identified a number of risk factors 
for the development of psychosis: Carr and collaborators (2000): family history, 
perinatal complications, premorbid personality, stressful life events; Mason et al. 
[26]: schizotypal personality disorder, hallucinations, magic thinking, odd beliefs, 
anhedonia, withdrawal, functional deterioration [27].

13. Duration of prodrome

Regarding the duration of the prodrome, retrospective studies suggest a varia-
tion ranging from a short period to several years [7, 26, 28].
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14. Genetic risk programs for psychosis

The development of genetic high-risk (GHR) programs was an important step 
for early detection and intervention, especially in schizophrenia.

In recent years, genetic research have identified specific genes for schizophrenia, 
some with early phenotypic expression may be considered important biomarkers, 
for example, the CHRNA7 gene situated on chromosome 15 with importance in 
genetic transmission and heredity of schizophrenia [29–32].

The phenotype “schizophrenia” has been characterized by the presence of 
behavioral abnormalities, the related outcome, and its longitudinal course, but not 
its fundamental biological substrate. The absence of a neuropathological basis for 
schizophrenia was one reason that some researchers supported the neurodevelop-
mental hypothesis of schizophrenia issued by Weinberger [33]. Evidence of obstet-
rical complications being associated with the risk of schizophrenia supported that 
developmental abnormalities were involved [34].

The premorbid risk factors associated with schizophrenia as motor and cognitive 
delay and obstetrical complications are nonspecific; their prevalence in the non-
affected population is important, so their positive predictive value for the develop-
ment of schizophrenia is limited.

Neuroimaging anomalies found in patients diagnosed with first-episode psycho-
sis have been interpreted as supportive of a static structural abnormality associated 
with schizophrenia that had originated early in neurodevelopment [35].

Recently, the association of molecular genetics with intermediate phenotypes 
such as cognitive impairment or abnormal brain functioning, as measured with 
functional neuroimaging, has generated diverse understanding of major psychosis. 
The combination of different levels may be of particular importance for longitudi-
nal “at risk” studies. These studies can identify individuals who are at true risk of 
developing major psychosis prior to its full clinical expression, enabling us to treat 
“at risk” individuals prior to full manifestation of psychosis and prevent its appear-
ance during critical developmental periods such as late adolescence [1, 36].

The measurement of genetic profiles using groups of candidate genes in com-
bination with psychosocial risk factors such as stress and illicit drug use in samples 
of patients with clinically significant but subthreshold features of psychosis and 
mood disorder is a key strategy in enhancing predictive power for transition to more 
established and severe psychotic disorders, in treatment selection, and in longer-
term prognosis [1].

Genetic studies suggest that diagnostic boundaries may be modified based on 
genetic information and some genes such as NRG1, DTNBP1, DISC1, and BDNF 
may relate to risk for both schizophrenia and mood disorders [37]. The synergistic 
use of genotyping with phenotypes characterizing brain functioning will contribute 
to a better understanding of the mechanisms by which genes interact with other 
genes and/or environmental risk factors.

15. Disadvantages of “prodromal” identification

Identification by different methods of people at risk of psychosis in the gen-
eral population has allowed an increase in accuracy from a rate of 1% to a rate 
of approximately 30% [1]. However, the increase in accuracy has raised some 
criticism. One is that the screening would not be effective in the general popula-
tion because of the lower base rate of psychotic illness in that population [38], so 
screening for UHR criteria would not be supported at this stage [19]. The second 
criticism is that there is a high false positive rate in all of these studies, the majority 
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of participants not developing psychotic disorder. Consequently, some persons 
will be “diagnosed” and treated as if they were at “high risk” of psychosis, when 
this may not be true. This false identification may have negative consequences on 
those individuals: they may become anxious or depressed about the possibility of 
developing schizophrenia or receiving treatment, stigmatized by others or them-
selves or both [39]. These people may be exposed to drug or other therapies, with 
potential adverse effects without gaining any benefit [39, 40–43]. This controversy 
on the risk benefit balance of early intervention strategies must be addressed by 
future studies.

16. Predictors of psychotic disorder in high-risk groups

Since 2004, many prospective programs focused on early psychoses have been 
developed.

The term “at risk mental state” (ARMS) is still used today to describe individuals 
at risk to develop a psychotic disorder [1, 44]. So, different diagnostic systems have 
been achieved, one of the most known and sophisticated systems being developed 
by McGorry and his team (1966) in order to reduce the number of “false positive” 
cases [1, 44]. The diagnostic system accomplished by McGorry et al. has three 
categories of diagnostic criteria for individuals’ “at risk mental state” (ARMS):

1. Attenuated psychotic symptoms (APS).

a. The presence of at least one of the following: ideas of reference, odd 
beliefs, magical thinking, perception disturbances, paranoid ideation, 
formal thought disorder, disturbances of receptive language.

b. Frequency of symptoms: several times a week.

c. Duration: have experienced subthreshold, attenuated positive psychotic 
symptoms during the past year.

d. Recently: stressful life events during the last year.

2. Brief limited intermittent psychotic symptoms group (BLIPS).

a. Transient psychotic symptoms: the presence of at least one of the fol-
lowing—ideas of reference, odd beliefs, magical thinking, perception 
disturbances, paranoid ideation, formal thought disorder, disturbances of 
receptive language.

b. Frequency of symptoms: few times a week.

c. Duration: less than a week and spontaneously abated.

d. Recently: short intermittent psychotic symptoms were present during the 
previous year.

3. Trait and state risk factor group.

a. First-degree relative with a psychotic disorder or the identified individual 
with a schizotypal personality disorder.

41

Schizophrenia: Early Recognition and Prevention
DOI: http://dx.doi.org/10.5772/intechopen.88537

b. Significant decline in functioning during the previous year.

c. Duration: at least 1 month and no more than 5 years [19, 22].

These criteria were criticized for the absence of negative symptoms of 
schizophrenia.

Cornblatt et al. mentioned, among the diagnostic criteria of the prodrome, 
negative attenuated symptoms or disorganization, which define clinical high-risk 
(CHR) group representing the early prodromal stage and CHRT group representing 
tardive prodromal stage [45]. CHRT group is characterized by negative attenuated 
symptoms, disorganization, and positive symptoms.

Negative symptoms are impaired concentration and attention, subjectively 
abnormal emotional experiences, blunted affect, impaired energy, and impaired 
tolerance to stress [24].

Marked impairment in role functioning, flat or inappropriate affect, anhedonia, 
and asociality were found at significantly higher levels at baseline in those who went 
on to develop psychosis than in those who did not [26]. So, negative symptoms have 
been found to be predictive of psychosis [1].

Positive symptoms like unusual thought content, suspiciousness, perceptual 
disturbance, conceptual disorganization, and disorganized communication are 
significant predictors of psychosis [19, 46, 47].

The ultrahigh-risk (UHR) criteria have been used and modified in different 
countries around the world: USA, UK, Germany, and Finland.

The German Research Network on Schizophrenia (GNRS), Cologne, Bonn, 
Düsseldorf, and Munich, introduced the basic symptoms into the definition on the 
prodrome [48, 49].

The basic symptoms included thought interferences, perseveration, pressure or 
blockages, and disturbances of receptive language; decreased ability to discriminate 
between ideas and perception or fantasy and true memories; unstable ideas of refer-
ence; derealization; and visual or auditory perceptual disturbances. Using these basic 
symptoms, it should be possible to identify subjects at risk of developing schizophre-
nia, and so early intervention is possible. Because basic symptoms were frequently 
found before any subthreshold or attenuated psychotic symptoms, these criteria 
were thought to be detecting the very beginning of the initial prodromal phase [50].

Unlike McGorry et al., the GNRS distinguishes between the “early initial 
prodromal state” (EIPS) and the “late initial prodromal state” (LIPS). The EIPS 
criteria attempt to define a group at incipient but not imminent or immediate risk of 
psychosis. The criteria consist of the 10 predictive basic symptoms of which one or 
more is required, plus the PACE trait and state risk UHR criterion.

16.1 The EIPS criteria

One or more of the following basic symptoms:

• Thinking disturbances: perseveration, pressure, blockage, ideas of reference 
(unstable)

• Disturbances of visual and auditory perception

• Disturbances of receptive language (either heard or read)

• Diminished capacity to discern between ideas and perception, fantasy, and 
true memory
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of participants not developing psychotic disorder. Consequently, some persons 
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16.2 Derealization

The onset of the symptoms has occurred at least a year ago, with a frequency of 
several times a week within the last 3 months.

• Decrease in “the Global Assessment Functioning Score” (DSM-V) of at least 30 
points in the past year which add one of the following risk factors: “first-degree 
relative with a lifetime diagnosis of schizophrenia or a schizophrenia spectrum 
disorder and/or pre- or perinatal complications”.

• The absence of attenuated or transient psychotic symptoms [1].

The LIPS criterion attempts to identify those at more immediate risk and is 
based on the APS and BLIPS criteria [51].

16.3 The LIPS criteria

• The presence of at least one of the following attenuated positive symptoms 
(APS) present within the last 3 months, appearing several times per week for a 
period of at least 1 week, but no longer in the same severity than 1 year: “ideas 
of reference; odd beliefs or magical thinking; unusual perceptual experiences; 
odd thinking or speech; suspiciousness or paranoid ideation”.

• “Brief limited intermittent psychotic symptoms (BLIPS), defined as appear-
ance of one of the following frank psychotic symptoms for less than 1 week 
(interval between episodes at least 1 week) and resolving spontaneously: 
hallucinations; delusions; formal thought disorder; gross disorganized or 
catatonic behaviour” [1].

This two-stage prodromal state guides the treatment approach, that is, psycho-
logical or pharmacological therapy [51–53]. LIPS criteria denote an imminent risk 
of transition to psychotic disorder within the next 12 months, so an antipsychotic 
medication—second generation—appeared justified. Psychological interventions 
were crisis intervention, psychoeducation, family counseling, and assistance with 
education or work-related difficulties.

In EIPS group the psychological intervention (cognitive behavioral therapy 
(CBT) or the supportive control condition) appeared successful in preventing 
further progression of the illness [54].

17. Early intervention and prevention

Early intervention may be able to delay or even prevent onset of psychosis in the 
UHR or prodromal stage. Both antipsychotic medication (risperidone 1–2 mg/day, 
olanzapine 5–15 mg/day) and psychological interventions (cognitive behavioral 
therapy (CBT), case management, supportive therapy, problem-solving strategies) 
might have a role in treating the difficulties and problems that UHR young people 
experience, as well as in reducing the rate of transition to psychosis and in reducing 
symptomatology. Deterioration in psychosocial functioning and persistent disabil-
ity is also an important treatment goal [1].

Therapeutic strategies must be personalized and correlated with the first psy-
chotic episode stages. Treatment for young people who meet ARMS criteria should 
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not only focus on the symptoms that constitute the ARMS criteria but also address 
the range of difficulties which the young person might present.

Side effects associated with all antipsychotic medications are weight gain, dia-
betes, and sexual dysfunction for olanzapine [55–57] and sexual dysfunction and 
insomnia for risperidone [1]. Extrapyramidal side effects such as tardive dyskinesia, 
which is often irreversible, are less common with the newer, atypical antipsychotics 
[58, 59]. Evidence also suggests that certain antipsychotics (haloperidol) reduced 
gray matter volume in the brains of patients with a first episode of psychosis [60]. 
In contrast the newer second-generation antipsychotic medications, in fact, have 
neuroprotective qualities.

Antipsychotic drugs are potentially useful in the latter phases of the prodromal 
period when attenuated psychotic symptoms are evident and the individual is on 
the edge of a conversion to full psychosis.

Psychological interventions are useful in earlier and less symptomatic stages 
of the prodrome, to manage the stress, depression, anxiety, sleep disturbance, 
and decline in functioning. CBT should be effective for people with attenuated 
psychotic symptoms or with brief limited intermittent psychotic symptoms and for 
individuals who are “false positives” [22].

Psychological treatments may be not only necessary but sufficient for some of 
these putatively prodromal patients [1].

Further researches are required to determine which treatment strategies are 
most effective and how long they should be continued.

Ethical considerations associated with treatment of young people who meet 
ARMS criteria have been widely debated [17, 28, 40, 41, 42, 45, 46]. Concerns about 
stigma associated with being identified as having a label of ARMS “false positives” 
and for how long should treatment be provided (in other words, how long is the 
period of risk) remain unresolved, and even clinical research into ARMS has now 
been conducted for over a decade.
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Chapter 4

Epilepsy and Cerebral Palsy
Boulenouar Mesraoua, Musab Ali, Dirk Deleu,
Hassan Al Hail, Gayane Melikyan, Naim Haddad,
Osama Alalamy, Covanis Athanasios and Ali A. Asadi-Pooya

Abstract

Abnormalities of muscle tone, movement, and motor skills are the hallmark of
cerebral palsy (CP) which results from injury to the developing brain. Clinically, the
syndrome evolves over time and may only be apparent after 3–5 years of age,
although suggestive signs and symptoms may be present at an earlier age. Epilepsy
is common in CP and occurs in about 30% of patients. Generally, the onset is within
the first 2 years of life. Epilepsy is commonly observed in children with spastic
hemiplegia, followed by quadriplegia and diplegia. Significant risk factors for the
development of epilepsy in patients with CP are family history, neonatal seizure,
structural abnormalities, low Apgar scores, and mental retardation. Focal to bilat-
eral tonic-clonic seizures are the most prominent seizure types, followed by focal
aware or impaired awareness seizures, while infantile spasms and myoclonic jerks
are seen in 25% of cases. Mental retardation is a predisposing factor for early onset
of seizures and more severe epilepsy. The overall outcome of seizures in children
with CP is generally poor, requiring prolonged course of antiepileptic medication,
usually polytherapy with higher incidence of refractory seizures, side effects,
comorbidities, and hospital admissions for drug-resistant seizures or status
epilepticus.

Keywords: cerebral palsy, epilepsy, seizures, treatment, mental retardation

1. Introduction

Cerebral palsy is a term that implies a disorder of motor function. It is a
neurodevelopmental abnormality affecting muscle tone, movement, and motor
skills. CP is the result of a nonprogressive damage of the nervous system at its early
developmental stage and can be caused by several factors encountered in prenatal,
perinatal, or postnatal periods [1]. Although the disorder itself is nonprogressive,
the clinical expression changes over time as the brain develops and matures.

The International Consensus in 2005 defined CP as follows [2]: “CP is a group of
permanent neurological disorders resulting from nonprogressive brain injury or
malformation that occurred in the developing fetal or infant brain and primarily
affecting body movement, posture and muscle coordination. The motor dysfunc-
tion in CP is often associated with abnormal cognitive abilities including communi-
cation and behavior, disturbance in sensation and perception and last but not least,
epilepsy and secondary musculoskeletal complications”.
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There is no consensus in the literature about the prevalence of epilepsy in
patients with CP. Studies indicate a very wide range of epilepsy in children with CP.
However, it is argued that in certain types of CP, higher rate of epilepsy is found
and that an average of 30% of patients with CP exhibit seizures. This figure is
proportional to the degree of motor and cognitive disabilities [3, 4].

2. Prevalence and incidence of cerebral palsy

The estimated prevalence of CP is approximately 2 per 1000 children. The risk is
even higher in preterm infants with low birth weight [5, 6].

The advances in prenatal, perinatal, and postnatal pediatric care significantly
influenced the reported incidence and prevalence of CP. The most common causes of
CP have varied over time and between geographical locations. While the developed
world faces predominantly prematurity and extremely low-birth-weight-related
morbidities, the developing countries are still faced with prenatal rubella, perinatal
asphyxia, and postnatal hyperbilirubinemia.

From the 1960s to 1980s, the rate of CP and the extent of disability among
preterm infants increased as survival improved for the most immature [7]. This
trend reversed later, most likely because of improvements in perinatal care [8].

3. Etiology of cerebral palsy

The etiology of CP is multifactorial. Most cases are likely related to prenatal
factors: among them prematurity and/or low birth weight. Other associated etiolo-
gies include congenital abnormalities, multiple pregnancy, placental pathology,
intrauterine infection, metabolic encephalopathies, and genetic forms of CP.

Perinatal hypoxia and ischemia account for only a marginal number of cases of
CP. Stroke in the perinatal period may cause CP and is typically manifested as
spastic hemiparesis.

In an Australian study of 213 children diagnosed with CP [9], a multifactorial
etiology was demonstrated. Major CP-associated pathologies, other than acute
intrapartum hypoxia, were found in 98% of cases; some children had several asso-
ciated pathologies such as

• Prematurity (78%).

• Intrauterine growth restriction (34%).

• Intrauterine infection (28%).

• Antepartum hemorrhage (27%).

• Severe placental pathology (21%).

• Multiple pregnancy (20%).

• Very-low-birth-weight (VLBW) infants (5–15%). In these cases, CP is
frequently associated with periventricular leukomalacia, intraventricular
hemorrhage, and/or bronchopulmonary dysplasia.
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4. Clinical features and classification of cerebral palsy

The classification of CP is based on the type and distribution of motor
abnormalities. Suggestive signs and symptoms may be present in infancy, and
severe cerebral palsy can be diagnosed as early as 1 month of age. However,
the specific CP syndromes are best recognized in time as the child’s brain
matures, e.g., spastic CP is usually diagnosed after the age of 6 months, dyski-
netic CP usually after 18–20 months old, and the ataxic type even later.
Following-up the children with high risk will allow early recognition and
intervention.

Early diagnosis, in some cases, will enable early intervention for the child by a
multidisciplinary team and in addition early psychological and possible financial
support to the family.

Early signs of CP include as follows:
Neurobehavioral findings: a neonate who presents with poor feeding with or

without recurrent vomiting, irritability, poor sleeping pattern, and poor visual
attention should raise suspicion of CP. In addition, prolonged retention or
exaggeration of these primitive reflexes is often a premature sign of motor
disability. In infants with hyperactive tonic labyrinthine reflex, opisthotonus
may occur, or they may roll over at an earlier age than usually expected.
Similarly, children with CP may present inadequate posture in vertical suspension
in that they present persistent extension of lower extremities on attempting a sitting
position.

Motor tone and posture: Tone can be normal in some subjects, but it may be
increased or decreased in the extremities of others.

Delay in sitting without support beyond 9 months, poor head control, persistent
or asymmetric hand fisting beyond 4 months, and abnormal oromotor patterns
(tongue thrusting or grimacing) are often the early motor signs. Sometimes
increased neck extensor and axial tone may make head control appears better than
it is.

The abovementioned features may also coincide with intellectual impairment,
hemianopia, and other visual problems. Also, behavioral problems are
frequently found among children with hemiplegic CP including anxiety and specific
phobias.

After age 18–24 months, signs and symptoms generally align to a specific
subtype of CP:

Spastic CP includes spastic diplegia, spastic hemiplegia, and spastic
quadriplegia, with accompanying features pointing to an upper motor neuron
syndrome like spastic hypertonia, hyperreflexia, extensor plantar responses, and
Dyskinetic CP is characterized by involuntary, stereotyped, uncontrolled, recurring
movements of athetosis, chorea, and dystonia.

CP associated with ataxic movements (loss of orderly muscular coordination,
unstable gait) and speech is referred to as ataxic CP and is usually associated
with a widespread disorder of motor function. Ataxic CP is rare, and children
who present with these findings must be evaluated for other potential causes
of ataxia.

Mixed CP is a spastic type with ataxic and/or dyskinetic features of variable
predominance.

Hypotonic CP is not included in the contemporary classifications. Majority of
patients with “hypotonic CP” in early infancy later develop spastic, dyskinetic,
or ataxic CP. Table 1 shows the proportion of the different types of CP.
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or ataxic CP. Table 1 shows the proportion of the different types of CP.
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5. Associated comorbidities

Besides motor disabilities, there are significant comorbid disorders of cerebral
function that may appear or become severe as the child grows including intellectual
disability, seizures, behavioral and emotional disorders, speech and language disor-
ders, as well as visual and hearing impairments. Social difficulties and autism
spectrum disorders are also commonly associated comorbidities [10]. In addition,
many accompanying conditions such as growth failure, pulmonary disease, ortho-
pedic problems (e.g., joint subluxations and dislocations and hip dysplasia),
osteopenia, urinary disorders, sleep disturbance, and hypersalivation have been
identified. Pain is common in children with CP and can significantly impact the
quality of life. Children with more severe motor disabilities are also more likely to
have comorbidities.

These associated comorbidities occur in CP at variable rates. Pain is noted in 75%
of CP subjects, intellectual disability in half of them, whereas inability to walk or
hip displacement is equally seen in a third. Twenty-five percent of children with CP
cannot talk, and a similar proportion carries a diagnosis of epilepsy. Behavioral
disorders and urinary incontinence are equally seen in roughly 25% of subjects and
sleep disorders in 20%; tube feeding is needed in little less than 10%. Blindness is
noted in 10% of cases, with deafness being less common at a rate of 5%.

6. Neuroimaging in cerebral palsy

Head CT scan commonly identifies abnormalities, particularly in spastic CP.
Cerebral atrophy is a frequent finding in quadriplegia, whereas infarction,
porencephalic cyst, and cerebral atrophy occur equally (26.7%) in hemiplegic CP,
and periventricular leukomalacia is significantly more common with diplegia. A
brain abnormality seen on CT scan has been reported in 77% of the cases of hemi-
plegia, followed by quadriplegia (75%) and diplegia (55%) [11], while other studies
showed CT abnormalities in 77.2% of patients, with bilateral atrophy in 42.1% and
focal findings in 17.6% of the cases [12].

MRI scan is an important and safe diagnostic tool to use in children with CP after
18 months in order to assess location, nature, and structure of brain lesion and
correlate findings with clinical picture.

The patterns of MRI in children with cerebral palsy are as follows:

• White matter damage, observed more often in spastic diplegia and
quadriplegia.

Spastic subtypes Percentages (%)

Spastic diplegia 13–25

Spastic hemiplegia 21–40

Spastic quadriplegia 20–43

Dyskinetic subtypes 12–14

Ataxic CP 4–13

Table 1.
Proportion of the different types of cerebral palsy.
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• Gray matter damage: central gray matter damage of acute perinatal hypoxia-
ischemia in term infants is associated with death and CP.

• Enlarged ventricles, bilateral or unilateral, abnormalities of the atria and
ventricular or occipital horns, and posterior fossa, atrophy, and cerebrospinal
fluid abnormalities [13].

In a European cerebral palsy study [14], MRI was performed in 351 of the 431
children with clinically assessed CP. The MRI scans showed that white matter damage
of immaturity, including periventricular leukomalacia, was the most common finding
(42.5%, majority born before 34 weeks), followed by basal ganglia lesions (12.8%),
cortical/subcortical lesions (9.4%), malformations (9.1%), focal infarcts (7.4%), and
miscellaneous lesions (7.1%). Normal MRI findings were present in 11.7%.

MRI scan does provide useful information on the timing and extent of the lesion.
Predisposing risk factors include maternal and child genetic factors in
thrombophilia leading to stroke, nutritional factors, and infections during

Figure 1.
Salient MRI changes in cerebral palsy. Panel A shows a T2-weighted image with periventricular
hyperintensities and undulating ventricular margins (solid arrow). This is typically seen in prematurity
associated insult and commonly manifests as spastic diplegia. Panel B shows multicystic encephalomalacia
(dotted line with arrow). This pattern of watershed lesions is seen commonly in term infants with ischemia/
asphyxia and manifests clinically with spastic quadriplegia. Panel C illustrates T2 hyperintensities in posterior
putamen (open arrow) and thalami bilaterally (dotted line with closed arrow). This is typically seen in infants
with term hypoxic ischemic encephalopathy (HIE) and manifests as dyskinetic cerebral palsy. Panel D
highlights T2 hyperintensities in occipital lobe (solid arrow); characteristic of neonatal hypoglycemic insult.
Panel E shows T2 hyperintensity involving bilateral globuspallidi (open arrow), a feature of kernicterus
sequelae.
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• Gray matter damage: central gray matter damage of acute perinatal hypoxia-
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pregnancy and before the onset of premature labor lead to placental damage devel-
oping throughout the pregnancy. These factors predispose the infant to an increased
risk of hypoxic ischemic episodes, leading to white matter damage.

It is not unreasonable, therefore, to assume that with increased awareness of
possible preventive measures, CP could be reduced substantially, reducing as a
consequence the burden on families and saving tremendous sums of money for
health services. Figure 1 shows the MRI findings in CP.

7. Evaluation of patient with cerebral palsy

The diagnostic evaluation must include standardized assessment of neurologic
and motor development and magnetic resonance imaging (MRI).

Screening for thrombophilia is recommended in children with MRI evidence of
cerebral infarction.

Other testing depends on clinical and anamnestic concerns and may include:

• Metabolic and genetic testing, which should be pursued in the presence of
atypical symptoms or MRI findings (e.g., a brain malformation or injury) or if
no etiology is identified by clinical history and neuroimaging

• Electroencephalogram (EEG) if seizure activity is suspected

• Infectious work-up (TORCH titers) if pre- or perinatal history is suggestive

All children with CP need to be screened for commonly associated conditions,
such as intellectual disability, ophthalmologic abnormalities, hearing impairment,
speech and language disorders, and growth failure.

8. Diagnosis of cerebral palsy

A combination of clinical findings supports the diagnosis of CP; a single clinical
finding is generally not sufficient to establish the diagnosis.

Key features in the diagnosis of CP include:

1. Abnormal motor development and posture.

2. Brain injury is permanent and nonprogressive.

3.Motor impairment is attributed to an insult that occurred in the developing
fetal or infant brain.

4.Motor impairment results in limitations in functional abilities and activities.

5.Motor impairment is often accompanied by secondary musculoskeletal
problems, epilepsy, and/or disturbances of sensation, perception, cognition,
communication, and behavior.

9. Prognosis of cerebral palsy

Survival to adulthood is currently a standard for most children. An analysis of
children with CP born in different geographical areas of the United Kingdom
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between 1980 and 1996 revealed a 20-year survival in 87–94% of cases [15]. The
multivariate analysis revealed that survival was related to severity of impairment,
birth weight, and socioeconomic status, with the number of severe impairments
having the greatest effect.

Those children who do not achieve head balance by 20 months retain primitive
reflexes, have no postural reactions by 24 months, or do not crawl by approximately
5 years of age have generally poor prognosis for walking. Generally, all children
with hemiplegic CP and many with athetosis or ataxia will walk. Those who walk
independently do so around the age of 3; those who walk only with support may
take up to 9 years. Those who do not walk by 9 years of age are unlikely to ever
walk, even with support [16].

Functional outcome in CP also depends on other non-motor factors. These
include intelligence, physical function, ability to communicate, and personality
attributes.

10. Seizures in cerebral palsy patients

Besides the motor dysfunction, epilepsy is another important problem in chil-
dren with CP. It is sometimes more disabling than the motor disorder itself.

10.1 Incidence of seizures and epilepsy in CP

Epilepsy is highly correlated with CP.
The incidence of epilepsy in CP varies from 33 to 41% [11, 12]. The incidence

and type of epilepsy vary according to the type of CP.
The large variation in percentages reported in the literature can be explained in

part by the variable length of follow-up periods and the different average age of
studied subjects.

Reported rates of seizures and epilepsy in CP vary significantly depending on
the underlying pathology and etiology. Epilepsy occurs in 50–94% of children
with CP due to diffuse cortical malformations and injuries [17, 18] and in 50%
of children with CP secondary to suspected perinatal arterial ischemic stroke
[19, 20]. Epilepsy occurs at a much lower frequency (26–43%) in CP and white
matter injury (WMI) than in other etiologies [21–24]. The lower frequency of
epilepsy and WMI is related to the lack of involvement of cortical gray matter. A
recent publication [25] indicated that 25% of children with CP and WMI had
seizures beyond the neonatal period with electroclinical features of the age-
limited, epileptic syndromes of childhood, with favorable outcome in the major-
ity. Very interesting findings that need to be confirmed, guiding toward better
diagnostic, treatment, prognostic, and genetic issues at this early age group.

Seizure onset often occurs in the first 2 years of life. Sixty-one percent of
patients with CP had their seizure onset that early. Some reports indicate 36.7%
[12] to 69.7% [23] of patients with seizure onset in the first year of life. The onset
of epilepsy probably reflects the time of occurrence of brain damage and its
severity.

The age of seizure onset also depends on the type of CP. Over 60% of the
children with quadriplegia and diplegia have seizures in their first year of life, while
60% of the children with hemiplegia had their first seizure at a later age. Children
with myoclonic seizures and infantile spasms had seizure onset very early in
life [11].
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10.2 Risk factors for seizures in patients with CP

Family history, structural abnormalities (primarily brain atrophy and gray mat-
ter involvement), neonatal seizure, low Apgar scores, and mental retardation are
significant risk factors for the development of epilepsy in patients with CP.

CP patients with spastic quadriplegia or acquired hemiplegia are more prone to
seizures, whereas seizures are less common in mild symmetric spastic diplegia and
CP that is mainly athetoid.

The mode of delivery, the relative birth weight, head circumferences, and the
presence of consanguinity are not known to be risk factors for epilepsy in these
patients.

Risk factors for the development of epilepsy are shown in Table 2.
In a study of 452 patients with CP and 160 patients with both CP and epilepsy

[11], the incidence of epilepsy among patients with hemiparetic CP was 65.9%,
compared to 42.6% in patients with quadriparetic CP and 15.8% in patients with
paraparetic CP. The different levels and degrees of brain damage may account for
the various percentages.

Other studies revealed that epilepsy was found in 54% of quadriparetic, 34–60%
of hemiparetic, 27% of diparetic, and 23–26% of dystonic CP patients [26, 27].

The age at onset of seizures might differ depending on the type of CP. Carlsson
et al. reported the seizure onset of age as 6 months in quadriparetic CP, 12 months
in diparetic CP, and 2.5 years in hemiparetic CP [21].

10.2.1 Neonatal seizures

Neonatal seizures represent a strong predictor for the development of epilepsy.
A strong association of neonatal seizures with epilepsy was reported in the Collab-
orative Perinatal Project (NCPP) of the NIH summarizing 54,000 singleton preg-
nancies between 1959 and 1966 [28]. Subsequently, additional retrospective studies
provided clear evidence that in children with CP neonatal seizures were strongly
predictive for future development of epilepsy [11, 29].

Neonatal seizure history in patients with CP is a risk factor for epilepsy devel-
opment. In addition, the outcome for seizure control was negatively affected by this
history, and patients with neonatal seizure history are 3.3 times more likely to have
poor epilepsy prognosis than those who had no neonatal seizure history [30].

Table 2.
Type of CP as a risk factor for seizures.
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Hence, neonatal seizure history in CP is a significant risk factor for both epilepsy
development and poor epilepsy prognosis.

10.2.2 Family history of epilepsy

Family history of epilepsy is associated with a 5.5 times higher risk of epilepsy in
patients with CP [31].

10.2.3 Mental retardation

Mental retardation is more frequently observed in CP patients with seizures than
in those without seizures, and severe mental retardation is more likely in those with
multiple seizure types.

In patients with CP and mental retardation, the diagnosis of epilepsy presents
unique challenges. Generally, patients are unable to describe the epileptic events
themselves, parents may not recognize subtle seizure manifestations, and persons
trained in epilepsy witness the events only rarely.

Mental retardation is frequently observed in patients with both CP and epilepsy
compared to patients with CP only. In addition, the risk of epilepsy development is
higher in patients with CP who have mental retardation [32, 33].

Patients with CP and epilepsy have lower intelligence levels compared with CP
alone; the patients with paroxysmal abnormalities in the EEG had lower intelligence
levels and learning disabilities [34].

Mental retardation is most common in quadriplegic CP, followed by hemiplegic
CP. On the contrary, almost half of diplegic CP and 60% of children with dystonic
CP have normal to borderline intelligence, which again correlates well with the type
and location of brain damage. Mental retardation is associated with earlier age of
onset, increased frequency, and treatment-resistant seizures [11]. This might rep-
resent an underlying severity of brain injury that is responsible for the severity of
both cognitive deficit and epilepsy.

10.2.4 Apgar score and risk of seizures in CP patients

The risk of epilepsy is inversely proportional to the Apgar scores of term babies,
both at 5 and 10 minutes. This is significant even with relatively minor reductions in
these scores [35].

Low Apgar scores were also recognized as risk factors for epilepsy in the general
population in some other studies [36, 37].

No relationship has been found between the risk of epilepsy development and
gestational age [31]. In a study where 173 patients were categorized according to
their birth weight as appropriate for gestational age (76.9%), small for gestational
age (12.1%), and large for gestational age (11%), they found no correlation between
birth weight and risk of epilepsy development [38].

However, other studies reveal that low birth weight and prematurity increase
the risk of epilepsy development in patients with CP [12, 37, 39]. These studies
assessed Apgar scores and determined that premature babies have lower Apgar
scores; they suggested that the increased risk of epilepsy development among pre-
mature babies was actually related to low Apgar scores.

10.3 Types of seizures

All types of epileptic seizures can be seen in patients with CP. Focal impaired
awareness (complex partial) and focal to generalized tonic-clonic are the most
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frequent seizure types. Some syndromes, such as infantile spasms, West, and
Lennox-Gastaut syndromes, are particularly frequent.

Generalized epilepsy is the predominant form of epilepsy in CP. Generalized
seizures have been reported in 36.8%, followed by focal (partial) seizures in 33%,
West syndrome in 15.6%, and myoclonic jerks in 10.6%. Absence seizures are
usually of the atypical type reported in 3.3–6.7% [3].

In another study of patients with both CP and epilepsy, the following seizure
types were observed: 44.6% experience focal to generalized tonic-clonic, 41.1%

Figure 2.
Epileptic syndromes in 41 children with cerebral palsy.

Table 3.
Types of seizures in subtypes of CP [11].
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focal impaired awareness (complex partial), 7.1% focal aware (simple partial), 5.4%
myoclonic, and 1.8% experience atonic seizures [30]. This finding is in line with the
literature review [31]. Figure 2 and Table 3 show epileptic syndromes and types of
seizures in subtypes of CP in children with cerebral palsy.

10.4 Electroencephalogram (EEG)

EEG is essential in the work-up of children with CP and suspected seizures. It
can lend support to the diagnosis of epilepsy and assist in seizure/epilepsy classifi-
cation to better guide the choice of antiseizure drugs. However, there is no clinical
value of performing EEG testing in children with no suggestion of seizure activity
by history, and EEG testing is not useful in establishing the cause of CP.

The rate of EEG abnormalities observed in patients with CP and epilepsy is in
the range of 66–92.6% [4, 11, 31].

All of the subgroups of spastic CP had a greater than 70% incidence of abnormal
EEGs. Whereas in quadriplegic and diplegic CP, the EEG shows predominant bilat-
eral epileptic activity; about half of children with hemiplegia had focal findings. In a
study of children with CP and epilepsy, only 7.9% of children had normal interictal
EEGs [Table 4] [4].

There was a correlation between brain CT scan and EEG findings; children with
bilateral brain abnormalities on their CT scan imaging often had bilateral and
generalized epileptiform abnormalities on their EEGs. However, one-fourth of
these children had a focal epileptiform abnormality with rapid bilateral synchrony.
On the other hand, 35.3% of children with unilateral structural brain abnormalities
on their CT scans had focal epileptiform abnormalities in their EEG recordings; the
EEG findings were concordant with the CT scan findings in all patients [11].

10.5 Neuroimaging in cerebral palsy with epilepsy

Children with CP and epilepsy appear to have abnormal brain imaging more
often. It is not surprising that a trend toward the occurrence of epilepsy was found
in children with gray matter insult (primarily cerebral infarcts), rather than in
children with white matter lesions. In addition, cerebral atrophy was also reported
more frequently in CP complicated by epilepsy [31], reaching statistical significance
in the study of Gururaj et al. [40]. A possible explanation for the association of

Table 4.
EEG abnormality and type of CP.
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Figure 2.
Epileptic syndromes in 41 children with cerebral palsy.

Table 3.
Types of seizures in subtypes of CP [11].
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atrophy and epilepsy is the fact that in many cases atrophy presents the end result
of prenatal or perinatal global ischemia with extensive neuronal damage.

Intraventricular hemorrhage was identified as a significant risk factor for the
development of neonatal seizures [41]. In patients with neonatal seizures, cerebral
dysgenesis and intraventricular hemorrhage proved to be predictors for poor out-
come [29].

Brain imaging in children with CP and epilepsy shows frequently abnormal
findings. In children with CP and epilepsy, cerebral atrophy is more often reported
[31, 40]. Atrophy is the consequence of prenatal and perinatal ischemia; this will
lead to an extensive neuronal damage which may be the cause of the seizures. A
significant risk factor for the development of neonatal seizures was found with
intraventricular hemorrhage [41]. Cerebral dysgenesis and intraventricular hemor-
rhage were found to be predictors of poor outcome in patients with neonatal
seizures [29].

The effect of imaging abnormalities in CP remains controversial. In one study,
an MRI abnormality was noted in 86.7% of patients, and the abnormal finding
variable in the MRI did not significantly affect the epilepsy development and sei-
zure outcome.

In other studies the range of abnormal findings in MRI was reported as 84–
88% [42]. Cerebral infarct is found by neuroimaging to be an abnormality that
significantly affects seizure outcome in epileptic patients with CP [4]. Table 5
shows the imaging findings in patients with CP and epilepsy and CP without
epilepsy.

Table 5.
Imaging findings in patients with cerebral palsy only and with cerebral palsy and epilepsy.
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10.6 Seizure control

More than 50% of seizures in patients with CP are fairly controlled. Seizures in
patients with hemiplegic CP achieve better control (75%) than those with quadri-
plegic and diplegic CP (50%); one study reported seizure control in children with
CP in nearly two-thirds [4]. Seizure control was achieved with monotherapy in the
majority of cases. Polytherapy was required in half, one-third, and one-fourth of
cases with diplegic, quadriplegic, and hemiplegic CP, respectively, although this
difference did not reach statistical significance. In another study by Hadjipanayis
et al., children with spastic hemiplegia (35%) and tetraplegia (28%) were more
likely to require polytherapy compared to patients with spastic diplegia (11%) [3];
however, the differences were not statistically significant [3]. Not surprising,
polytherapy was required more often in children with infantile spasms and myo-
clonic seizures. All other seizure characteristics also were more severe in the group
requiring polytherapy. In addition, a trend was noted for the following: seizures
began earlier, and CT and EEG abnormalities were more often present in children
requiring polytherapy.

10.7 Cerebral palsy: recommendation and future directions

The rate of CP has remained static for decades, at between 2 and 2.5 cases for
every 1000 live births, due to abnormalities of the developing fetal or infantile brain
resulting from a variety of causes. In a recent publication, however, Hollung et al.
reported that the prevalence of CP declined for children born in Norway from 2.62
per 1000 in 1999 to 1.89 in 2010, and in addition a substantial improvement in the
severity of clinical characteristics with a decrease in the proportion of children with
severe motor impairments, epilepsy, intellectual disability, and difficult to under-
stand or no speech was observed. They attributed this improvement to the better
obstetric and neonatal care the first decade of the twenty-first century [43]. In
general, however, methods that have been implemented, such as continuous elec-
tronic monitoring of the fetus in labor, have not had the anticipated benefits. Many
neuroprotective strategies have failed. In premature infants, an increase in survival
without a decrease in prevalence added more healthy citizens but also more dis-
abled children to the population. As a consequence in recent years, efforts have
focused on prevention, cure, early diagnosis, and early intervention in an attempt to
reduce further CP prevalence.

Approximately one-half of all new cases of cerebral palsy arise from the group of
neonates born prematurely (< 30 weeks gestation) that are at risk for long-term
neurodevelopmental problems, with almost one-half having motor, cognitive, and/
or language impairments, a rate much higher than their term peers [44]. For many
children, however, the cause of cerebral palsy is unclear. There are many known
risk factors that affect the fetal and neonatal developing brain leading to cerebral
palsy, and some of them can be prevented. Risk factors for congenital CP include
infection during pregnancy (toxoplasmosis, rubella, cytomegalovirus, and herpes
can infect the womb and placenta, leading to brain damage in the fetus), abuses of
alcohol or drugs during pregnancy, smoking, exposure to toxic chemicals, multiple
gestations, and infertility treatments that have an increased risk in preterm delivery
and multiple gestations and certain medical conditions such as diabetes, high blood
pressure, abnormal thyroid function, sexually transmitted infections, and eating
disorders (anorexia nervosa, bulimia nervosa, binge eating disorder). Placental
infarctions are most likely to be identified in the births of infants who will in the
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future develop cerebral palsy, especially those with spastic quadriplegia, an early
reliable biomarker.

Before pregnancy we have to make sure that the woman is protected against
certain diseases such as rubella with vaccination and certain preventable infections
or cytomegalovirus (CMV). CMV in particular, is transmitted through close person-
to-person contact with infected secretions such as in urine and saliva. The infection
is transmitted from the mother to the fetus during pregnancy and can sometimes
cause stillbirth, premature birth, and neurological conditions such as cerebral palsy.
Children with cerebral palsy infected with CMV are more likely to have spastic
quadriplegia, severe functional mobility limitations and a range of associated
impairments including epilepsy, deafness, vision impairment, and moderate-to-
severe intellectual disabilities, than children born with cerebral palsy but without
CMV. There is evidence that public health approaches based on hygiene can dra-
matically reduce the rate of primary maternal cytomegalovirus infections during
pregnancy. Formulated consensus recommendations on the diagnosis, prevention,
and treatment of maternal and congenital CMV infection are found in the publica-
tion of Rawlinson et al. [45].

Our primary aim, therefore, is to provide a healthy pregnancy by advising and
treating appropriately treatable conditions and introduce current preventable strat-
egies and interventions that hold promise for reducing the prevalence of cerebral
palsy. Such interventions include strategies to decrease the risk of premature birth
(e.g., 17α-progesterone), limit the number of multiple gestations related to assisted
reproductive technology, treat mothers who are expected to deliver prior to
30 weeks gestation with magnesium sulfate for fetal neuroprotection that can pre-
vent cerebral palsy, give antenatal steroids for mothers expected to deliver prema-
turely, caffeine for extremely low-birth-weight neonates, and induce hypothermia
for a subgroup of neonates diagnosed with intrapartum hypoxic-ischemic encepha-
lopathy [46]. Hypothermia, either selectively applied to the head or total body,
appears to decrease the risk of cerebral palsy [47]. Interventions which either
prolong gestation or decrease the risk of preterm delivery will also decrease the risk
of cerebral palsy.

Although �50% of very preterm children has neurodevelopmental impairments,
an early prediction of infants who will experience problems later in life still remains
an early diagnostic challenge. White matter abnormalities (WMA) at term have
been associated with CP in very preterm children and can be used as a biomarker
for early multidisciplinary approach. Very preterm children with any WMA at term
require follow-up throughout childhood [48]. Abnormal general movements in
very preterm infants born <30 weeks gestation, particularly at 3 months post term,
are predictive of worse neurodevelopment at ages 2 and 4 years and need multidis-
ciplinary approach. The accuracy for predicting moderate to severe cognitive
impairment was good at 83% and 77% for 2 and 4 years, respectively [49].

Recent research on neuroplasticity supports intensive, repetitive, task-specific
intervention for CP that should commence early while the brain is most plastic.
Early postnatal recognition is important for a prompt referral to diagnostic-specific
early intervention setting to optimize infant’s motor and cognitive plasticity, pre-
vent secondary complications, and enhance caregiver’s well-being [50].

Beside traditional conventional therapies, physical therapy, occupational ther-
apy, and speech-language therapy, a number of other approaches have been used
such as the use of Botox, selective dorsal rhizotomy, functional vision assessment
and intervention programs, developmental optometry, biofeedback, hippotherapy,
hyperbaric oxygen therapy, deep brain stimulation for dyskinetic forms of cerebral
palsy, stem cell applications, and even yoga. It is very difficult to decide which
method is “gold standard” type of therapy for CP because it is impossible to conduct
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double-blind, randomized control trials. However, identifying predictive bio-
markers and developing preventive strategies phenotypically orientated to different
subsyndromes, we can prevent or intervene early taking into consideration the
advantage of brain plasticity.

11. Conclusions

In general children with CP have epileptic seizures in about one-third that occur
as a rule within the first 2 years of life. The most common seizure type is focal
generalized seizures followed by focal, infantile spasms, and myoclonic seizures
that are seen in one-fourth of cases. Seizures are most often seen in spastic hemi-
plegia and spastic quadriplegia. Children with CP and mental retardation have an
early onset of seizures and more severe epilepsy. The response to antiseizure treat-
ment in children with CP is generally difficult, and one-third to half of the cases is
receiving polytherapy and/or alternative therapies.
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Chapter 5

The Role of the DNA Damage 
Response in Ataxia-Telangiectasia 
Syndrome
Albert Ribes-Zamora

Abstract

The DNA damage response (DDR) is a concerted response involving a myriad 
of pathways that cells elicit in the presence of DNA injuries. Patients bearing 
mutations in DDR genes have an increased cancer incidence derived from their 
diminished ability to respond to DNA damage, and the consequent increase in 
mutations. Intriguingly, mutations in ATM, the chief DDR regulator, can cause 
ataxia telangiectasia, a neurodegenerative disorder characterized by progressive 
loss of movement coordination, weak immune system, and increased cancer risk. 
The relationship between ATM and neural system development and degeneration 
remains to be fully elucidated and will be discussed in this chapter.

Keywords: ATM, DNA damage response, ataxia telangiectasia, neurodegeneration

1. Introduction

Mammalian cells face an estimate of 105 genomic injuries every day. These lesions 
are diverse and can include, among others, single (SSB) and double strand breaks 
(DSB), oxidative damage, DNA inter- and intra-strand crosslinking, base mis-
matches, bulky adducts, and photoproducts [1, 2]. This large variety of DNA lesions is 
directly related to the full range of mutation-causing agents that threaten the genome 
on a daily basis. Some of these agents are endogenously produced by the cell’s own 
metabolism and homeostasis, while others are generated exogenously. The frequency 
of appearance of these lesions is also diverse, and it may depend on the cell type or the 
developmental stage [1]. For instance, skin epithelial cells are much more susceptible 
to photoproducts caused by ultraviolet rays, an exogenous source of mutations that 
can only reach the outermost layers of our body. In contrast, reactive oxygen species 
(ROS) are endogenous metabolic byproducts that can induce oxidative base modifica-
tions and SSB, one of the most common genomic injuries. Cells with high energy and 
metabolic demands are, therefore, most susceptible to suffer SSB-related and other 
ROS-related injuries.

To defend from the menacing threat that this wide range and number of lesions 
pose to the integrity of their genome, cells can invoke the DNA damage response 
(DDR), a vast network of overlapping pathways that is capable of tailoring a 
response depending on the type and extent of the lesion and the cell cycle stage at 
the moment of the injury [3–6]. DDR requires the coordination of DNA repair path-
ways with cell cycle progression regulation, transcription activation, and apoptosis, 
among other pathways [5, 7, 8].
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are diverse and can include, among others, single (SSB) and double strand breaks 
(DSB), oxidative damage, DNA inter- and intra-strand crosslinking, base mis-
matches, bulky adducts, and photoproducts [1, 2]. This large variety of DNA lesions is 
directly related to the full range of mutation-causing agents that threaten the genome 
on a daily basis. Some of these agents are endogenously produced by the cell’s own 
metabolism and homeostasis, while others are generated exogenously. The frequency 
of appearance of these lesions is also diverse, and it may depend on the cell type or the 
developmental stage [1]. For instance, skin epithelial cells are much more susceptible 
to photoproducts caused by ultraviolet rays, an exogenous source of mutations that 
can only reach the outermost layers of our body. In contrast, reactive oxygen species 
(ROS) are endogenous metabolic byproducts that can induce oxidative base modifica-
tions and SSB, one of the most common genomic injuries. Cells with high energy and 
metabolic demands are, therefore, most susceptible to suffer SSB-related and other 
ROS-related injuries.

To defend from the menacing threat that this wide range and number of lesions 
pose to the integrity of their genome, cells can invoke the DNA damage response 
(DDR), a vast network of overlapping pathways that is capable of tailoring a 
response depending on the type and extent of the lesion and the cell cycle stage at 
the moment of the injury [3–6]. DDR requires the coordination of DNA repair path-
ways with cell cycle progression regulation, transcription activation, and apoptosis, 
among other pathways [5, 7, 8].
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Somewhat surprisingly, mutations in genes belonging to DDR pathways corre-
late with neurodevelopmental defects and neurodegenerative pathologies [5, 9–11]. 
For instance, individuals with dysfunctional versions of SSB repair genes APTX, 
PNPK, or XRCC1 manifest different types of ataxias with ocular apraxia; whereas, 
defective TDP1, also involved in SSB repair, can cause spinocerebellar ataxia with 
axonal neuropathy [9, 12]. Similarly, mutations in DSB repair gene MRE11, or 
central DDR regulators ATM and ATR, can lead to cerebellar ataxia [5, 13]. Besides 
ataxias, microcephaly is commonly found linked to defects in several DDR associ-
ated genes [1, 5, 14]. Mutations in NBS1 and RAD50, two genes involved in end 
processing during DSB repair, can cause Nijmegen breakage syndrome (NBS) 
and NBS-like syndrome, respectively, both syndromes manifesting microcephaly 
among other conditions [5, 15, 16]. Microcephalia is also present in individuals with 
dysfunctional PNPK, LIG4—a gene involved in DSB repair—or Seckel Syndrome 
1, a developmental disorder caused by some ATR mutations [9, 15]. Furthermore, 
around 25% of patients with defective nucleotide excision repair (NER)—a DDR 
pathway in charge of healing photoproducts created by UV light exposure—can 
also present microcephaly among other neurological problems [5]. Overall, this 
data suggest a strong and intriguing link between DDR, neurodevelopment, and 
neuropathology. This review focuses on ATM, its role during DDR, and the molecu-
lar basis of ataxia-telangiectasia (A-T), a neurodegenerative syndrome caused by 
defective or absent ATM.

2. ATM roles during DDR

ATM and ATR are two kinases belonging to the protein phosphatidylinositol-
3-kinase-like kinases (PIKK) family that function as the chief regulators of DDR 
[3, 11, 13]. Together, they coordinate all pathways implicated in DDR to offer an 
adequate and timely response proportionate to the type and extent of the genomic 
injury. Recently, DNA-PKcs, another member of the PIKK family, has also been 
found playing more substantial roles in regulating DDR than initially thought, 
albeit to a lesser extent that ATM and ATR [17].

ATM is a very large kinase of 3056 amino acids and a molecular weight of 
350.6 kD that resides in the nucleus as inactive homodimers. Upon DNA dam-
age infliction, phosphorylation of a critical ATM residue disrupts dimerization, 
prompting monomers to undergo further phosphorylation to achieve full kinase 
activation [18–20]. Active ATM monomers phosphorylate substrates on serine or 
threonine residues followed by glutamine (S/TQ ), and a significant amount of 
ATM substrates contain clusters of S/TQ sites in short stretches of the protein [21]. 
These so-called SCD domains can be used to mine the proteome for putative ATM 
targets [22–24]. Using mass spectrometry, a high-throughput screen for proteins 
phosphorylated following DNA damage found 686 putative DDR targets and the 
final number is estimated to surpass a thousand proteins [25]. These large numbers 
showcase the complexity of DDR, and the need for an orchestrated coordination of 
all pathways involved. Some of the most important direct ATM targets are CHK2 
and p53, two downstream effectors that modulate pivotal DDR pathways like cell 
cycle progression regulation, DNA repair, or apoptosis [26–28].

2.1 DNA repair

ATM is not only activated by different kinds of DNA damage but can also 
actively participate in several DNA repair mechanisms and coordinate their 
activities with other DDR-related pathways [7, 29]. During DSB repair, ATM 
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plays crucial roles in the early end-processing events, signal amplification, and 
recruitment of other DNA repair proteins to the sites of damage [3, 13]. ATM 
functions in homologous recombination (HR) and nonhomologous end-joining 
(NHEJ), the two pathways entrusted by cells to repair DSBs. Whereas, NHEJ is 
active throughout the cell cycle, its function is mostly limited to G0/G1 as S/G2 
phases prefer the more accurate HR, a mechanism that uses sister chromatids only 
present during those phases as repair templates. The first sensor of DSBs is PARP1, 
which in addition to binding breaks, also adds branches of poly-(ADP)-ribose to 
proteins post-translationally [30]. This so-called PARylation process activates and 
recruits several DNA repair proteins to the sites of damage [31]. One of them is the 
MRN complex—made up of MRE11, RAD50, and NBS1—that binds and activates 
ATM [32, 33]. Interaction with PARP1 and NBS1, thus, activates and recruits ATM 
to DSB sites, where it phosphorylates several downstream targets and effectors to 
amplify DDR signaling. For instance, ATM phosphorylates histone variant H2AX, 
which promotes MDC1 binding to the chromatin surrounding DSB [34–36]. Once 
there, ATM-mediated phosphorylation of MDC1 promotes its binding to MRN, and 
recruitment of more ATM to phosphorylate more H2AX, further spreading DDR 
signaling [13].

Although the complete process remains to be fully elucidated, it is clear that 
ATM is also involved in the decision-making process that selects either HR or NHEJ 
to repair a DSB [37, 38]. A crucial step in this process is the extent of end resec-
tion that takes place at DSB [39]. ATM directly phosphorylates CtIP and BRCA1, 
two HR proteins required for resection initiation and binding of RAD51 to ssDNA 
ends, respectively [40–42]. Once formed, RAD51 coated 3′ ssDNA ends steer repair 
toward HR by initiating strand invasion into the sister chromatid. Intriguingly, 
ATM phosphorylates p53BP1 and promotes its recruitment to sites of DNA damage 
[43]. Phosphorylated p53BP1 has opposing roles to CtIP and BRCA1, and favors the 
formation of p53BP1 containing complexes at DSB that counteract HR in favor of 
NHEJ repair [38, 44]. ATM also influences NHEJ by mediating DNA-PKcs phos-
phorylation and subsequent recruitment of Artemis, an end-processing nuclease, to 
DSB sites [45].

Although ATM is mostly activated by DSBs, recent data suggest that some 
lesions that are usually repaired by BER can also activate ATM and that ATM-
dependent phosphorylation events can regulate BER [46]. Following base damage, 
BER requires the sequential action of DNA glycosylases—to remove damaged bases 
and create apyrimidinic or apurinic (AP) sites, PARP1—to PARylate the AP site, 
and endonucleases that will generate an SSB at the AP site [47]. These events can 
lead to ATM activation and the ATM-dependent phosphorylation of CHK2 [46]. 
Upon activation, CHK2 phosphorylates XRCC1, a BER protein required for sealing 
the nick and completing the repair.

DDR is capable of modulating DNA repair pathways through multiple effectors. 
For instance, both ATR and p53 regulate NER through quite distinct mechanisms. 
While ATR phosphorylates XPA, one of the earliest respondents to pyrimidine 
photodimers and other bulky lesions, DDR-dependent phosphorylation of p53 acts 
by upregulating expression of NER genes and recruiting XPC and TFIIH to sites of 
damage [7, 48–52]. ATR also regulates ICLR through the phosphorylation of several 
members of the Fanconi anemia group, a set of proteins that in combination with 
NER and HR, repair DNA cross-linkage damage [53–55]. Other examples of DDR-
signaling-dependent regulation of DNA repair mechanisms include the upregula-
tion of BER through the stimulatory binding of p53 to BER proteins, the promotion 
of HR that ensues after disruption of the p53-RPA complex by ATM, ATR and 
DNA-PKcs phosphorylation, and the PIKK-dependent phosphorylation of Werner 
syndrome and Bloom syndrome proteins involved in DSB repair [56–60].
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2. ATM roles during DDR

ATM and ATR are two kinases belonging to the protein phosphatidylinositol-
3-kinase-like kinases (PIKK) family that function as the chief regulators of DDR 
[3, 11, 13]. Together, they coordinate all pathways implicated in DDR to offer an 
adequate and timely response proportionate to the type and extent of the genomic 
injury. Recently, DNA-PKcs, another member of the PIKK family, has also been 
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albeit to a lesser extent that ATM and ATR [17].

ATM is a very large kinase of 3056 amino acids and a molecular weight of 
350.6 kD that resides in the nucleus as inactive homodimers. Upon DNA dam-
age infliction, phosphorylation of a critical ATM residue disrupts dimerization, 
prompting monomers to undergo further phosphorylation to achieve full kinase 
activation [18–20]. Active ATM monomers phosphorylate substrates on serine or 
threonine residues followed by glutamine (S/TQ ), and a significant amount of 
ATM substrates contain clusters of S/TQ sites in short stretches of the protein [21]. 
These so-called SCD domains can be used to mine the proteome for putative ATM 
targets [22–24]. Using mass spectrometry, a high-throughput screen for proteins 
phosphorylated following DNA damage found 686 putative DDR targets and the 
final number is estimated to surpass a thousand proteins [25]. These large numbers 
showcase the complexity of DDR, and the need for an orchestrated coordination of 
all pathways involved. Some of the most important direct ATM targets are CHK2 
and p53, two downstream effectors that modulate pivotal DDR pathways like cell 
cycle progression regulation, DNA repair, or apoptosis [26–28].

2.1 DNA repair

ATM is not only activated by different kinds of DNA damage but can also 
actively participate in several DNA repair mechanisms and coordinate their 
activities with other DDR-related pathways [7, 29]. During DSB repair, ATM 
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plays crucial roles in the early end-processing events, signal amplification, and 
recruitment of other DNA repair proteins to the sites of damage [3, 13]. ATM 
functions in homologous recombination (HR) and nonhomologous end-joining 
(NHEJ), the two pathways entrusted by cells to repair DSBs. Whereas, NHEJ is 
active throughout the cell cycle, its function is mostly limited to G0/G1 as S/G2 
phases prefer the more accurate HR, a mechanism that uses sister chromatids only 
present during those phases as repair templates. The first sensor of DSBs is PARP1, 
which in addition to binding breaks, also adds branches of poly-(ADP)-ribose to 
proteins post-translationally [30]. This so-called PARylation process activates and 
recruits several DNA repair proteins to the sites of damage [31]. One of them is the 
MRN complex—made up of MRE11, RAD50, and NBS1—that binds and activates 
ATM [32, 33]. Interaction with PARP1 and NBS1, thus, activates and recruits ATM 
to DSB sites, where it phosphorylates several downstream targets and effectors to 
amplify DDR signaling. For instance, ATM phosphorylates histone variant H2AX, 
which promotes MDC1 binding to the chromatin surrounding DSB [34–36]. Once 
there, ATM-mediated phosphorylation of MDC1 promotes its binding to MRN, and 
recruitment of more ATM to phosphorylate more H2AX, further spreading DDR 
signaling [13].

Although the complete process remains to be fully elucidated, it is clear that 
ATM is also involved in the decision-making process that selects either HR or NHEJ 
to repair a DSB [37, 38]. A crucial step in this process is the extent of end resec-
tion that takes place at DSB [39]. ATM directly phosphorylates CtIP and BRCA1, 
two HR proteins required for resection initiation and binding of RAD51 to ssDNA 
ends, respectively [40–42]. Once formed, RAD51 coated 3′ ssDNA ends steer repair 
toward HR by initiating strand invasion into the sister chromatid. Intriguingly, 
ATM phosphorylates p53BP1 and promotes its recruitment to sites of DNA damage 
[43]. Phosphorylated p53BP1 has opposing roles to CtIP and BRCA1, and favors the 
formation of p53BP1 containing complexes at DSB that counteract HR in favor of 
NHEJ repair [38, 44]. ATM also influences NHEJ by mediating DNA-PKcs phos-
phorylation and subsequent recruitment of Artemis, an end-processing nuclease, to 
DSB sites [45].

Although ATM is mostly activated by DSBs, recent data suggest that some 
lesions that are usually repaired by BER can also activate ATM and that ATM-
dependent phosphorylation events can regulate BER [46]. Following base damage, 
BER requires the sequential action of DNA glycosylases—to remove damaged bases 
and create apyrimidinic or apurinic (AP) sites, PARP1—to PARylate the AP site, 
and endonucleases that will generate an SSB at the AP site [47]. These events can 
lead to ATM activation and the ATM-dependent phosphorylation of CHK2 [46]. 
Upon activation, CHK2 phosphorylates XRCC1, a BER protein required for sealing 
the nick and completing the repair.

DDR is capable of modulating DNA repair pathways through multiple effectors. 
For instance, both ATR and p53 regulate NER through quite distinct mechanisms. 
While ATR phosphorylates XPA, one of the earliest respondents to pyrimidine 
photodimers and other bulky lesions, DDR-dependent phosphorylation of p53 acts 
by upregulating expression of NER genes and recruiting XPC and TFIIH to sites of 
damage [7, 48–52]. ATR also regulates ICLR through the phosphorylation of several 
members of the Fanconi anemia group, a set of proteins that in combination with 
NER and HR, repair DNA cross-linkage damage [53–55]. Other examples of DDR-
signaling-dependent regulation of DNA repair mechanisms include the upregula-
tion of BER through the stimulatory binding of p53 to BER proteins, the promotion 
of HR that ensues after disruption of the p53-RPA complex by ATM, ATR and 
DNA-PKcs phosphorylation, and the PIKK-dependent phosphorylation of Werner 
syndrome and Bloom syndrome proteins involved in DSB repair [56–60].
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2.2 Cell cycle progression regulation

One of the most dangerous threats of DNA damage is the possibility of spread-
ing to daughter cells during cell duplication. To prevent this, DDR is capable of 
halting cell cycle progression at any point during the cell cycle [61]. A series of 
overlapping mechanisms ensure that cells attempt DNA repair before progressing to 
the next cell cycle stage [7].

ATM is in charge of preventing lesions produced during G1/G0 to enter S phase, 
which is particularly important for some of the most common DNA injuries like 
oxidative damage. Since G1/G0 duration is usually longer than other cell cycle phases, 
exposure to ROS and other mutating agents is also higher in these stages, and so is the 
appearance of related damage. ATM acts in conjunction with CHK2 and p53 to block 
G1/S transition by inhibiting CDK2, the cycle-dependent kinase that along with 
Cyclin E, triggers S-phase entry [62]. CDK2 inhibition is achieved by two overlapping 
mechanisms that have ATM at their apex. On one hand, ATM phosphorylation of 
CHK2 triggers phosphorylation of CDC25A, a phosphatase required for CDK2 activa-
tion and promoting entry into S-phase [63, 64]. On the other hand, ATM-dependent 
activation of p53 induces upregulation of p21, which acts as a CDK2 inhibitor [65].

Replicative stresses during S-phase trigger the activation of the Intra-S-phase 
checkpoint to ensure that replicative stress and other types of damages do not 
persist in the following cell cycle stages. ATR, not ATM, is the PIKK responsible for 
halting the cell cycle at this stage through the activation of the intra-S-phase [61]. 
During this checkpoint ATR, CHK1, and p53 act together and in overlapping ways 
to phosphorylate CDK2, which renders it unable to form an active CDK2/cyclin A 
complex [63, 66]. The final result is DNA synthesis termination, premature stalling, 
and subsequent halt of the cell cycle.

The concerted action of ATR, CHK1, and p53 also controls the G2/M transition to 
ensure that no cell enters mitosis with lingering DNA damage from previous phases 
[67–69]. The importance of this checkpoint is highlighted by the presence of multiple 
overlapping and complementary mechanisms actively working together to inhibit 
CDK1/CyclinB1, the complex required to trigger entry into mitosis [66]. CDK1 phos-
phorylation has an inhibitory effect and thus, is the primary target of several of these 
mechanisms. After ATR-mediated activation, CHK1 phosphorylates CDC25C, a phos-
phatase required for CDK1 activation. Phosphorylated CDC25C binds to the 14-3-3 
complex, which promotes its transport to the cytoplasm, effectively preventing CDK1 
activation [70]. Active CHK1 also phosphorylates and activates WEE1, a kinase that 
promotes inhibitory phosphorylation of CDK1 [71]. Furthermore, ATR phosphory-
lates PLK1 and inhibits its role as WEE1 inhibitor, while p53 upregulates GADD45, 
which binds and further inhibits CDK1/CyclinB1 complex [72, 73]. Importantly, ATM 
also play roles in this combined effort to keep CDK1/CyclinB1 inhibited, as it can 
phosphorylate PLK1 and promote CHK1-mediated CDC25C phosphorylation [73, 74].

Finally, the Intra-M checkpoint is the last opportunity to prevent the transmis-
sion of damage to daughter cells. ATM and CHK1 govern this checkpoint through 
two distinct mechanisms that act sequentially during mitosis progression. First, 
inhibitory phosphorylation of PLK1 by CHK1 prevents it from acting during spindle 
formation and halts the cell cycle [74]. At a later point, ATR-mediated phosphory-
lation of Aurora B stimulates the inhibitory effect that this enzyme exerts over 
cytokinesis and delays exits of mitosis if the damage is detected [75].

2.3 Transcription regulation

Activation of DDR induces substantial changes to the transcriptome to equip cells 
with necessary tools and time to articulate a proper response. While the overall effect 
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of DDR activation is an attenuation of global transcription and translation, many 
genes involved in DDR pathways must be upregulated instead [76]. For example, 
upregulation of XPC and other NER genes follows DDR activation, and as previously 
noted, DDR-mediated blocking of cell cycle progression is dependent on the induc-
tion of certain genes, namely p21 [77]. DDR exerts its influence on gene transcrip-
tion through the action of several transcription factors that act as downstream 
effectors of DDR signaling. Some of the most important examples are p53 and 
BRAC1, AP-1, or E2F1. For instance, BRAC1 and p53 upregulate XPC during DDR-
mediated NER upregulation; whereas, AP-1 induces the expression of XPF and XPG 
during the same process [76]. Other examples are p53 and AP-1 serving as transcrip-
tion factors for MLH1 and MSH2—two mismatch repair genes—and E2F1 and AP-1 
influencing the expression of BER components XRCC1 and APEX1, respectively.

2.4 Apoptosis and senescence

Paramount for DDR is its ability to trigger apoptosis when DNA damage is too 
extensive and incompatible with genome stability. Both ATM and ATR can promote 
apoptosis through the phosphorylation of p53, the chief regulator of apoptosis dur-
ing DDR [78–80]. p53 can trigger apoptosis by playing dual roles as transcription 
factor activator and anti-apoptotic protein inhibitor. In the presence of unrepairable 
damage, p53 upregulates pro-apoptotic genes like PUMA or BAX, while binding 
and inhibiting anti-apoptotic proteins like BCL2 [81, 82]. In addition to apoptosis, 
extensive DNA damage can also induce senescence, a metabolic state that causes 
irreversible growth arrest [83]. Among other mechanisms, senescence can be 
induced during DDR by ATM and p53 upregulation of p21 [84].

2.5 Other DDR pathways

ATM and ATR also integrate into DDR several other pathways that are essential 
to provide an adequate and proportionate response to all kind of injuries. For 
instance, no proper DDR can occur without the upregulation of dNTP for DNA 
repair [85]. This upregulation requires tight control, as excessive dNTP production 
can lead to increased mutation frequency [86]. In the presence of DNA damage, 
DDR kinases regulate RNR—the kinase that catalyzes rate-limiting step during 
dNTP production—at multiple levels. For instance, p53 regulates the expression 
levels of RNR; whereas, ATM phosphorylation increases the stability of RNR [87]. 
In addition, ATR signaling inhibits degradation of some RNR subunits, further 
contributing to the regulation of dNTP levels by DDR kinases.

Dysfunctional telomeres can also activate ATM and ATR and elicit a response 
that includes halting the cell cycle and induction of senescence [88]. Telomere 
dysfunction can arise when errors in the Shelterin complex render telomeres 
unprotected. Loss of protection at telomeres can also occur by the natural attrition 
of telomere length experienced during DNA replication in cells that do not express 
telomerase [89]. In both cases, DNA ends at telomeres can be mistakenly recognized 
as DNA damage events and activate DDR.

Recently, activation of autophagy has emerged as another tool that DDR can 
use to fight severe DNA damage. While autophagy was initially thought to be 
exclusively activated in response to cellular damage or starvation, there is clear 
evidence that DNA damage can also trigger autophagy [90]. For instance, the 
action of mTOR—the main autophagy inhibitor—can be repressed either in an 
ATM or PARP1 dependent manner following DNA damage, effectively promoting 
autophagy [7]. Consistent with this, in response to ROS mediated damage, ATM 
can induce selective degradation of mitochondria by autophagy (also known as 
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of DDR activation is an attenuation of global transcription and translation, many 
genes involved in DDR pathways must be upregulated instead [76]. For example, 
upregulation of XPC and other NER genes follows DDR activation, and as previously 
noted, DDR-mediated blocking of cell cycle progression is dependent on the induc-
tion of certain genes, namely p21 [77]. DDR exerts its influence on gene transcrip-
tion through the action of several transcription factors that act as downstream 
effectors of DDR signaling. Some of the most important examples are p53 and 
BRAC1, AP-1, or E2F1. For instance, BRAC1 and p53 upregulate XPC during DDR-
mediated NER upregulation; whereas, AP-1 induces the expression of XPF and XPG 
during the same process [76]. Other examples are p53 and AP-1 serving as transcrip-
tion factors for MLH1 and MSH2—two mismatch repair genes—and E2F1 and AP-1 
influencing the expression of BER components XRCC1 and APEX1, respectively.

2.4 Apoptosis and senescence

Paramount for DDR is its ability to trigger apoptosis when DNA damage is too 
extensive and incompatible with genome stability. Both ATM and ATR can promote 
apoptosis through the phosphorylation of p53, the chief regulator of apoptosis dur-
ing DDR [78–80]. p53 can trigger apoptosis by playing dual roles as transcription 
factor activator and anti-apoptotic protein inhibitor. In the presence of unrepairable 
damage, p53 upregulates pro-apoptotic genes like PUMA or BAX, while binding 
and inhibiting anti-apoptotic proteins like BCL2 [81, 82]. In addition to apoptosis, 
extensive DNA damage can also induce senescence, a metabolic state that causes 
irreversible growth arrest [83]. Among other mechanisms, senescence can be 
induced during DDR by ATM and p53 upregulation of p21 [84].

2.5 Other DDR pathways

ATM and ATR also integrate into DDR several other pathways that are essential 
to provide an adequate and proportionate response to all kind of injuries. For 
instance, no proper DDR can occur without the upregulation of dNTP for DNA 
repair [85]. This upregulation requires tight control, as excessive dNTP production 
can lead to increased mutation frequency [86]. In the presence of DNA damage, 
DDR kinases regulate RNR—the kinase that catalyzes rate-limiting step during 
dNTP production—at multiple levels. For instance, p53 regulates the expression 
levels of RNR; whereas, ATM phosphorylation increases the stability of RNR [87]. 
In addition, ATR signaling inhibits degradation of some RNR subunits, further 
contributing to the regulation of dNTP levels by DDR kinases.

Dysfunctional telomeres can also activate ATM and ATR and elicit a response 
that includes halting the cell cycle and induction of senescence [88]. Telomere 
dysfunction can arise when errors in the Shelterin complex render telomeres 
unprotected. Loss of protection at telomeres can also occur by the natural attrition 
of telomere length experienced during DNA replication in cells that do not express 
telomerase [89]. In both cases, DNA ends at telomeres can be mistakenly recognized 
as DNA damage events and activate DDR.

Recently, activation of autophagy has emerged as another tool that DDR can 
use to fight severe DNA damage. While autophagy was initially thought to be 
exclusively activated in response to cellular damage or starvation, there is clear 
evidence that DNA damage can also trigger autophagy [90]. For instance, the 
action of mTOR—the main autophagy inhibitor—can be repressed either in an 
ATM or PARP1 dependent manner following DNA damage, effectively promoting 
autophagy [7]. Consistent with this, in response to ROS mediated damage, ATM 
can induce selective degradation of mitochondria by autophagy (also known as 
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mitophagy) and pexophagy—the autophagic degradation of peroxisomes [91–93]. 
Integration of autophagy pathways as part of DDR repertoire may allow cells in 
stress to attempt pro-survival pathways first before succumbing to apoptosis.

While the complex relationships between DDR and inflammation are beginning 
to emerge, it is clear that ROS and other types of genomic injuries can elicit a pro-
inflammatory response. As part of DDR, this pro-survival cell response is mediated 
mostly through ATM and PARP1 [94]. ATM directly binds and phosphorylates IKK-γ 
(NEMO), the regulatory subunit of the IKK complex that activates NF-kB [41]. Along 
with PARP1-mediated post-translational modifications, ATM phosphorylation of IKK-γ 
promotes activation of IKK and subsequent activation of NF-kB [41, 95–97]. Therefore, 
this critical pro-inflammatory enzyme is under DDR control, where it can function 
as a transcription factor promoting expression of pro-inflammatory cytokines and 
DNA repair genes [76, 94, 95, 98]. In addition, ATM is involved in a pro-inflammatory 
pathway known as senescence-associated secretory phenotype (SASP), a complex 
mechanism that secretes, among others, pro-inflammatory cytokines [94, 99].

3. Molecular basis for ataxia telangiectasia syndrome

A-T is an autosomal recessive genetic disease that affects 1 in every 40,000–100,00 
births with an estimated 0.5–1% of the global population being carriers of the illness 
[100]. Patients confront a variety of clinical manifestations throughout their lives, 
with the inability to control body movements, or ataxia, being one the earliest to 
appear [101]. The underlying cause for the ataxia is progressive neurodegeneration, 
particularly of the cerebellum, which also induces dysarthria (speech difficulties), 
poor balance, and uncontrolled eye movements. Neurodegeneration involves the 
gradual disappearance of Purkinje, granular cells and the molecular layer of the 
cerebellar cortex, and expands to the brain stem and the spinal cord. A-T is also 
 characterized by the presence of vascular abnormalities (telangiectasia) that manifest 
as red spider-like veins, present mostly in the eyes, but also found in cheeks, ears, 
neck, and other parts of patients’ bodies [102, 103].

In addition to the ataxia and telangiectasia, A-T patients can suffer from a 
plethora of other clinical symptoms. They have a higher incidence of cancer, 
diabetes, and show premature aging. They manifest radiosensitivity, sterility, and 
immunodeficiencies with an elevated risk of developing autoimmune diseases 
such as arthritis, vitiligo, or immune thrombocytopenia [104]. Authors have also 
suggested that A-T patients may suffer from prolonged chronic inflammation [94]. 
Consistent with this, high levels of pro-inflammation cytokines are present in their 
serum even in the absence of infections [51, 52].

While mutations in other DDR gene can induce similar symptomatology, 
defective or absent, ATM is the sole genetic cause of A-T. Hundreds of pathogenic 
mutations have been identified in ATM from A-T patients, many of them altering 
splicing or causing frameshifts that result in premature termination codons. As a 
result, ATM is often either missing or containing truncations of different extents in 
A-T cells. Clinical manifestations correlate with the severity of the mutation, with 
milder forms of the syndrome appearing in individuals bearing mutations with 
mild effects on ATM function and vice versa [105].

3.1 Neurodegeneration

The most apparent clinical manifestation of the disease is probably also the most 
problematic to explain at the molecular level. The question of why mutations in a 
gene involved in DDR would have specific and discriminating effects in the neural 
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system remains to be fully answered [5, 106]. One of the problems in answering 
this question is that mouse models lacking functional ATM reconstitute most of the 
pleiotropic effects of A-T, except for neurodegeneration [107–109].

It is clear that during neurodevelopment, rapidly dividing cells—with high 
energetic demands and increased mitochondria respiration—face increasing 
levels of threats to the integrity of their genome [110, 111]. High metabolic rates 
increase ROS, and produce oxidative stress, which combined with the high demand 
for transcription, may render these cells more susceptible to faulty DNA repair 
mechanisms [110, 112]. This view is consistent with the high prevalence of neuro-
logical problems in patients bearing mutations in DNA repair genes [5, 9]. Authors 
have proposed a model where different stages during neurodevelopment are more 
susceptible to mutations in different DNA repair pathways, with HR having major 
roles during phases of rapid proliferation—when a sister chromatid is readily 
available—and NHEJ being required during late development when cells undergo 
differentiation in G1/G0 [9]. This would explain why mutations in HR often result 
in embryonic lethality; whereas, mutations in some NHEJ genes present neuro-
development problems such as microcephalia. In this model, single strand lesion 
repair would be required for post-developmental maintenance of neural tissue.

Cerebellum neurodegeneration in A-T patients also establishes ATM as a require-
ment to maintain neural tissue. The accumulation of unrepaired lesions during 
development—and beyond—results in degeneration problems later [113]. This is 
likely to happen at any tissue, but it would affect the neural system in particular, 
and with greater virulence, due to the longevity of its cells and the subsequent lon-
ger exposure to mutagenic agents. This injury build-up would occur progressively, 
mimicking the progressive nature of neurodegeneration in A-T patients.

Supporting this view, there are clear indications that neural A-T cells are under 
genotoxic stress. Mice cells lacking ATM gradually accumulate DSBs and show depleted 
levels of oxidized and reduced forms of NAD in cerebellar tissue, a hallmark of cells 
undergoing high levels of oxidative stress [114]. Interestingly, depletion of NAD levels 
only occurs in cerebellar tissues, but not in other parts of the brain, indicating that oxi-
dative stress may be particularly acute in the cerebellum. These data are consistent with 
other studies that found high levels of oxidative stress in the cerebellum and Purkinje 
cells in particular, which likely explains the higher prevalence of neurodegeneration in 
the cerebellum than in other parts of the neural system [115]. The reason for the local-
ized high levels of oxidative stress in cerebellar tissue compared to other regions of the 
neural system is not known, nor is the reason for the lack of a cerebellar degeneration 
phenotype in mice lacking ATM despite increased levels of oxidative damage.

These studies strongly suggest that the inability to repair damage caused by 
oxidative stress is the more plausible cause of cerebellar neurodegeneration in A-T 
and thus, the roles of ATM during the repair of single strand lesions may provide 
the molecular basis for the disease. The correlation between impaired single strand 
lesions repair and failure of neural tissue maintenance was further corroborated 
in mice that showed extensive neuron loss in the cerebellum when XRCC1 expres-
sion was selectively prevented in their brain [116]. While ATM mostly acts in DSB 
repair, it can also play roles during single strand lesion repair. As mentioned before, 
SSBs can activate ATM and promote BER by the ATM-mediated phosphorylation of 
XRCC1 (see Section 2.1) [46]. Whether or not, impairment of this DDR branch is 
related to the neurodegeneration observed in A-T remains to be elucidated.

Authors have also proposed that neurological problems arising in A-T patients 
may be related to the faulty resolution of R-loops in locations where active tran-
scription is halted due to the presence of DNA lesions [9, 13]. R-loops are hybrids 
formed by two strands of DNA and one of RNA that are generated in a variety 
of circumstances and locations and are known to pose a risk to genome stability 
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gradual disappearance of Purkinje, granular cells and the molecular layer of the 
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neck, and other parts of patients’ bodies [102, 103].
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While mutations in other DDR gene can induce similar symptomatology, 
defective or absent, ATM is the sole genetic cause of A-T. Hundreds of pathogenic 
mutations have been identified in ATM from A-T patients, many of them altering 
splicing or causing frameshifts that result in premature termination codons. As a 
result, ATM is often either missing or containing truncations of different extents in 
A-T cells. Clinical manifestations correlate with the severity of the mutation, with 
milder forms of the syndrome appearing in individuals bearing mutations with 
mild effects on ATM function and vice versa [105].

3.1 Neurodegeneration

The most apparent clinical manifestation of the disease is probably also the most 
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gene involved in DDR would have specific and discriminating effects in the neural 
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system remains to be fully answered [5, 106]. One of the problems in answering 
this question is that mouse models lacking functional ATM reconstitute most of the 
pleiotropic effects of A-T, except for neurodegeneration [107–109].

It is clear that during neurodevelopment, rapidly dividing cells—with high 
energetic demands and increased mitochondria respiration—face increasing 
levels of threats to the integrity of their genome [110, 111]. High metabolic rates 
increase ROS, and produce oxidative stress, which combined with the high demand 
for transcription, may render these cells more susceptible to faulty DNA repair 
mechanisms [110, 112]. This view is consistent with the high prevalence of neuro-
logical problems in patients bearing mutations in DNA repair genes [5, 9]. Authors 
have proposed a model where different stages during neurodevelopment are more 
susceptible to mutations in different DNA repair pathways, with HR having major 
roles during phases of rapid proliferation—when a sister chromatid is readily 
available—and NHEJ being required during late development when cells undergo 
differentiation in G1/G0 [9]. This would explain why mutations in HR often result 
in embryonic lethality; whereas, mutations in some NHEJ genes present neuro-
development problems such as microcephalia. In this model, single strand lesion 
repair would be required for post-developmental maintenance of neural tissue.

Cerebellum neurodegeneration in A-T patients also establishes ATM as a require-
ment to maintain neural tissue. The accumulation of unrepaired lesions during 
development—and beyond—results in degeneration problems later [113]. This is 
likely to happen at any tissue, but it would affect the neural system in particular, 
and with greater virulence, due to the longevity of its cells and the subsequent lon-
ger exposure to mutagenic agents. This injury build-up would occur progressively, 
mimicking the progressive nature of neurodegeneration in A-T patients.

Supporting this view, there are clear indications that neural A-T cells are under 
genotoxic stress. Mice cells lacking ATM gradually accumulate DSBs and show depleted 
levels of oxidized and reduced forms of NAD in cerebellar tissue, a hallmark of cells 
undergoing high levels of oxidative stress [114]. Interestingly, depletion of NAD levels 
only occurs in cerebellar tissues, but not in other parts of the brain, indicating that oxi-
dative stress may be particularly acute in the cerebellum. These data are consistent with 
other studies that found high levels of oxidative stress in the cerebellum and Purkinje 
cells in particular, which likely explains the higher prevalence of neurodegeneration in 
the cerebellum than in other parts of the neural system [115]. The reason for the local-
ized high levels of oxidative stress in cerebellar tissue compared to other regions of the 
neural system is not known, nor is the reason for the lack of a cerebellar degeneration 
phenotype in mice lacking ATM despite increased levels of oxidative damage.

These studies strongly suggest that the inability to repair damage caused by 
oxidative stress is the more plausible cause of cerebellar neurodegeneration in A-T 
and thus, the roles of ATM during the repair of single strand lesions may provide 
the molecular basis for the disease. The correlation between impaired single strand 
lesions repair and failure of neural tissue maintenance was further corroborated 
in mice that showed extensive neuron loss in the cerebellum when XRCC1 expres-
sion was selectively prevented in their brain [116]. While ATM mostly acts in DSB 
repair, it can also play roles during single strand lesion repair. As mentioned before, 
SSBs can activate ATM and promote BER by the ATM-mediated phosphorylation of 
XRCC1 (see Section 2.1) [46]. Whether or not, impairment of this DDR branch is 
related to the neurodegeneration observed in A-T remains to be elucidated.

Authors have also proposed that neurological problems arising in A-T patients 
may be related to the faulty resolution of R-loops in locations where active tran-
scription is halted due to the presence of DNA lesions [9, 13]. R-loops are hybrids 
formed by two strands of DNA and one of RNA that are generated in a variety 
of circumstances and locations and are known to pose a risk to genome stability 
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[117]. Paused RNA polymerase sites activate ATM, which then elicit a response that 
includes interactions with spliceosome components that may mediate R-loop resolu-
tion [118]. In the cerebellum, the combination of high levels of oxidative stress with 
high demands of transcription may produce an abnormally high amount of paused 
transcription sites due to DNA damage. In the absence of ATM, R-loops may not be 
adequately resolved, eventually creating a scenario incompatible with cell life.

3.2 Telangiectasia

The localized abnormal vascular formations that A-T patients show in several 
parts of their bodies—particularly in the eyes—is one of the most obvious and yet 
least investigated phenotypes of the disease [119]. Telangiectasia is highly preva-
lent in A-T, only missing in patients bearing mild ATM mutations that maintain 
some residual protein function [120]. Very little is known about the molecular 
mechanism that prompts telangiectasia when ATM is absent or dysfunctional. The 
current model proposes that oxidative stress caused by a lack of functional ATM 
may upregulate HIF1A levels, a hypoxia-activated transcription factor that can 
induce vascularization by increasing the levels of angiogenesis factor VEGF [120]. 
Intriguingly, SAPS also induces secretion of VEGF, suggesting a link between this 
DDR controlled pathway and vascularization [121, 122].

3.3 Immunodeficiency and inflammation

A-T patients can show low levels of at least one type of immunoglobulin, inad-
equate antibody responses to infections and abnormal T and B lymphocyte counts 
[123, 124]. These phenotypes can be attributed to the roles that ATM has in regulat-
ing NHEJ during V(D)J recombination and class-switch recombination (CSR), two 
recombination processes required to produce antibody diversity during adaptive 
immunity. Both V(D)J and CSR involve induction of programmed DSBs followed 
by ATM-aided NHEJ repair [125]. For instance, during V(D)J ATM localizes to 
break sites and regulate NHEJ components, while p53BP1 phosphorylation by ATM 
is a crucial event during CSR. The regulatory roles that ATM exerts on these two 
processes are likely to be extensive and involve other DDR pathways. In A-T patients 
with immunodeficiencies, programmed DSBs remain unrepaired, and their persis-
tence can cause severe T and B-cell developmental problems [126–128].

There is growing evidence that the innate immune response may be tightly linked 
to several clinical manifestations observed in A-T patients. Lack of ATM creates high 
levels of ROS and oxidative damage, which is known to induce pro-inflammatory cyto-
kines [111, 129, 130]. ATM-deficient cells cannot trigger pexophagy and other forms of 
autophagy to counteract the negatives effect of oxidative damage, further compound-
ing the problem [91]. Persistent genotoxic stress can, therefore, create chronic inflam-
mation in A-T patients, a condition linked to several A-T symptoms: increased levels 
of cardiovascular and autoimmune diseases, insulin resistance, and aging. Tellingly, 
the immune response contributes to neurodegeneration during Alzheimer’s disease, 
possibly suggesting that in A-T patients, chronic inflammation may also contribute to 
neurodegeneration in cerebellar tissues suffering high levels of genotoxic stress [131].

3.4 Radiosensitivity and increased cancer risk

Several DDR pathways contribute to the increased cancer risk seen in A-T 
patients. The inability of A-T cells to coordinate DNA repair with other DDR 
pathways can leave unrepaired genomic injuries and elevate the number of muta-
tions in cells—including perilous DSBs—rendering cells highly sensitive to ionizing 
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radiation. Lack of ATM permits these mutations to escape cell cycle checkpoints 
control and be transmitted to daughter cells, further contributing to tumorigenesis. 
This process can continue unchecked, as the genomic instability that it produces 
does not trigger apoptosis when ATM is absent or dysfunctional.

One of the most common malignancies in A-T patients is breast cancer [132]. 
Even heterozygous individuals bearing debilitating mutations in just one of the 
ATM genes also have increased breast cancer incidence. While many DDR compo-
nents are likely to participate in breast cancer tumorigenesis, the loss of the direct 
control that ATM exerts over BRAC1 is likely one of the major contributing factors. 
Lymphomas of B-cell origin and leukemia of T-cell origin are also very common in 
A-T patients, as unrepaired programmed DSBs persisting in developing T and B cells 
can often be the substrate of translocations [133].

3.5 Other clinical features

Both male and female A-T patients show infertility due to abnormal meiosis 
progression. During meiosis, ATM controls the number of DSBs created by SPO11 
and ensures their even distribution in the genome [134]. This is achieved by recruit-
ing ATM to SPO11-generated DSBs, which inhibits the formation of further cuts in 
the vicinity of break sites. Mice models have shown a meiotic arrest in prophase I, 
faulty synapsis, and chromosome fragmentation leading to massive germ cell loss 
[107, 135], suggesting that the loss of ATM’s roles during meiosis is the underlying 
cause of infertility in A-T patients.

A-T patients can suffer from insulin resistance and thus, have a higher risk of 
developing diabetes, a clinical feature that they share with carriers of the disease. 
The cause for this phenotype is likely to be multifactorial, but it is well-defined 
that ATM phosphorylates several targets—e.g., translation regulation 4E-BP1—in 
response to insulin [25]. Furthermore, a lack of fully functional ATM correlates 
with an inhibition of IRS1 (insulin receptor substrate 1) and low levels of IGF1-R 
(insulin-like growth factor1 receptor), suggesting possible mechanisms causing this 
clinical feature [94, 136, 137].

4. Conclusion

While much progress has been made to understand A-T at the molecular level, 
there are still important questions that remain unanswered. This is especially true for 
the cerebellar neurodegeneration observed in A-T patients, where unknown tissue-
specific factors may be at play. The genesis and the extent of some of the A-T clinical 
features are likely to be the result of interwoven relationships between many path-
ways and pathologies described in here and hence, elucidating their connections will 
be crucial to fully understand the disease and develop effective tools for its treatment.
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A-T patients can suffer from insulin resistance and thus, have a higher risk of 
developing diabetes, a clinical feature that they share with carriers of the disease. 
The cause for this phenotype is likely to be multifactorial, but it is well-defined 
that ATM phosphorylates several targets—e.g., translation regulation 4E-BP1—in 
response to insulin [25]. Furthermore, a lack of fully functional ATM correlates 
with an inhibition of IRS1 (insulin receptor substrate 1) and low levels of IGF1-R 
(insulin-like growth factor1 receptor), suggesting possible mechanisms causing this 
clinical feature [94, 136, 137].
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there are still important questions that remain unanswered. This is especially true for 
the cerebellar neurodegeneration observed in A-T patients, where unknown tissue-
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features are likely to be the result of interwoven relationships between many path-
ways and pathologies described in here and hence, elucidating their connections will 
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Chapter 6

The Neurobiological Development
of Reading Fluency
Bobbie Jean Koen

Abstract

This chapter offers an extensive review of current and foundational research
literature on the neurodevelopment of dyslexia and reading fluency worldwide. The
impact of different languages and their orthographies on the acquisition of phono-
logical analysis and orthographical features by beginning readers is explored. Con-
tributions from the Psycholinguistic Grain Size Theory and new assessments, i.e.
rapid automatized naming, have focused and advanced the understanding of slow
phonological and visual processing skills. Recently, the development of new defini-
tions of fluency has led to a proposed continuum of automatized decoding and
processing skills required for students of English. Computer technology has
enhanced the use of visual hemisphere-specific stimulation to affect the
neurodevelopment of efficient word retrieval pathways and to increase reading
speed. Processes for subtyping students based on reading behaviors and then stim-
ulating a particular hemisphere of the brain with the fast presentation of words and
phrases have been found to change levels of activation in key brain locations and
increase the fluent processing of connected text. Newer technologies such as
diffusion tensor imaging, while somewhat suspect, may provide the evidence that
ultimately will document the changes in communication between regions of interest
regulating the automaticity of brain functions in reading.

Keywords: dyslexia, rapid automatized naming (RAN), phonological processing,
visual processing, visual hemisphere-specific stimulation (VHSS), fluency

1. Introduction

The worldwide narrative around fluency has grown dramatically in the last
10 years. This surge in interest has been driven, perhaps, by new working defini-
tions of fluency, and the growing realization that different languages pose variable
challenges to students with dyslexia who exhibit problems with reading fluency.
While analyzing their own language’s nuances, researchers have inundated these
students with behavioral measures of nonverbal and verbal intelligence, reading
accuracy, phonological skill, spelling, orthographic patterns, short-term memory,
vocabulary – receptive and expressive, visual information processing and memory,
and speed of processing. Through these various behavioral assessments, the
strengths and weaknesses of struggling readers of every language are quantified,
modeled and correlated to describe the multitude of possible different literacy
actions displayed.

89



Chapter 6

The Neurobiological Development
of Reading Fluency
Bobbie Jean Koen

Abstract

This chapter offers an extensive review of current and foundational research
literature on the neurodevelopment of dyslexia and reading fluency worldwide. The
impact of different languages and their orthographies on the acquisition of phono-
logical analysis and orthographical features by beginning readers is explored. Con-
tributions from the Psycholinguistic Grain Size Theory and new assessments, i.e.
rapid automatized naming, have focused and advanced the understanding of slow
phonological and visual processing skills. Recently, the development of new defini-
tions of fluency has led to a proposed continuum of automatized decoding and
processing skills required for students of English. Computer technology has
enhanced the use of visual hemisphere-specific stimulation to affect the
neurodevelopment of efficient word retrieval pathways and to increase reading
speed. Processes for subtyping students based on reading behaviors and then stim-
ulating a particular hemisphere of the brain with the fast presentation of words and
phrases have been found to change levels of activation in key brain locations and
increase the fluent processing of connected text. Newer technologies such as
diffusion tensor imaging, while somewhat suspect, may provide the evidence that
ultimately will document the changes in communication between regions of interest
regulating the automaticity of brain functions in reading.

Keywords: dyslexia, rapid automatized naming (RAN), phonological processing,
visual processing, visual hemisphere-specific stimulation (VHSS), fluency

1. Introduction

The worldwide narrative around fluency has grown dramatically in the last
10 years. This surge in interest has been driven, perhaps, by new working defini-
tions of fluency, and the growing realization that different languages pose variable
challenges to students with dyslexia who exhibit problems with reading fluency.
While analyzing their own language’s nuances, researchers have inundated these
students with behavioral measures of nonverbal and verbal intelligence, reading
accuracy, phonological skill, spelling, orthographic patterns, short-term memory,
vocabulary – receptive and expressive, visual information processing and memory,
and speed of processing. Through these various behavioral assessments, the
strengths and weaknesses of struggling readers of every language are quantified,
modeled and correlated to describe the multitude of possible different literacy
actions displayed.

89



It seems inevitable that some kind of labels would need to be created to identify
these special readers. The dual route model of reading constitutes the background of
dyslexia subtyping [1]. Its central axiom is that no single processing procedure
produces the correct pronunciations of both nonwords or pseudo-words (e.g. slint)
and exception or irregular words (e.g. pint) [2]. It is theorized that nonwords can
only be correctly pronounced using the grapheme-phoneme correspondence rules,
the “non-lexical” route; exception words require an additional procedure, the “lex-
ical” route, because they cannot be pronounced by the rules and readers must use
context to figure them out. In many studies, subjects are classified in terms of
accuracy either as “phonological dyslexics” when pseudo-word reading ability is
impaired but irregular word reading is spared, or as “surface dyslexics” when the
reverse occurs- irregular word reading is compromised while pseudo-word reading
is intact [3]. For example, in accuracy-based studies in Spanish, surface dyslexics
were more frequent than phonological dyslexics [4]. However unlike English, most
orthographies have highly regular grapheme-phoneme correspondences with rela-
tively few “exception” words [5], so the applicability of the dual-route framework
beyond English has been questioned [6]. More recently, researchers have focused
on those children who display Single Deficits (phonological processing weakness)
and those who have the dreaded Double Deficit or Double Dissociation (phonolog-
ical processing and processing speed deficits) [7]. They have worked hard compar-
ing disabled reading and cognitive skill performances with normal readers who are
carefully matched by chronological age or reading level (reading age), who are
younger, or who represent a different ethnicity. The subtyping, use of labels, and
multi-control-group comparisons all serve to refine and focus the discussion of how
these students learn to read fluently or not.

To a lesser extent, investigators have used neurobiological technology to explore
various brain activations: post-mortem studies of brains of individuals with dyslexia
[8], Magnetoencephalography (MEG) and Magnetic Source Imaging (MSI) to pro-
vide information both on the spatial localization and on the timing of neurophysio-
logical processes [9], positron emission topography (PET) to examine differences in
resting state blood flow in regions of interest in the brain [10], and computerized
tomography (CT) and structural magnetic resonance imaging (MRI) to examine
noninvasively structural brain differences [11]. Decreased activation in the left
temporal–parietal cortex of adults with dyslexia was first found using functional
magnetic resonance imaging (fMRI) by Constable et al. [12]. These technologies
were developed and implemented in an effort to understand better the growth of
the phonological and visual processing systems and verbal retrieval systems in
beginning learners that for many readers seem automatic. The crucial issue is the
reliability of the different sub-types, which differ according to the type of response
taken into account (accuracy, speed, or both) and the type of orthography (opaque/
transparent) being evaluated [13].

2. Considerations for expressions of dyslexia

It is clear that depending on what is emphasized in any given language
(e.g. fluency in German; visual–spatial memory in Chinese; phonological skills in
English), there will be somewhat different manifestations of dyslexia, as well as
different predictors of reading failure. Cross-language studies highlight the impor-
tance, not only of regular language features, but also the influence of the writing
system (orthography) on reading performance [14]. The type of orthography that
the child is acquiring is a primary cultural factor that influences reading acquisition
in both typical and atypical development [15]. It has been considered that the
cognitive processes underpinning reading ability may be differently involved in

90

Neurodevelopment and Neurodevelopmental Disorder

producing the symptoms of Developmental Dyslexia, depending on orthographic
transparency [16]. Generally, languages that are considered more transparent with
regular orthographies are Spanish, German, Finnish, Dutch, Greek, Italian and
Hebrew, while English and French are considered less regular and therefore, more
opaque.

A particularly challenging example is found in the standard Arabic language.
Most Arabic words are morphologically derived from roots and written Arabic uses
three basic diacritical marks corresponding to short vowels. Arabic script is also
made with different degrees of internal connectivity or ligation between the letters
within a word. In Algeria, standard Arabic is the first written language taught in the
first 3 years of schooling, and there is a transition from vowelized to un-vowelized
forms of reading starting from the third grade. Although the vowelized form of
Arabic is highly transparent, the non-vowelized form is rather opaque [13]. Clearly,
even though the language itself is fairly regular, the features of orthography present
unique difficulties to students.

A central hypothesis in the area of reading accuracy and speed across orthogra-
phies is the Psycholinguistic Grain Size Theory of reading. This idea suggests that
differences in reading accuracy and speed across orthographies reflect basic differ-
ences in the nature of the phonological recoding and reading strategies [17]. Learn-
ing to read in orthographically inconsistent languages cannot rely on letter to sound
correspondences (small grain size), forcing the reader to develop flexible unit size
recoding strategies, such as morphological units, analogy and whole-word recogni-
tion. It would follow that these processing differences would also reflect variable
activations in key processing areas in the brain. This theory would seem to impact
the less regular features of a language and, particularly, languages such as English
and French that are highly irregular and opaque.

Another important idea in this field is the growing body of work demonstrating
the predictive ability of “rapid automatized naming” or RAN tasks [18] in reading
performance. Several researchers have used these tasks where children are presented
with separate arrays of different primary colors, common objects, numerals from 0
to 9, and/or single letters, and are timed while they name the stimuli as quickly as
they can. It has been claimed that RAN, and in particular, the RAN alphanumeric
component (digit naming and letter naming), is associated with reading success [19].
A predominate and somewhat controversial view is that reading and RAN could be
linked together through the general phonological processing system because they
both tap the speed of accessing phonological representations in long-term memory
[20]. However, some studies suggest that RAN is independent of phonological
processing and can, itself, account for variance in reading. This implies that a naming
deficit is directly related to orthographic processing- if letters are recognized at a
slower rate, letter representations of words are not activated with sufficient speed to
create a strong trace of common orthographic features [21]. Further support for this
view is found in research that confirms that later in reading skill development, the
role of non-alphanumeric RAN diminishes, while that of alphanumeric RAN (letters
and digits) increases and becomes the sole predictor of reading at this stage [22].
From a global perspective, this naming speed deficit seems to be more prominent
than the phonological deficit, and this appears to be true in both transparent orthog-
raphies like Spanish, Finnish, and German, as well as in entirely different and diverse
orthographies, such as Hebrew, Chinese, and Japanese [23].

3. A review of international studies and phonological processing/speed

International researchers have investigated many of the most important factors
identified in fluent reading. In Dutch, Vaessen and Blomert found that RAN
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system (orthography) on reading performance [14]. The type of orthography that
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in both typical and atypical development [15]. It has been considered that the
cognitive processes underpinning reading ability may be differently involved in
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contributed uniquely and substantially to the development of word reading fluency
from grade 1 to grade 6 in primary school students [24], and when both accuracy
and speed measures were considered in French, readers with dyslexia displayed
deficiency in word-level reading skills [25]. A similar speed deficit of lexical and
sub-lexical reading was also suggested by findings in French dyslexic children. The
suggestion here being that the sub-lexical route shares with the lexical one the initial
processing of the letter string, but then the lexical processing applies grapheme-
phoneme rules in a serial mode [26]. This deficiency in sub-lexical processing is also
a crucial feature in American dyslexic definitions and treatment, a language system
known for its irregular words and “exceptions to the rule”.

Researchers have proposed that between English and German dyslexic children
with the same underlying phonological processing deficit, the English children
show more severe reading impairment because of differences in orthographic con-
sistency [27]. Mann and Wimmer [28] assessed readers in English and German at
the end of kindergarten, and regression analyses showed that the only significant
predictor of reading accuracy and speed in English was phonological awareness.
Initial studies in German children found few problems with accuracy after the first
year of instruction in contrast to English-based research and led to a German-
English dyslexia comparison [27]. However, the reading fluency deficit of German
dyslexic readers (found for all types of reading tasks) was found to be highly
persistent [29] and hard to remediate [30].

Extensive research with German and Italian dyslexic children found reduced
reading fluency as the main dyslexic impairment [6, 31]. Impairment on tasks that
require implicit phonological processing, such as those evaluating verbal short-term
memory, has been identified most clearly in transparent orthographies such as
Italian and German [32]. Italian is a relatively shallow orthography, characterized
by a high consistency of grapheme-phoneme correspondences and a simple syllabic
structure. Also there are few irregular words and non-homographic homophones
[15]. In spite of this regular orthography, Italian children with Developmental
Dyslexia still present with a relevant difficulty which is primarily a deficit in read-
ing speed [33] markedly affected by stimulus length [34]. Tobia and Marzocchi
worked to define the cognitive profile of Italian children with Developmental Dys-
lexia. They found that 43.7% of children with DD had a profile that included deficits
in both verbal and nonverbal domains. Some measures (visual search, syllable
blending, and syllable deletion) were not significantly different among the three
groups: dyslexic children, typically developing children of the same age (CA) and a
control group of younger children equated for reading ability. Phoneme blending
was the only variable that showed a large effect size [35].

The viability of accuracy/fluency-based typology of reading impairments has
been investigated in Hebrew by Shany and Share [2]. Using a full battery of behav-
ioral assessments including “pointed texts” (with all diacritical vowel markings
included) and “unpointed texts” (with partial vowel markings included), these
researchers found clear processing differences between the performances of stu-
dents identified as rate-disabled and those identified as accuracy-disabled. Espe-
cially for word reading, the doubly-disabled subgroup of students was the most
severely incapacitated with the lowest accuracy and reading rates.

The Korean handwriting system is an “alpha-syllabic” orthography, called Han-
gul. There are 24 graphemes, 14 are consonants and 10 are basic vowels. Hangul
graphemes consistently represent sounds with a one-to-one correspondence and are
combined in a limited number of patterns [36]. In a study using Hangul, researchers
investigated the association of RAN and regular/irregular words in 4- and 5-year-
old Korean children and found that RAN was uniquely associated with reading
ability of both regular and irregular words [37]. Other research examined the
cognitive abilities that predict reading and spelling performance in Korean children
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in Grades 1–4. Park and Uno [36] found that the contribution of phonological
awareness to Hangul reading accuracy appears to occur only during the first 2 years
of schooling, and RAN speed significantly predicted word-reading accuracy only in
Grade 1. Further, the results of path analysis revealed that receptive vocabulary
contributed exclusively and substantially to Hangul word-reading accuracy in
Grades 1–4. This is unusual in light of the accepted idea that vocabulary plays a
more important role in reading in less consistent orthographies [17]. Park and Uno
argue that these results may be due to characteristics of the Hangul writing system
that support the decoding of two-syllable words based on partial decoding and
knowledge of the phonological and lexical aspects of a known, corresponding spo-
ken word. In this case, the strategies needed to read accurately and with speed in
Hangul differ with expertise and reading experience. A recent cross-language
investigation measured reading performance (both reading accuracy and fluency),
phonological short-term memory, RAN, receptive vocabulary and non-verbal intel-
ligence in grade 2 children in five European countries (Finland, France, Hungary,
Netherlands, and Portugal). While it is often proposed that extensive familiarity
with the words of a language affects reading performance, the results here suggest
that vocabulary was not a unique predictor of reading accuracy and fluency in these
languages, except for Finnish [38].

In conclusion, phonological awareness represents the main predictive factor
in normal and disabled readers of different languages. However, it may be less
relevant in consistent orthographies, especially for reading accuracy where
language –specific patterns appear to exist [39]. Research in German [40], Dutch
[41], Norwegian [42], Italian [33], Greek [43], Finnish [44], Hungarian [45], and
Hebrew [46], shows that most dyslexics in these languages attain high levels of
reading accuracy but remain slow. It is possible that orthographies that are rela-
tively regular in their letter-sound correspondences such as the Arabic require rapid
development of the “direct access route”. Perhaps it is only with increasing practice
that improvements in efficiency lead to the reliable use of “direct access processes”.
Consequently, it is unclear whether the sub-lexical route accesses semantics after
the phonology is assembled, and it is still debated whether direct visual access can
occur without phonological mediation [47]. See Table 1 for a time-ordered sum-
mary of the international studies cited regarding phonological processing.

Researchers National
origin of
subjects

Year Subjects- age or
grade

Major findings

Wimmer Germany 1993 Grades 2, 3, 4 German dyslexics attain high
levels of reading accuracy but
remain slow in processing speed.

Yap, Van der
Leij

Netherlands 1993 Mean age: 10.2 years Dutch dyslexics attain high levels
of reading accuracy but remain
slow in processing speed.

Bjaalid, Hoien,
Lundberg

Norway 1996 Grade 3 Norwegian dyslexics attain high
levels of reading accuracy but
remain slow in processing speed.

Breznitz Israel 1997 Normal mean age:
6.9 years; Dyslexic:
9.1 years

Hebrew dyslexics attain high
levels of reading accuracy but
remain slow in processing speed.

Landerl,
Wimmer, Frith

Germany,
England

1997 8 year olds English children seem more
impaired because of orthographic
differences; German children had
few problems with accuracy after
the first year of instruction.
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included) and “unpointed texts” (with partial vowel markings included), these
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graphemes consistently represent sounds with a one-to-one correspondence and are
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old Korean children and found that RAN was uniquely associated with reading
ability of both regular and irregular words [37]. Other research examined the
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in Grades 1–4. Park and Uno [36] found that the contribution of phonological
awareness to Hangul reading accuracy appears to occur only during the first 2 years
of schooling, and RAN speed significantly predicted word-reading accuracy only in
Grade 1. Further, the results of path analysis revealed that receptive vocabulary
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Grades 1–4. This is unusual in light of the accepted idea that vocabulary plays a
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argue that these results may be due to characteristics of the Hangul writing system
that support the decoding of two-syllable words based on partial decoding and
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ligence in grade 2 children in five European countries (Finland, France, Hungary,
Netherlands, and Portugal). While it is often proposed that extensive familiarity
with the words of a language affects reading performance, the results here suggest
that vocabulary was not a unique predictor of reading accuracy and fluency in these
languages, except for Finnish [38].

In conclusion, phonological awareness represents the main predictive factor
in normal and disabled readers of different languages. However, it may be less
relevant in consistent orthographies, especially for reading accuracy where
language –specific patterns appear to exist [39]. Research in German [40], Dutch
[41], Norwegian [42], Italian [33], Greek [43], Finnish [44], Hungarian [45], and
Hebrew [46], shows that most dyslexics in these languages attain high levels of
reading accuracy but remain slow. It is possible that orthographies that are rela-
tively regular in their letter-sound correspondences such as the Arabic require rapid
development of the “direct access route”. Perhaps it is only with increasing practice
that improvements in efficiency lead to the reliable use of “direct access processes”.
Consequently, it is unclear whether the sub-lexical route accesses semantics after
the phonology is assembled, and it is still debated whether direct visual access can
occur without phonological mediation [47]. See Table 1 for a time-ordered sum-
mary of the international studies cited regarding phonological processing.
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Researchers National
origin of
subjects

Year Subjects- age or
grade

Major findings

Wimmer,
Mayringer,
Landerl

Germany, Italy 1998 Beginning Gr. 1 and
End Gr. 2

Impairment on verbal short-term
memory has been identified most
clearly in transparent
orthographies.

Porpodas Greece 1999 Grade 1 Greek dyslexics attain high levels
of reading accuracy but remain
slow in processing speed.

Zoccolotti, De
Luca, Di Pace,
Judica, Orlandi,
et al.

Italy 1999 11–15 years old Italian children with DD
demonstrate primarily a deficit in
reading speed.

De Luca,
Borrelli, Judica,
Spinelli,
Zoccolotti

Germany, Italy 2002 11–16 years old Reduced reading fluency is the
main impairment in German and
Italian dyslexic children.

Mann, Wimmer Germany,
England

2002 End of Kindergarten Phonological awareness was the
only significant predictor of
reading accuracy and speed in
English students.

Hutzler,
Wimmer

Germany, Italy 2004 13 yr. olds Reduced reading fluency is the
main impairment in German and
Italian dyslexic children.

Thaler, Ebner,
Wimmer,
Landerl

Germany 2004 8–11 years old Reading fluency deficit in German
Dyslexic readers is hard to
remediate.

Zoccolotti, De
Luca, Di Pace,
Gasperini,
Judica, et al.

Italy 2005 Grades 1, 2, 3 Reading speed deficits in Italian
children with DD are markedly
affected by stimulus length.

Puolakanaho,
Ahonen, Aro,
Eklund,
Leppanen, et al.

Finland 2007 3.5, 4.5, and 5.5 years
old

Finnish dyslexics attain high levels
of reading accuracy but remain
slow in processing speed.

Cho, Mcbride-
Chang, Park

Korea 2008 4 and 5 yr. olds RAN was uniquely associated with
reading ability of both regular and
irregular words.

Georgiou,
Parrila,
Papadopoulos

2008 Grades 1 and 2 Phonological awareness may be
less relevant in consistent
orthographies.

Landerl,
Wimmer

Germany 2008 Gr. 1, 4, 8 Reading fluency deficit in German
dyslexic readers is highly
persistent.

Vaessen,
Blomert

Netherlands 2010 Grade 1–6 RAN contributed uniquely and
substantially to word reading
fluency.

Ziegler,
Bertrand, Tóth,
Csépe, Reis,
et al.

Finland,
France,
Hungary,
Portugal,
Netherlands

2010 Grade 2 Vocabulary was not a significant
predictor of reading accuracy and
fluency in these languages, except
for Finnish.
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4. A review of international studies and visual processing

An interesting element of learning to read in a regular orthography is the relative
ease of attaining high levels of accuracy. Correct reading in transparent orthogra-
phies is already at ceiling level after the first year of formal instruction [5, 17]. The
advantage of regular orthography was further documented in studies comparing a
substantial number of regular European writing systems with English [5, 48]. Due
to the transparency of the language system, visual processing deficits are often
found to contribute to dyslexia. In a Norwegian study, Talcott et al. demonstrated
the presence of visual processing deficits characteristic of poor readers in a sample
of poor readers [49]. Finnish is one of the most regular alphabetic orthographies
and dyslexia primarily means slow dysfluent reading, however a major dysfunction
of the occipito-temporal reading circuit is suggested by a series of MEG studies with
Finnish dyslexic adults [50]. A dysfunction of left occipito-temporal reading areas
was also found in the cross-linguistic PET study by Paulesu et al. [51] which
included dyslexic adult readers from the regular Italian orthography and from less
regular orthographies of French and English. There is also a good deal of evidence
that children with Developmental Dyslexia also experience difficulties in visuo-
attentional tasks [52], such as visual search [53], visual recognition [54], and low-
level (occurring within the first 300 milliseconds of visual analysis) visual informa-
tion processing [55]. Thai researchers examined the performance of good and poor
10 year-old Thai readers on visual processing and reading accuracy tests and found

Researchers National
origin of
subjects

Year Subjects- age or
grade

Major findings

Shany, Share Israel 2011 Grades 2, 4, 6 There are processing differences
between rate-disabled and
accuracy-disabled readers; the
doubly-disabled readers had the
lowest accuracy and reading rates.

Sprenger-
Charolles

France, Spain,
England

2011 7 yr. olds French dyslexics were weak in
word reading when both accuracy
and speed were measured.

Csépe,
Honbolygó,
Paavo,
Leppänen

Hungary 2012 Grades 2–4 Hungarian dyslexics attain high
levels of reading accuracy but
remain slow in processing speed.

Tobia,
Marzocchi

Italy 2014 DD grp. Mean age:
9.76 years; Control
grp. 9.82 years; RA
grp. 7.38 years

Results show that 43.7% of Italian
children with DD showed deficits
in both verbal and nonverbal
domains; phoneme blending was
the only variable that predicted
reading disability.

Park, Uno Korea 2015 Grades 1–4 RAN speed significantly predicted
word-reading accuracy only in
Grade 1; receptive vocabulary
contributed exclusively and
significantly to word reading
accuracy.

Table 1.
International studies of phonological processing in time order.

95

The Neurobiological Development of Reading Fluency
DOI: http://dx.doi.org/10.5772/intechopen.82806



Researchers National
origin of
subjects

Year Subjects- age or
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4. A review of international studies and visual processing
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phies is already at ceiling level after the first year of formal instruction [5, 17]. The
advantage of regular orthography was further documented in studies comparing a
substantial number of regular European writing systems with English [5, 48]. Due
to the transparency of the language system, visual processing deficits are often
found to contribute to dyslexia. In a Norwegian study, Talcott et al. demonstrated
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that children with Developmental Dyslexia also experience difficulties in visuo-
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Researchers National
origin of
subjects

Year Subjects- age or
grade

Major findings
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England
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Csépe,
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Table 1.
International studies of phonological processing in time order.
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a difference between the good and poor Thai readers in their performance on visual
processing tests [56].

Schiff et al., [57] examined the effects of orthographic transparency on the
reading ability of fourth-grade children with dyslexia on two Hebrew scripts. In
addition to documenting reading accuracy and speed, this study also investigated
the role of vowelization in the reading ability of un-vowelized script among readers
with dyslexia. These results showed that fourth-grade children with dyslexia read
the vowelized script with less accuracy than that found in typically developing
second-graders. Also, the children with dyslexia demonstrated no significant dif-
ferences in the reading accuracy or speed between the vowelized and unvowelized
scripts. However, for these readers with dyslexia, accuracy in reading both vowel-
ized and un-vowelized words mediated the reading speed of un-vowelized scripts.
These findings underscore the idea that if grapheme-phoneme conversion skills are
flawed in Hebrew children with dyslexia, they are unable to use the vowelized
script as a self-teaching mechanism for acquiring an autonomous orthographic
lexicon that would enable future word recognition.

The hypothesis of poor phonological-orthographic integration suggests impaired
neural connectivity between regions engaged by orthographic processes and regions
engaged in phonological processes [58]. There are first reports suggesting abnor-
malities of the left-hemisphere tracts that connect occipito-temporal brain regions
engaged by visual-orthographic processes with temporo-parietal and the left infe-
rior frontal areas engaged by phonological processes [59]. Functional imaging find-
ings- some with German dyslexic readers -show reduced reading related activation
in a left ventral occipito-temporal brain region, which is assumed to function as an
interface between high-level visual orthographic codes and phonology and mean-
ing. As expected, dysfluent readers exhibited underactivation of the left occipito-
temporal region of interest-ROI (engaged by fast word processing) and increased
activation of the left inferior frontal ROI (engaged by phonological decoding) [60].
Voxel-based analysis showed that for fluent readers, extended activations were
found in the left temporal cortex mainly along the superior temporal sulcus and in
left inferior frontal and precentral regions. The left temporal activation extended
into the supramarginal gyrus and inferior occipito-temporal cortex. More issues
regarding neural connectivity will be investigated in depth later.

A fascinating example of an opaque and complex orthographic system used in
India is found in the Urdu language system. There are 38 letters with no vowel
letters, and diacritics, which serve as vowel markings in its script, are omitted. The
graphemic system called Nastaliq is cursive, and is characterized by many to one
mappings between graphic symbols and sounds. Further, the same letter is written
differently in different positions in a word, [61] greatly increasing the possible
variations of each letter. Most Indian children speak Punjabi as their first language,
but Urdu is the national language and the language of the media. It is the medium of
instruction at schools, and another first language for some children, depending on
the social class. In all Pakistani schools, English is taught and evaluated as a com-
pulsory subject from grade 1, but in Urdu medium schools, all subjects are taught in
Urdu, and English is taught as a subject, and in English medium schools, all subjects
are taught in English, and Urdu is taught as a subject. There are clearly differences
in the instruction and informal practice of reading and writing the Urdu language in
different settings. For both the control group and the reading disability group, both
RAN letters and RAN digits significantly predicted fluency with RAN letters being
the stronger predictor. For the control group, non-word reading was the most
significant predictor of accuracy and RAN letters was the other significant predic-
tor. For the reading disability group, only RAN letters predicted accuracy [61]. So
even in a visually complicated, reading-in-a-second (or third) language, rapid
naming is shown to be an important predictor of reading accuracy. However, the
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most compelling issue regarding fluency around the world may be that in spite of
different orthographies and language regularities, commonly-used instructional
interventions still do not result in lasting remediation for the majority of this
population. See Table 2 for a time-ordered summary of the international studies
cited regarding orthographic processing.

Researchers National origin of subjects Year Subjects Major Findings

Slaghuis,
Lovegrove

Australia 1987 13 year
olds

Children with DD show
difficulties with low-level visual
information processing.

Eden, Vanmeter,
Rumsey, Maisog,
Woods, et al.

United States 1996 Adult
men

Men with DD show difficulties
with visuo-attentional tasks.

Paulesu,
Demonet, Fazio,
Mccrory,
Chanoine, et al.

England, France, Italy 2001 Dyslexic
adults

In a cross-linguistic PET study, a
dysfunction of left occipito-
temporal reading areas was
found.

Seymour, Aro,
Erskine

Denmark, England, Finland,
France, Germany, Greece,
Iceland, Italy, Netherlands,
Norway, Portugal, Spain,
Sweden

2003 6, 7, 8,
yr. olds

Reading accuracy in transparent
orthographies is at ceiling level
after the first year of instruction.

Talcott, Gram,
van Ingelghem,
Witton, Stein,
et al.

Norway 2003 12, 13,
14 yr.
olds

Visual processing deficits were
characteristic of poor readers.

Kim, Davis,
Burnham,
Luksaneeyanawin

Thailand 2004 10-year
old
children

There is a difference in good and
poor Thai readers in their
performance on visual processing
tests.

Salmelin,
Helenius

Finland 2004 Dyslexic
adults

MEG studies reveal a major
dysfunction of the occipito-
temporal reading circuit

Deutsch,
Dougherty,
Bammer, Siok,
Gabrieli, et al.

United States 2005 7–
13 year
olds

First reports suggesting
abnormalities of the left-
hemisphere tracts that connect
occipito-temporal brain regions
with temporo-parietal and left
inferior frontal areas.

Kronbichler,
Hutzler, Staffen,
Mair, Ladurner,
et al.

Germany 2006 14–
16 year
olds

Dysfluent readers showed
underactivation of the left
occipito-temporal region and
increased activation in a left
inferior frontal region.

Geiger, Cattaneo,
Galli, Pozzoli,
Lorusso, et al.

Italy 2008 9–
13 year
olds

Children with DD show
difficulties with visual
recognition.

Vidyasagar,
Pammer

Australia 2010 7–
12 year
olds

Children with DD show
difficulties with visual search.

Schiff, Katzir,
Shoshan

Israel 2013 Grade 4 There were no significant
differences in reading accuracy or
speed in dyslexic readers
regardless of the text (vowelized
or un-vowelized).

Table 2.
International studies of orthographic processing in time order.
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5. The development of fluency in English

The American focus on the development of reading proficiency has been far-
ranging and often perplexing, perhaps due to the intricacies of the English language.
It has been considered that the cognitive processes underpinning reading ability
may be differently involved in producing the symptoms of Developmental Dys-
lexia, depending on orthographic transparency [29]. Converging data from a vari-
ety of neurobiological investigations, but especially from functional magnetic
resonance imaging, support the current belief that there are differences in the
temporo-parieto-occipital brain regions between dyslexic and nonimpaired readers.
Goswami [62] found that analysis of results from different technologies, including
PET, fMRI, MEG, and EEG using different research questions, consistently show
that children with Developmental Dyslexia display hypoactivation of crucial parts
of the network of areas involved in word recognition and an atypical pattern of
continuing right hemisphere involvement.

The neurobiological origins of fluency can actually be seen in the early work of
physiologist, Donald Hebb. In 1950, he proposed the concept of unitization when he
observed patterns of cells in the visual cortex activating together after multiple
exposures to novel visual stimuli [63]. LaBerge and Samuels went on to apply this
idea to more complex visual levels such as familiar letter patterns, and in other
modalities such as phonological representations. They focused on the automaticity
of processing that decreases response time in learning and reading and is believed to
increase the neurological resources allocated to comprehension [64]. American
educators have historically used fluency as a measure of reading performance and a
precursor of superior comprehension, but continue to fail in developing instruc-
tional exercises that improve reading speed, especially for those with specific read-
ing disabilities. The expectation is that students will read fluently as a function of
age and experience. Oral reading inventories and running records of reading per-
formance commonly measure fluency as the rate and accuracy of oral reading and
ignore the other aspects of fluency, particularly the contributions of lower level
subskills: graphological features of letters, orthographic regularities of letter combi-
nations, the semantic features of words, and the semantic-syntactic constraints of
word sequences.

Ultimately, Kame’enui, Simmons, Good, and Harn suggested a developmental
conceptualization of fluency that included the building of proficiency in founda-
tional component skills of reading, effectively merging the influences of skill devel-
opment with processing speed and accuracy into a continuum of reading
proficiency [65]. It is this continuum that Wolf and Katzir-Cohen refer to in their
comprehensive definition of fluency:

“In its beginnings, reading fluency is the product of the initial development of
accuracy and the subsequent development of automaticity in underlying sublexical
process, lexical processes, and their integration in single-word reading and
connected text. These include perceptual, phonological, orthographic, and mor-
phological processes at the letter, letter-pattern, and word levels, as well as semantic
and syntactic processes at the word level and the connected text level. After it is
fully developed, reading fluency refers to a level of accuracy and rate where
decoding is relatively effortless; where oral reading is smooth and accurate with
correct prosody; and where attention can be allocated to comprehension.” [66]

Since the development of fluency is founded in every process and skill used in
reading, Kame’enui [67] advises that it also requires an increase in proficiency and
speed in every underlying component. It seems obvious that failure to acquire these
processes and skills would result in critical and persistent reading disabilities.
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Researchers have been diligent to identify the progressive neurodevelopment of
those underlying processes. It is clear that Frith’s 1997 phonological deficit hypoth-
esis which suggests that Developmental Dyslexia results from an underlying pho-
nological impairment, and accounts for a wide range of behavioral symptoms
associated with dyslexia, especially lexical retrieval and verbal short-term memory,
has been thoroughly validated [68].

Further, the issue of general intellectual ability has been explored with regard to
phonological processing. Although the 2004 reauthorization of the U.S.’s Individ-
uals with Disabilities Act mandates that states can no longer require school districts
to use IQ tests to identify individuals with learning disabilities [69], the majority of
schools and school psychologists still rely on the discrepancy between reading
achievement and IQ to define dyslexia [70]: requiring that reading skill should be
significantly below the level expected given an individual’s IQ. Tanaka et al. used
fMRI, univariate, and multivariate pattern analysis to observe whether differences
in brain activation during phonological processing that are characteristic of readers
with dyslexia were the same or different in dyslexic children with poor reading
ability who had high IQ scores (discrepant readers) and in dyslexic children with
poor reading ability who had low IQ scores (non-discrepant readers) as compared
to the phonological processing of typically developing readers [71]. The results
show that discrepant and non-discrepant poor readers exhibited similar patterns of
reduced activation in brain areas such as left parieto-temporal and occipito-
temporal regions; there were no reliable functional brain differences between the
two types of poor readers. The validity of the discrepancy definition of dyslexia is
called into question. Even though the discrepancy criterion may be intuitively
appealing, its strict application would deprive non-discrepant children of the edu-
cational interventions that could promote their advancement in reading.

American researchers have also found distinctions in the use of RAN for identi-
fying impaired processing. Using multi-variant analysis of the results of a battery of
reading skills measures of 123 dyslexic 2nd and 3rd graders, Katzir et al. found that
rapid naming, orthographic pattern recognition, and word reading fluency moder-
ately predicted rate, accuracy, and comprehension of connected-text reading, while
phonological awareness contributed only to the comprehension dimension of
connected-text reading [72]. The unanticipated result that rapid naming was more
related to reading speed than phonological awareness may help explain the limited
success of phonology-based reading intervention programs for achieving improve-
ments in fluency and comprehension.

6. Intervention studies impacting English

Researchers in the U.S. have also investigated the effects of focused instruction
and other interventions. Several post-intervention studies show different patterns
of activation in the reading networks, evidence of the strength of experimental
results in suggesting effective neurobiologically-based remedial instructional prac-
tices. Shaywitz et al. found increased LH activation of the inferior frontal gyrus
(IFG) and the middle temporal gyrus only in children with the characteristics of
dyslexia who participated in daily tutoring of the alphabetic principle and phono-
logical processing and not in those children who participated in a variety of com-
mon reading interventions exclusive of explicit phonology [73]. Their longitudinal
data also indicated a continuation of correct activation patterns 1 year past,
suggesting the durable nature of the processing change. Similarly, Simos, Breier,
Fletcher, Bergman, and Papanicolaou using MSI found that after 80 hours of
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logical processing and not in those children who participated in a variety of com-
mon reading interventions exclusive of explicit phonology [73]. Their longitudinal
data also indicated a continuation of correct activation patterns 1 year past,
suggesting the durable nature of the processing change. Similarly, Simos, Breier,
Fletcher, Bergman, and Papanicolaou using MSI found that after 80 hours of
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intensive phonological intervention, dyslexic children showed a dramatic increase
in the activation of left temporo-parietal regions, predominately in the left posterior
superior temporal gyrus (STG), the network that supports grapheme-phoneme
recoding in typical developing readers. However, even after intervention, neural
activity was delayed in the dyslexic children relative to the controls (837 ms on
average for dyslexics and 600 ms for controls), indicating that even with intensive
phonological remediation, dyslexic children are slower to achieve the same reading
fluency shown by non-dyslexic children. Further, high-risk children, who were
nonresponsive to the phonological remediation package that was being offered,
were distinct in showing earlier onset of activity in IFG compared to the temporo-
parietal regions [74]. This would indicate a persistent processing anomaly that
influences ineffective decoding as well as decreased processing speed.

However, it is the work of Dutch and Italian researchers that provided the
foundation for a fluency intervention that appears to address the processing anom-
alies that are prevalent in American dyslexics. Employing the commonly accepted
differences in the hemispheric contributions in learning to read, Bakker and Vinke
identified Dutch children with dyslexia as L-dyslexics or P-dyslexics based on oral
reading error analysis, the distribution of brain responses, and other behavioral
measures [75]. They proposed that L-dyslexics are insensitive to the perceptual
features of text because they predominately developed left hemisphere strategies
from the very onset of learning to read. Behaviorally, L-dyslexics exhibit a hurried
and inaccurate style of reading with many word substitution errors. Conversely,
P-dyslexics are overly sensitive to perceptual features of the text because they
began the learning-to-read process in the right hemisphere, but never advanced
from there. These P-dyslexics read slowly with a fragmented style. Bakker and
Vinke hypothesized that since L-type dyslexics had trouble using right hemispheric
strategies during reading, they might profit from specific stimulation of the right
hemisphere and the opposite for P-dyslexics: they had not naturally shifted to left
hemisphere processing and so would benefit from specific stimulation of the left
hemisphere [75].

As a general rule, specific stimulation of a hemisphere (HSS) can be achieved by
the lateral presentation of a stimulus (reading material) in the left visual field or to
the fingers of the left hand in L-dyslexics, and in the right visual field or to the
fingers of the right hand in P-dyslexics. Bakker and Vinke actually treated the
children with a wooden tactile training box, in which the child would place their
target arm through a hole in the side and manipulate plastic letters in grooves out of
sight. L-type children were given regularly-formed concrete words to configure and
trace with their left hand, to stimulate the right hemisphere. P-type children were
given difficult-to-visualize abstract words to configure and trace with their right
hand, to stimulate the left hemisphere. The results indicated that P-dyslexics
showed a decrease in sound/symbol errors on both word and text reading, while
L-dyslexics decreased substantive errors only on text reading [75]. In spite of
several limitations in their methodology and intervention, the positive effects of
even motor stimulation to the less activated hemisphere on reading performance are
encouraging. Further, these findings imply that the dyslexia sub-typing procedures
appear to be valid techniques for matching reading interventions to brain
processing systems.

Based on the potency of these theoretical and neurobiological foundations,
Lorusso, Facoetti, Paganoni, Pezzani, and Molteni achieved much stronger results
in a study of Italian impaired readers employing computer technology. These
researchers implemented the sub-typing of dyslexic students used by Bakker and
Vinke, and added M- type dyslexia: a mixed type demonstrating both slow and
inaccurate reading, indicating impaired processing in both hemispheres [76]. Their
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new technology included a modified version of a computerized system for visual
hemisphere-specific stimulation (VHSS), “FlashWord” [77]. After 1440 minutes
(24 h) of intervention, Lorusso et al. applied only behavioral measures and found
that all students with the characteristics of dyslexia, regardless of their sub-type,
improved not only in accuracy and fluency as compared to non-impaired controls,
but also showed gains in spelling, memory, and general processing speed. Further,
the dyslexic students gained 0.33 syllables / second more in reading speed over the
same period of time than their non-impaired controls [76]. These extraordinary
results suggest that requiring very fast processing of the presented visual stimuli in
a targeted brain hemisphere may produce a greater degree of automatisation of the
component processes. It is this automatisation of the underlying lexical and
sublexical processes that Wolfe and Katzir-Cohen validate as critical influences on
fluent reading of connected text in their comprehensive definition of fluency [66].

7. VHSS intervention in English

Subsequent research using FlashWord in English with American students has
built on the successes in Dutch and Italian. Koen et al. used fMRI technology to
localize brain activity before and after VHSS training in students who qualified with
the characteristics of developmental dyslexia. This research was designed to test the
hypothesis that subtyping students with the characteristics of dyslexia based on
their reading behaviors as Bakker proposed, and administering VHSS intervention
based on those subtypes (FlashWord-modified and in English), would improve
fluency performance across dyslexia sub-types more effectively than other cur-
rently used reading fluency programs. Secondarily, the location and level of activa-
tion differences from pre-intervention and post-intervention scans were analyzed
for evidence of developing automaticity in regions of interest [78].

FlashWord, Ver. 2.2, written by Franco Fabbro and Cristina Masutto (copyright,
1995–2004 by Editrice TecnoScuola) is a computer program that uses a game-
format to present words or phrases in the right or left visual hemi-field at increas-
ingly rapid rates. According to their dyslexia sub-type, each student sees the words
(or phrases) projected on either the right or left side of the computer screen,
stimulating either the right or left visual field and the opposite brain hemisphere.
Ocular fixation is confirmed by directing the child to watch a luminous dot oscil-
lating up and down on the screen at an adjustable speed. A word is revealed only
when the child clicks the mouse exactly when the dot is crossing the central target.
This ensures visual attention to the stimulus. The child’s task is to read the words as
they are flashed on the screen in ever shortening durations. Reading rates of 250–
100 ms for single words are generally considered to reflect “emerging fluency” [75].
For this study, students repeated all of the lessons in their assigned program (34 for
the LH program and 27 for the RH program) at their own speed, matching the
Italian students in total time spent: 1440 minutes (or 24 hours) total.

This fMRI experiment used a mixed design, in that the events of interest (Word
Pair analysis) are randomized with perceptual controls (Letter Match analysis) to
provide robust event-related activation maps and estimates of hemodynamic
response. The Letter Match task demands that the child decide whether two letter
strings (e.g., szpy and sxpy), printed in all black letters and shown simultaneously
one above the other, match exactly. The length of the letter strings is comparable to
the length of the pseudo-words used in the phonological analysis task. As this is the
control task, attention to all letter positions is necessary but the assignment of
speech sounds to letters is not. For the phonological analysis task, the Word Pairs
were two decodable non-words printed in black, also presented visually, one above
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hand, to stimulate the left hemisphere. The results indicated that P-dyslexics
showed a decrease in sound/symbol errors on both word and text reading, while
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several limitations in their methodology and intervention, the positive effects of
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encouraging. Further, these findings imply that the dyslexia sub-typing procedures
appear to be valid techniques for matching reading interventions to brain
processing systems.

Based on the potency of these theoretical and neurobiological foundations,
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in a study of Italian impaired readers employing computer technology. These
researchers implemented the sub-typing of dyslexic students used by Bakker and
Vinke, and added M- type dyslexia: a mixed type demonstrating both slow and
inaccurate reading, indicating impaired processing in both hemispheres [76]. Their
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new technology included a modified version of a computerized system for visual
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improved not only in accuracy and fluency as compared to non-impaired controls,
but also showed gains in spelling, memory, and general processing speed. Further,
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results suggest that requiring very fast processing of the presented visual stimuli in
a targeted brain hemisphere may produce a greater degree of automatisation of the
component processes. It is this automatisation of the underlying lexical and
sublexical processes that Wolfe and Katzir-Cohen validate as critical influences on
fluent reading of connected text in their comprehensive definition of fluency [66].

7. VHSS intervention in English

Subsequent research using FlashWord in English with American students has
built on the successes in Dutch and Italian. Koen et al. used fMRI technology to
localize brain activity before and after VHSS training in students who qualified with
the characteristics of developmental dyslexia. This research was designed to test the
hypothesis that subtyping students with the characteristics of dyslexia based on
their reading behaviors as Bakker proposed, and administering VHSS intervention
based on those subtypes (FlashWord-modified and in English), would improve
fluency performance across dyslexia sub-types more effectively than other cur-
rently used reading fluency programs. Secondarily, the location and level of activa-
tion differences from pre-intervention and post-intervention scans were analyzed
for evidence of developing automaticity in regions of interest [78].

FlashWord, Ver. 2.2, written by Franco Fabbro and Cristina Masutto (copyright,
1995–2004 by Editrice TecnoScuola) is a computer program that uses a game-
format to present words or phrases in the right or left visual hemi-field at increas-
ingly rapid rates. According to their dyslexia sub-type, each student sees the words
(or phrases) projected on either the right or left side of the computer screen,
stimulating either the right or left visual field and the opposite brain hemisphere.
Ocular fixation is confirmed by directing the child to watch a luminous dot oscil-
lating up and down on the screen at an adjustable speed. A word is revealed only
when the child clicks the mouse exactly when the dot is crossing the central target.
This ensures visual attention to the stimulus. The child’s task is to read the words as
they are flashed on the screen in ever shortening durations. Reading rates of 250–
100 ms for single words are generally considered to reflect “emerging fluency” [75].
For this study, students repeated all of the lessons in their assigned program (34 for
the LH program and 27 for the RH program) at their own speed, matching the
Italian students in total time spent: 1440 minutes (or 24 hours) total.

This fMRI experiment used a mixed design, in that the events of interest (Word
Pair analysis) are randomized with perceptual controls (Letter Match analysis) to
provide robust event-related activation maps and estimates of hemodynamic
response. The Letter Match task demands that the child decide whether two letter
strings (e.g., szpy and sxpy), printed in all black letters and shown simultaneously
one above the other, match exactly. The length of the letter strings is comparable to
the length of the pseudo-words used in the phonological analysis task. As this is the
control task, attention to all letter positions is necessary but the assignment of
speech sounds to letters is not. For the phonological analysis task, the Word Pairs
were two decodable non-words printed in black, also presented visually, one above
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the other. Each word contained a letter, or group of letters, printed in pink. The
child was instructed to press the button “Yes”, if the pink letter(s) in the top word
could stand for the same sound as the pink letter(s) in the bottom word, and to
press a different button “No”, if the pink letters represent different sounds.

Among other statistical procedures, the results of 1440 minutes of intervention
measured in milliseconds and representing a change in speed of processing was used
as a measure of achieved fluency in the Intervention group only. This sub-grouping
was necessary because three individuals in the Intervention group did not achieve
fluent processing with the FastWord program. This evidence of processing change
was analyzed by means of a two-way mixed design ANOVA having two levels of
reading fluency scores (pre- and post-intervention) as a within-subjects factor and
two levels of fluency: those students (N = 6) who reached levels of emerging
fluency, 100 ms or less, and those (N = 3) who did not, as a between-subjects factor.
The between-subjects main effect of the fluency rate achieved during intervention
was significant, F(1,8) = 5.38, p = .05, indicating significant differences between the
students who achieved fluent processing and those who did not [78].

The fMRI results were remarkable for their corroboration of brain activations
found during tasks requiring phoneme analysis. This analysis focused on three
Regions of Interest (ROIs) within the core sub-systems supporting the processing of
written language in normal readers: the left hemisphere (LH) superior temporal
gyrus (STG) in the inferior parietal lobule within the temporoparietal system asso-
ciated with word meaning; the posterior aspect of the inferior frontal gyrus (IFG)
within the anterior system associated with sound/symbol associations; and the LH
inferior occipito-temporal/fusiform area (VWFA) within the ventral system asso-
ciated with quick recall of high frequency words first documented by Shaywitz et al.
[73]. It was hypothesized that achieving fluency in reading will involve automaticity
within each of these ROIs and that the brain activation maps of phonological
processing of Word Pairs greater than perceptual control of Letter Match condition
would show changes in activation patterns. Through comparisons of pre-
intervention processing and post-intervention processing, there are clearly subjects
who demonstrate much more focused activation bilaterally in the temporal regions
around the STG and Postcentral Gyrus with very little activation in the visual word
form area (VWFA) in the LH occipital lobe, and others who show an increase in left
hemisphere activation around the IFG and VWFA [78].

Using a clustering threshold of five voxels, a sample of the activation locations
were found post-intervention in the condition of Word Pairs over Letter Match in a
fluent subject. Table 3 contains a partial list of left hemisphere only activation sites,
noting the location, relative size, and maximum recorded t-score.

These data confirm some anticipated activation areas with sizeable groups of
voxels contributing and some remarkable lack of activation within the ROIs studied.
The largest activated cluster in the IFG ROI is the Inferior Frontal Gyrus (1.52), but
activation in the STG (3.10), and Brodmann areas 41 (3.17) and 42 (3.94) is much
stronger. This could indicate that most of the processing in this region involved
sound/symbol associations with support in the primary and auditory association
cortex. The weak activation in the IFG, which supports the encoding of phonolog-
ical features, could mean that less effort was required to accomplish the phonolog-
ical analysis task by this subject.

The largest activated cluster in the STG ROI is the STG (2.56), but again, other
areas show stronger levels of stimulation. The Postcentral Gyrus activation (3.87) is
odd in that this area is the primary somatosensory cortex receiving all sensory
input, especially touch. However, except for the pressing of the response button,
there was no variation in the motor demands of the scanner task that would explain
activation in this area. The activation found in Brodmann areas 13 (3.08) and 40

102

Neurodevelopment and Neurodevelopmental Disorder

(3.16) makes sense in that area 40 is part of Wernicke’s Gyrus where sound/symbol
associations are refined and area 13 is a bridge between lateral and medial layers.
The Postcentral activation could be evidence of compensatory systems being used
for phonological analysis in immature processing systems.

The largest activation in the VWFA ROI is found in the smallest clusters
detected. The Brodmann areas 21 (2.05) and 35 (2.01) appear to support automatic
processing through their connection to Middle Temporal Gyrus, believed to access
word meaning, and the perirhinal cortex, critical to memory. The left aspect of the
Fusiform Gyrus shows the strongest activation (3.06) as would be expected if
automatic retrieval of letter patterns was triggered [78]. So taken together, the
activation locations identified in the subjects of this study, generally follow activa-
tion patterns found in the literature. Shaywitz et al. found that activation in the left
occipito-temporal cortex increases with reading skill [79].

Even more unexpected, was the finding that only 1440 minutes of intervention
resulted in increases in the reading speed of connected text for many subjects. Since
the training mostly involved single word reading and some phrases, it was not
anticipated that the intervention would make any difference in the reading of
longer passages of connected text. However, this was found to be false. Six of the
nine students in the Intervention Group who achieved levels of automatic

Structure x y z Cluster size Max t score

ROI-IFG

LH inferior frontal gyrus �48 24 12 523 1.52

LH superior temporal gyrus �60 �28 12 352 3.10

LH Brodmann area 41 �56 �20 12 147 3.71

LH insula �36 �16 12 119 1.97

LH Brodmann area 42 �60 �20 �12 114 3.94

LH Brodmann area 13 �40 �16 12 73 1.93

LH precentral gyrus �56 �8 12 67 1.66

ROI-STG

LH superior temporal gyrus �40 �40 16 233 2.56

LH angular gyrus �52 �64 36 86 2.46

LH insula �42 �16 16 68 2.21

LH postcentral gyrus �52 �31 52 33 3.87

LH Brodmann area 13 �44 �16 16 29 3.08

LH inferior parietal lobule �52 �36 28 26 2.74

ROI-VWFA

LH sub-gyral �36 �4 �32 30 1.54

LH middle temporal gyrus �40 0 �32 19 1.42

LH Brodmann area 20 �44 �8 �32 7 1.80

LH Brodmann area 21 �40 �4 �32 5 2.05

LH Brodmann area 35 �24 �16 �32 5 2.01

LH fusiform (aal) �28 �24 �32 5 3.06

Table 3.
Post-intervention activation locations in a fluent subject.

103

The Neurobiological Development of Reading Fluency
DOI: http://dx.doi.org/10.5772/intechopen.82806



the other. Each word contained a letter, or group of letters, printed in pink. The
child was instructed to press the button “Yes”, if the pink letter(s) in the top word
could stand for the same sound as the pink letter(s) in the bottom word, and to
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fluent subject. Table 3 contains a partial list of left hemisphere only activation sites,
noting the location, relative size, and maximum recorded t-score.

These data confirm some anticipated activation areas with sizeable groups of
voxels contributing and some remarkable lack of activation within the ROIs studied.
The largest activated cluster in the IFG ROI is the Inferior Frontal Gyrus (1.52), but
activation in the STG (3.10), and Brodmann areas 41 (3.17) and 42 (3.94) is much
stronger. This could indicate that most of the processing in this region involved
sound/symbol associations with support in the primary and auditory association
cortex. The weak activation in the IFG, which supports the encoding of phonolog-
ical features, could mean that less effort was required to accomplish the phonolog-
ical analysis task by this subject.

The largest activated cluster in the STG ROI is the STG (2.56), but again, other
areas show stronger levels of stimulation. The Postcentral Gyrus activation (3.87) is
odd in that this area is the primary somatosensory cortex receiving all sensory
input, especially touch. However, except for the pressing of the response button,
there was no variation in the motor demands of the scanner task that would explain
activation in this area. The activation found in Brodmann areas 13 (3.08) and 40
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(3.16) makes sense in that area 40 is part of Wernicke’s Gyrus where sound/symbol
associations are refined and area 13 is a bridge between lateral and medial layers.
The Postcentral activation could be evidence of compensatory systems being used
for phonological analysis in immature processing systems.

The largest activation in the VWFA ROI is found in the smallest clusters
detected. The Brodmann areas 21 (2.05) and 35 (2.01) appear to support automatic
processing through their connection to Middle Temporal Gyrus, believed to access
word meaning, and the perirhinal cortex, critical to memory. The left aspect of the
Fusiform Gyrus shows the strongest activation (3.06) as would be expected if
automatic retrieval of letter patterns was triggered [78]. So taken together, the
activation locations identified in the subjects of this study, generally follow activa-
tion patterns found in the literature. Shaywitz et al. found that activation in the left
occipito-temporal cortex increases with reading skill [79].

Even more unexpected, was the finding that only 1440 minutes of intervention
resulted in increases in the reading speed of connected text for many subjects. Since
the training mostly involved single word reading and some phrases, it was not
anticipated that the intervention would make any difference in the reading of
longer passages of connected text. However, this was found to be false. Six of the
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processing (<100 ms) in either the left- or right visual hemi-field, also increased
their reading rate by an average of 20 wpm [78]. See Table 4.

There is considerable evidence that different students responded to the inter-
vention differently. Those students who only displayed phonics-based errors in
reading connected text and worked for the entire intervention time in the LH
Program seemed to make the most substantial increases in both processing and
reading speed. Only one student who demonstrated meaning-based errors and used
the RH Program exclusively showed faster processing during intervention. The
students who displayed both types of errors and split their time between programs
made the least amount of progress; two reached fluency in the LH Program, but not
in the RH Program. It is suggested that continued work with the intervention
program could achieve the desired level of automaticity and that strengthening
processing in the right hemisphere is inherently more difficult than strengthening
the left hemisphere [78].

Wolf cautions that another source of reading disability could be an impediment
in the circuit connections among the brain structures, stressing the importance of
understanding the connectivity among the various regions instrumental to reading
performance. She proposed at least three forms of disconnections which are consis-
tently studied: between the frontal and posterior language regions based on under-
activity in the connecting insula; and between the occipital-temporal region or the
left angular gyrus region; and frontal areas in the left hemisphere. She suggests that
children with dyslexia use an altogether different reading circuitry. Instead of a
progressive disentanglement of the right hemisphere’s larger visual recognition
system in reading words and an increasing engagement of left hemisphere’s frontal,
temporal, and occipital-temporal regions, they used more frontal regions, showed
less activity in the left-hemisphere angular gyrus, and created potentially compen-
satory “auxillary” right-hemisphere regions which performed functions usually
handled by more efficient left-hemisphere areas [14]. The fMRI results from this
study underscore Wolf’s proposal. It may be that much of the diffuse frontal acti-
vation that was observed in many pre-intervention scans and some post-
intervention scans of nonfluent subjects is evidence of these compensatory
“auxillary” strategies. It may be that in older readers who have over time consoli-
dated less efficient pathways for reading, more exposure is required for specific
hemispheric stimulation (intervention) to supplant frontal and right hemisphere
functions with effective left hemisphere processing.

8. Case studies OF VHSS intervention

Subject 1, coded MC, was one of the students who reached very fast processing
speeds during the intervention using the left hemisphere program. The

Intervention Group (N = 9) Delayed Intervention Group (N = 6)

Pre-intervention
reading fluency
range (average)

Post-intervention
reading fluency
range (average)

Net gain Pre-intervention
reading fluency
range (average)

Post-intervention
reading fluency
range (average)
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40–115 wpm
(78 wpm)
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11.9 wpm 24–128 wpm
(77 wpm)

50–120 wpm
(85 wpm)
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pre-intervention scan showed mostly diffuse activation in the right hemisphere
occipital-parietal areas. Based on all phonetic reading errors in the pre-intervention
fluency measure, this student was labeled a “P-type” and assigned the LH interven-
tion program. MC was a very willing subject and engaged with the program easily.
After progressing through the LH program (34 lessons) nearly six times during the
1440 minutes of training, the fastest processing was 80 ms with 100% accuracy.
This student also achieved fluent processing rather quickly on the thirteenth day of
treatment. MC gained 26 wpm on the final fluency measure. Analyzing this subject’s
scanner data, there was an almost perfect performance when processing the letter
matches: 98% accuracy during Scan 1 and 89% accuracy during Scan 2. MC’s analy-
sis of phonemic elements improved from Scan 1–2. During Scan 1, 54% of the word
pairs were correctly identified and 70% were right in Scan 2. Overall this subject
demonstrated a 5% improvement in fast decoding skills. The post-intervention
scan shows much more focused activation bilaterally in the temporal regions around
the superior temporal gyrus and postcentral gyrus, and there is very little
activation in the VWFA in the LH occipital lobe [78].

Subject 2, coded PE, was one of the students who achieved processing speeds
that approached fluency using the left hemisphere program. The pre-intervention
scan showed a lot of bilateral frontal activation and more RH activation than LH
activation in the occipital areas. Five out of six reading errors were phonics-based,
so this student was labeled “P-type” and assigned the LH program. PE completed
the LH program six times during 1440 minutes of treatment, but there were only 24
lessons included because some of the orthographic patterns were not taught at this
reading level. This student was one of the younger participants in the study and
only reached levels of fluent processing for words, not for phrases. PE’s fastest
processing score was 125 ms with 83% accuracy and during post-intervention flu-
ency measures, reading speed was increased by 11 wpm. Analyzing the scanner
data, there is evidence of significant learning, perhaps due to the young age and the
nature of reading instruction in the lower grades. PE showed a lot of confusion
when analyzing the letter strings: only 49% were judged correctly in Scan 1 and 57%
in Scan 2. Growth in decoding skills is evident in the correct identification of the
word pairs: 45% during Scan 1 and 62% during Scan 2. Overall, this subject demon-
strated a 13% improvement in fast visual processing. The post-intervention scan
indicates an increase in left hemisphere activation around the inferior frontal gyrus
and VWFA [78].

So if the focus is on automatic word retrieval, the Visual Word Form Area, has to
be a region of exceptional interest. There remains much to understand regarding the
activation of the Visual Word Form Area in the left fusiform gyrus and its relation-
ship to the development of fluent reading. According to Cohen et al., a standard
model of word reading proposes that visual information is initially processed by
occipito-temporal areas contra-lateral to the stimulated hemi-field. Then it is trans-
ferred to the visual word form system (VWFA), a left temporal region devoted to
the processing of letter strings. Using fMRI, they identified a highly significant
activation in the left fusiform gyrus (Talairach coordinates: x = �42, y = �57,
z = �6) that was strictly unilateral and remarkably stable across subjects [80]. Since
their research also included comparisons of activation from the right and left visual
hemi-fields, they concluded that the VWFA lies at the convergence of
retinotopically organized visual pathways and contain visual neurons with receptive
fields in both hemi-fields. They hypothesize that the VWFA may be homologous to
inferotemporal areas in the monkey where cells with wide receptive fields, selec-
tivity to high-level visual features, and size and position invariance have been
found. If this is the case, it is possible that the human VWFA holds a distributed
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processing (<100 ms) in either the left- or right visual hemi-field, also increased
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scanner data, there was an almost perfect performance when processing the letter
matches: 98% accuracy during Scan 1 and 89% accuracy during Scan 2. MC’s analy-
sis of phonemic elements improved from Scan 1–2. During Scan 1, 54% of the word
pairs were correctly identified and 70% were right in Scan 2. Overall this subject
demonstrated a 5% improvement in fast decoding skills. The post-intervention
scan shows much more focused activation bilaterally in the temporal regions around
the superior temporal gyrus and postcentral gyrus, and there is very little
activation in the VWFA in the LH occipital lobe [78].

Subject 2, coded PE, was one of the students who achieved processing speeds
that approached fluency using the left hemisphere program. The pre-intervention
scan showed a lot of bilateral frontal activation and more RH activation than LH
activation in the occipital areas. Five out of six reading errors were phonics-based,
so this student was labeled “P-type” and assigned the LH program. PE completed
the LH program six times during 1440 minutes of treatment, but there were only 24
lessons included because some of the orthographic patterns were not taught at this
reading level. This student was one of the younger participants in the study and
only reached levels of fluent processing for words, not for phrases. PE’s fastest
processing score was 125 ms with 83% accuracy and during post-intervention flu-
ency measures, reading speed was increased by 11 wpm. Analyzing the scanner
data, there is evidence of significant learning, perhaps due to the young age and the
nature of reading instruction in the lower grades. PE showed a lot of confusion
when analyzing the letter strings: only 49% were judged correctly in Scan 1 and 57%
in Scan 2. Growth in decoding skills is evident in the correct identification of the
word pairs: 45% during Scan 1 and 62% during Scan 2. Overall, this subject demon-
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and VWFA [78].

So if the focus is on automatic word retrieval, the Visual Word Form Area, has to
be a region of exceptional interest. There remains much to understand regarding the
activation of the Visual Word Form Area in the left fusiform gyrus and its relation-
ship to the development of fluent reading. According to Cohen et al., a standard
model of word reading proposes that visual information is initially processed by
occipito-temporal areas contra-lateral to the stimulated hemi-field. Then it is trans-
ferred to the visual word form system (VWFA), a left temporal region devoted to
the processing of letter strings. Using fMRI, they identified a highly significant
activation in the left fusiform gyrus (Talairach coordinates: x = �42, y = �57,
z = �6) that was strictly unilateral and remarkably stable across subjects [80]. Since
their research also included comparisons of activation from the right and left visual
hemi-fields, they concluded that the VWFA lies at the convergence of
retinotopically organized visual pathways and contain visual neurons with receptive
fields in both hemi-fields. They hypothesize that the VWFA may be homologous to
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tivity to high-level visual features, and size and position invariance have been
found. If this is the case, it is possible that the human VWFA holds a distributed
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representation of the visual shapes of letters such that specific alphabetic strings are
distinguished and is thought to supply instantaneous recognition of learned letters,
letter patterns, and unique words.

Van der Mark et al. researched areas of the fusiform gyrus for activations related
to visual processing. Initially, they found a posterior–anterior measure of change to
print specificity with higher anterior response to letter strings but higher posterior
response to false-fonts. Additionally, there was a constant sensitivity to ortho-
graphic familiarity demonstrated by higher response for unfamiliar than familiar
word-forms. These variations along the VWF-System could only be detected in
controls. They used functional connectivity MRI (fcMRI) to correlate signal
changes in a seed region with signal changes in other parts of the brain and reveal
functional interactions between brain areas. Five non-overlapping seed regions of
interest (ROIs; spheres with a 6 mm radius) centered on the VWFA of the fusiform
gyrus and covering neighboring areas along a posterior–anterior axis in the left
hemisphere were defined, with ROI3 being the VWFA itself. Results showed that
functional connectivity in children with dyslexia was significantly reduced only
between the VWFA proper (ROI3) and classical left hemispheric language related
regions, including the inferior parietal lobule and the inferior frontal gyrus. Signif-
icantly greater connectivity for the dyslexia than the control group was observed
between ROI3 and the left middle temporal and middle occipital gyrus, and
between ROI4 and the left superior temporal gyrus and the left insula. The strength
of the functional connections between VWFA (ROI3) and the left middle temporal
gyrus and between ROI4 and the left superior temporal gyrus did not correlate
significantly with the behavioral measures in either the control group or the chil-
dren with dyslexia. Correlating these increases in connectivity does not reflect
better performance, but instead compensation efforts. They conclude, as did Wolf,
that dyslexics may not use the network in the same way as controls [81].

9. Evidence from diffusion tensor imaging

A “disconnection syndrome” in which functional connectivity of the relevant
cortical networks in the left hemisphere is disrupted has been proposed as a poten-
tial basis for reading difficulties [82]. Diffusion Tensor Imaging (DTI), a technology
similar to fMRI, allows probing the distance and direction of water molecule move-
ment in the brain, producing form and orientation information about the underly-
ing white matter structures [83]. White matter exhibits anisotropic water
movement, with water molecules showing various degrees of diffusion in each
direction. In typical DTI studies, diffusion images from at least six directions are
analyzed using an ellipsoid tensor model—a symmetrical 3 � 3 matrix. Parallel and
perpendicular diffusivities are then calculated and used to estimate properties of
underlying tissues [84]. DTI has demonstrated a correlation between the micro-
structural integrity of the left temporo-parietal white matter and reading ability in
dyslexic and control adults [85]. It seems that this technology could be instrumental
in measuring not only the degree of connectedness between crucial brain features,
but also in determining the amount of pressure needed by these systems to change
functioning.

Fractional anisotropy (FA) is a related technology that is used to index structural
information regarding a brain area. It measures the anisotropy of the diffusion of
water molecules [86] and is sensitive to axonal density, size, myelination, and the
coherence of organization of fibers within a voxel, thus providing an index of the
structural integrity of white matter. FA is measured from 0 (isotropic diffusion) to
1 (anisotropic diffusion) [83]. Beaulieu et al. propose that FA may be reduced in
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poor readers due to a number of possible differences in the microstructural proper-
ties of white matter. These possible differences include reduced myelination,
reduced axonal packing density, decreased axonal diameter, or reduced coherence
of the orientation of axons within the region, all of which might impact the effi-
ciency of communication (bandwidth) among cortical areas [87]. Further, their
findings suggest that there are regional brain structural correlations over a wide
range of reading ability even within a so-called normal population. Keller and Just
examined the diffusivity in directions that are perpendicular to the principal axis of
diffusion in anisotropic regions of white matter (radial diffusivity) or parallel to it
(axial diffusivity). They suggest that the pattern of diffusivity effects signifies that
the difference in FA between poor and good readers before remediation is due to
initially higher radial diffusivity in the poor readers. Further indicating that the
change in FA results from an alteration in some microstructural feature-
myelination, packing density, or axon diameter- that affects radial diffusivity. By
default, myelination is deemed the plausible mechanism of the microstructural
change [88]. It is possible that extended, pressured practice affects the myelinated
cortical thickness in key regions of the neuroanatomical correlates of the dual route
reading model.

In a meta-analysis focusing on the foci of brain activity in a set of studies,
Richlan, Kronbichler, andWimmer used Activation Likelihood Estimation (ALE) to
analyze for agreement by modeling each reported focus as the center of a Gaussian
probability distribution. These distributions are then joined to create a whole-brain
statistical map that estimates the likelihood of activation for each voxel. The data
from 17 studies (12 fMRI and 5 PET) with a total number of 595 participants (294
dyslexics and 301 controls) were included. This approach resulted in three ALE
maps: one, presenting brain regions with under-activation in dyslexic readers,
another, presenting regions with over-activation and, finally, a subtraction map
which allows a formal assessment of differences between the two maps. The results
extracted 128 foci of reliable group differences (69 for dyslexic under-activation
and 59 for dyslexic over-activation), and localized 80 input foci in the left hemi-
sphere and only 48 in the right hemisphere. They found that 58% of the left and
48% of the right hemisphere foci were under-activation foci. The majority of acti-
vation abnormalities identified by separate maps were still present in the conserva-
tive thresholded difference map: under-activation in a large cluster in the left
hemisphere reaching from dorsal inferior parietal to ventral occipito-temporal
regions and to the middle temporal and the inferior frontal under-activation, with
over-activation in left hemisphere anterior insula, primary motor cortex, lingual
gyrus, caudate nuclei, thalamus and right hemisphere medial frontal cortex. These
results provide support for a dysfunction of the VWFA engaged in visual-
orthographic word recognition and a dysfunction of the left fusiform region
affecting the build-up or the use of an orthographic word lexicon in recognition.
Further, over-activation of the left lingual gyrus may reflect prolonged visual
processing when dyslexic readers are confronted with a reading task [89].

Voxel Based Analysis (VBA) uses brain images normalized to a standard brain
atlas and smoothed, before computing and comparing DTI properties for each
individual voxel. This approach greatly reduces the typical biases of ROI analyses,
though since it is typically less theoretically driven more drastic corrections for
multiple comparisons are often required [90]. Moreau, Stonyer, McKay, and
Waldie observed that many DTI studies have investigated significant differences in
FA between dyslexic and typical readers, as well as identifying regions where FA
values significantly correlate with performance on reading tasks, with problems in
replication and little convergence of data. Using a very stringent process of exami-
nation, they identified research that used VBA to identify cortical coordinates
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vation abnormalities identified by separate maps were still present in the conserva-
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hemisphere reaching from dorsal inferior parietal to ventral occipito-temporal
regions and to the middle temporal and the inferior frontal under-activation, with
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results provide support for a dysfunction of the VWFA engaged in visual-
orthographic word recognition and a dysfunction of the left fusiform region
affecting the build-up or the use of an orthographic word lexicon in recognition.
Further, over-activation of the left lingual gyrus may reflect prolonged visual
processing when dyslexic readers are confronted with a reading task [89].

Voxel Based Analysis (VBA) uses brain images normalized to a standard brain
atlas and smoothed, before computing and comparing DTI properties for each
individual voxel. This approach greatly reduces the typical biases of ROI analyses,
though since it is typically less theoretically driven more drastic corrections for
multiple comparisons are often required [90]. Moreau, Stonyer, McKay, and
Waldie observed that many DTI studies have investigated significant differences in
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nation, they identified research that used VBA to identify cortical coordinates
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where significant differences in FA existed between dyslexic and typical readers,
and research that used VBA to locate cortical coordinates where FA significantly
correlated with reading ability or performance on a reading-based task. Their
results were extraordinary. The analysis of 47 foci from 5 experiments (99 subjects),
where FA was significantly greater in typical compared to dyslexic readers, and the
analysis of 17 foci from 2 experiments (52 subjects), where FA was significantly
greater in dyslexic compared to typical readers, yielded no significant clusters when
using FDR correction of 0.05. Further, the analysis of 42 foci from 9 experiments
(500 subjects), where reading ability was significantly positively correlated with
FA, and the analysis of 2 foci from 2 experiments (40 subjects), where reading
ability was significantly negatively correlated with FA, also yielded no significant
clusters when using FDR correction of 0.05. Studies of children and adults were
analyzed separately. No significant clusters were produced when typical readers
had significantly higher FA than dyslexic readers or when dyslexic readers had
significantly greater FA than typical readers, regardless of age [90]. The fact that
these results showed no systematic differences in fractional anisotropy between
dyslexic and typical readers, or as a function of reading ability, after correcting for
multiple comparisons, underscores the ambiguity inherent in brain research in spite
of, or perhaps because of, cutting edge technologies. Hoppenbrouwers,
Vandermosten, and Boets noted that despite appearing consistent, each one of the
studies they included in their meta-analysis produced coordinates at different loca-
tions within the temporo-parietal region and corpus callosum [91]. In fact many
studies have also reported differences and correlations in a range of other regions
distributed widely throughout the cortex [59, 92]. Turkeltaub et al. pointed out that
the software commonly used for these kinds of analysis, GingerALE 2.0.4, has since
been updated too correct initial errors which made ALE analysis to lenient, there-
fore inadequately controlling for spurious findings [93].

10. Conclusion

There is little doubt that neurobiological investigation into the brain activations
of struggling readers is messy and incomplete and fraught with misinformation.
Reviews of international studies reveal many areas of agreement regarding the
factors that result in dyslexia, but the characteristics of different languages and
their orthographies introduce differences in the required processing skills. This is
also seen in the unequal application of the Psycholinguistic Grain Size Theory,
where transparent languages with a regular orthography are less affected than those
opaque languages with many irregular words and derivatives. The contribution of
RAN to understanding the neurobiological features of dyslexia appears to have
global implications as this naming speed deficit has been found to be more common
than even the phonological deficit in both regular and irregular orthographies.
These methods and techniques used to investigate the manifestations of dyslexia
worldwide have advanced the discussion in many useful ways.

Phonological processing and speed have long been in the forefront of interna-
tional dyslexia research. Particularly in transparent orthographies, phonological
impairments have supported the idea of lexical and sub-lexical routes of decoding
that utilize different areas in the brain. Difficulties with phoneme blending often
precede and contribute to a slower rate of reading. These processing weaknesses
eventually produce students who display the dreaded Double Deficit- a condition
that in many languages has been identified as the most severely incapacitating.
However, in some languages, RAN is useful as a predictor of reading accuracy only
in the early grades. Receptive vocabulary, often an important factor in less
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consistent orthographies, has been found to play a role in reading accuracy in more
regular orthographies as readers become more experienced, but this seems to rely
on specific language features that promote decoding based on lexical aspects of
known, related words. So in languages where these language-specific patterns are
prevalent, most dyslexics achieve high levels of reading accuracy but remain deficit
in reading speed.

Research into the visual processing of struggling readers has focused mainly on
the functions of the occipito-temporal reading circuit. Dysfunction in a variety of
visuo-attentional skills such as visual search, visual recognition, and visual infor-
mation processing has been documented in several languages, with both transpar-
ent and opaque orthographies. Interesting work in languages that use diacritical
vowel markings which are absent after instruction emphasizes the theory that when
grapheme-phoneme processing skills are weak, students are unable to develop
strong connections in the orthographic lexicon to support further autonomous word
recognition. In this case, the results also highlight the importance of visual accuracy
and memory for the missing vowel markings. Generally, however, functional
imaging studies reveal reduced reading related activation in a left ventral occipito-
temporal brain area, often associated as an interface between visual orthographic
codes and phonology and meaning. There is some assurance of parity for even
complex visual languages like Urdu that RAN continues to be a reliable predictor of
reading accuracy. Regardless, the question of effective interventions remains
largely unanswered.

American researchers have addressed the problems inherent in dyslexia
through new conceptualizations of fluency and definitions that acknowledge the
crucial role played by the automatization of underlying subskills at the letter, letter-
pattern, and word levels. They challenged the validity of the commonly held
discrepancy definition of dyslexia which mandates that a student with reading
difficulties can be labeled “dyslexic” only if they have an average or higher IQ.
Research showed that there were no reliable differences in the brain functioning of
poor readers with high IQs and poor readers with low IQs. The effects of instruc-
tional intervention have also been explored in studies with American students.
Most of this research focuses on explicit instruction in the alphabetic principle and
phonological processing. These efforts generally resulted in increases in the activa-
tion of left posterior superior temporal gyrus (STG), although processing speed
remained unaffected. However, a novel study using visual hemisphere-specific
stimulation has shown some advancement in the speed of processing of dyslexic
readers. Matching struggling readers to either a left or right hemisphere interven-
tion program by specific oral reading behaviors appears to be helpful in applying an
effective remediation program. The differences in the composition of the interven-
tion programs (the left hemisphere lessons are all phonologically decodable words
and the right hemisphere lessons are all phonologically decodable non-words)
apparently interact with the weak brain processing systems efficiently. The forced
pressure of faster and faster recall appears to strengthen the pathways resulting in
automatized recall. Brain activations of subjects who achieved levels of automatic
processing (recall within 100–250 ms) revealed expected changes: pre-intervention,
there was a great deal of diffuse activation in the frontal areas and in the right
hemisphere, and post-intervention activation was much more focused bilaterally
around the STG and postcentral gyrus with very little activation in the VWFA.
Further these documented processing changes were discovered to directly
support increases in reading speed in those students reaching automatic levels of
visual processing. So, visual hemisphere-specific stimulation has emerged as
an intervention tool that influences access to the VWFA in American dyslexic
readers.
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where significant differences in FA existed between dyslexic and typical readers,
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tional dyslexia research. Particularly in transparent orthographies, phonological
impairments have supported the idea of lexical and sub-lexical routes of decoding
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consistent orthographies, has been found to play a role in reading accuracy in more
regular orthographies as readers become more experienced, but this seems to rely
on specific language features that promote decoding based on lexical aspects of
known, related words. So in languages where these language-specific patterns are
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vowel markings which are absent after instruction emphasizes the theory that when
grapheme-phoneme processing skills are weak, students are unable to develop
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effective remediation program. The differences in the composition of the interven-
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automatized recall. Brain activations of subjects who achieved levels of automatic
processing (recall within 100–250 ms) revealed expected changes: pre-intervention,
there was a great deal of diffuse activation in the frontal areas and in the right
hemisphere, and post-intervention activation was much more focused bilaterally
around the STG and postcentral gyrus with very little activation in the VWFA.
Further these documented processing changes were discovered to directly
support increases in reading speed in those students reaching automatic levels of
visual processing. So, visual hemisphere-specific stimulation has emerged as
an intervention tool that influences access to the VWFA in American dyslexic
readers.
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Other technologies also shed light on the functional connectivity of brain regions
important to fluent reading, but, as always, must be scrutinized for reliability. It
is well established that diffusion tensor imaging (DTI) and fractional anisotropy are
useful tools for understanding the structural integrity of white matter. Many studies
have investigated relationships between differences in FA and various reading
abilities, and differences in FA in dyslexic and normal readers. Generally these
studies identify left hemisphere under-activation from dorsal inferior parietal to
ventral occipito-temporal regions and to the middle temporal and the inferior
frontal under-activation, with over-activation in left hemisphere anterior insula,
primary motor cortex, lingual gyrus, caudate nuclei, thalamus, and right hemi-
sphere medial frontal cortex. However, many researchers have also commented that
in spite of apparent consistency, there is substantial disparity in the coordinates
locating specific activations in the temporo-parietal region and corpus callosum.
These observations led to a careful, but controversial meta-analysis using voxel-
based analysis (VBA) to identify cortical coordinates where significant differences
in FA existed. These analyses found no systematic differences in FA between dys-
lexic and typical readers, or as a function of reading ability, and highlighted possible
weaknesses in older versions of the software commonly used to make DTI analyses.
Clearly, one must engage in this kind of research and rely on these results
cautiously.

For many years, the only neurobiological research was done in adults, which did
not allow investigation of the developing brain. Granted, it is very challenging to
obtain reliable fMRI results with children, but new techniques and a more permis-
sive environment are encouraging, and the promise of bringing new understandings
to fruition as effective intervention practices continues to beckon. Instructional
intervention that is designed to improve time-sensitive procedural rather than time-
free declarative knowledge of grapheme-phoneme correspondences may overcome
the temporal deficit in children by decreasing the over-connectivity of brain
regions in the executive panel of working memory- that is the left and right inferior
frontal gyrus, and increasing the connectivity between the left inferior frontal gyrus
and the middle frontal gyrus (working memory) [94]. From a clinical or educa-
tional perspective, remediation seems most targeted and effective when it addresses
an isolated disability [71]. The challenge in developing strong intervention tools is to
make them engaging, accessible, and fun.

Saine et al. conducted a longitudinal intervention study designed to build a
model of predictive values of reading fluency using three different instructional
techniques to identify the most effective type of intervention for children with
different profiles of core pre-reading skills. Their results show that a computerized
remedial reading intervention called GraphoGame was the most successful in
remediating reading fluency in Finnish children (7 years old) with deficits in letter
knowledge, phonological awareness, and rapid automatized naming [95]. Perhaps
reflecting its extremely shallow orthography, (there is full symmetric consistency
between graphemes and phonemes and the simplest syllabic structure in the Finnish
language) and the fairly long duration of intervention (66 hours), increases in
fluency were found in both of the other treatments (remedial reading instruction
and mainstream instruction) as well, with the least amount of growth shown in the
mainstream group. However, evaluation of data by pre-reading profiles shows that
all of the tested profile-types responded most strongly in the computerized reading
program.

The GraphoGame program is similar to FlashWord in the structure of the pho-
nological analysis, proceeding from early reading competencies to higher-level
concepts, and in the forced, fast processing at the word-level. It was developed to
affect the cognitive operations that constitute word reading: the visual
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identification of orthographic units, their transformation into an internal sound and
articulation. This program’s creators included the appearance of letters and words at
an accelerating rate on the screen (although without hemisphere consideration) in
an effort to improve automatized naming and visual recognition more effectively
than flashcards [95]. The direct comparison of traditional instructional techniques
to outcomes produced through a computer-based intervention underscores the
power of these types of programs and their impact on the automatization of lexical
and sub-lexical reading processes. Perhaps the power of technology in new applica-
tions will ultimately provide solutions for the long-suffering dyslexic readers, espe-
cially those of opaque orthographies.
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Chapter 7

INA Early Intervention for Babies
at Risk
Hagit Friedman, Marina Soloveichick, Amir Kushnir,
Chava Kasher, Caroline Barmatz and Omer Bar-Yosef

Abstract

Brain and nervous system development are experience dependent. Indeed, the
sequence of development is laid out genetically, but early environmental events are
major contributors to the system’s development and optimal functioning. Various
fetal injuries and birth trauma make babies vulnerable to developmental problems:
cerebral palsy, seizures, abnormal muscle tone, delayed developmental milestones,
sensory integration, and more. Our goal in the study presented here was to improve
the neurodevelopmental track of babies at risk using Infant Neural Aquatic. Parent
and baby dyads who met initial criteria were recruited for a 5–6 months interven-
tion period through an open invitation, followed by a conversation and signing
informed consent. In the beginning and end of intervention period, participants
completed questionnaires, and developmental features of the babies were assessed
using analysis of neuro-motor and vocal characteristics. Significant neurodeve-
lopmental delta between values at the end and beginning of intervention period,
comparing intervention and control, is described, and the strength of INA specific
intervention tool is analyzed.

Keywords: brain development, brain injury, early neurodevelopment,
early intervention, developmental time windows, developmental insult,
premature babies

1. Introduction

1.1 Early intervention

In the old Talmud, an imbecile, deaf-mute, and a minor were included in the
same category related to religious obligations (Baba Kama 55 page B). This approach
was explained as probably the earliest expression of the significance and power of
early intervention—for babies and for disabled people.

In recent decades, we return to this approach and look for suitable and efficient
early intervention models in order to successfully cope with developmental insults.

Training with babies in an aquatic setting has been found to benefit and promote
infant health and development [1–3], being based on the physical properties of
water and their physiological outcomes on the neuromotor [4–6], cardiovascular
[7, 8], and respiratory functions [3]. Specifically, training with babies in an aquatic
setting adapted for young babies with developmental risk may strengthen the
function of autonomic parasympathetic nervous system and improve the
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development of neural circuits through better brain perfusion and sensory-motor
training [1, 2, 9, 10].

In warm water, increased environmental pressure advances deep lung ventila-
tion and higher lymphatic and venous return from the periphery; higher levels of
blood and lymph entering the heart’s right atrium cause slight bradycardia, produc-
ing a calming effect; most important for these infants, the water buoyant force
causes the proprioceptors to cease registration of gravity; and an automatic reduc-
tion of muscle tone ensues. The benefits of reduced muscle tone linger for some
hours following immersion. In these beneficial conditions, training is most effective
both for sensory, emotional, and neuromotor purposes, and active parent role in
this process is an additional advantage.

Training with young babies at risk, in an aquatic setting, may not cure severe brain
lesions such as cerebral palsy; however, implying specific training approaches in
specific developmental time windows may allow early effective intervention [11–15]
which may eventually improve brain development.

This was our basic concept when we started our journey into the project, yet our
findings showed us that our training protocol may have a deep neuro-power, more
than we could foresee.

1.2 Early brain development and brain lesions

Neurodevelopmental syndromes are a continuously growing issue. These are
impairments in the growth and development of the brain and CNS which appear in a
variety of emotional, cognitive, motor, and social skills. One most important question
when diagnosing and treating young children concerns the critical developmental
time window through which chances for improvement would be strongest. Consid-
ering the fragility of young babies who are at developmental risk and the general
tendency to postpone definite developmental diagnosis, the consideration of inter-
vention should include neurological background of developmental mile stones.

During fetal development, a temporary assembly progresses in the subcortical
future white matter, situated between the intermediate zone and the developing
cortical plate, named cortical subplate [16]. As widely described in our recent paper
[17], the subplate is thickest around the time of high production of oligodendrocyte
father cells (29 weeks PMA), and is absorbed gradually until around 4 months post-
term, with relocation of fiber terminals into the cortex [18, 19]. Most of its networks
run through the (future) periventricular white matter. The size and duration of the
subplate visibility correspond with cortical fiber complexity, being considered a recent
phylogenetic structure that enables the increasing complexity of cortical circuitry [20].

The cortical subplate is a transmission complex for the neural projections of the
developing cortical circuits and a regulating component that orchestrates neural
network activity [21, 22]. Hence, subplate neurons are important for precise wiring
and functionality of the cerebral cortex—they make initial temporary synapses
between thalamic axons and their destinations in the early C4 layer [23].

SCP neurons, with their numerous synaptic contacts, are important factors that
influence cortical development and ripening [24–26]. In the time gap of their
presence, the SCP neural circuits are prone to hypoxic insult [27], which may cause
long-term influence on brain development and functional deficits in various
aspects. The time window of SCP circuits’ high action is also the time window when
young infants born premature make their first surviving out of utero.

1.3 Neurodevelopmental impairments

Neurodevelopmental impairments range from MND (minimal brain deficit) to
ASD (autism spectrum disorder) and CP (cerebral palsy) [28–34]. Despite recent
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technological and scientific advance, there is currently no cure for severe
neurodevelopmental impairments. However, various therapies may reduce the
traumatic effect of brain lesions when diagnosed and treated during specific time
windows in early infancy. Hence, the first weeks of baby’s life may be critical for
brain development through early and effective intervention.

The babies participating in our study were born premature and participated in
this research during cortical subplate activity time window. Average birth percent-
age of preterm babies is around 10% and it is continuously rising. Prematurity is the
global second frequent cause of death among babies. Although new medical tools
enable more premature babies to live, many are at high risk for brain damage
[29, 33, 35, 36] and neurodevelopmental insults [30, 34].

For example, cerebral palsy in premature neonates is caused mainly by develop-
mental brain injury at the white matter of the brain—periventricular leucomalacia
(PVL), due to bleeding in the brain (IVH, ICH), oxygen or blood deprivation
(hypoxia, anoxia) in the brain [29, 32, 33]. Periventricular leucomalacia may cause
severe, long-term damage to brain tissue [37–40]. Common symptoms of CP
include lack of muscle coordination while performing voluntary movements
(ataxia), and stiff or tight muscles and exaggerated reflexes (spasticity) with asso-
ciated cognitive impairments.

Autism spectrum disorder (ASD) is the joint name for neurodevelopmental
impairments characterized by abnormal social interaction, communication, limited
range of activities and areas of interest [41], and typical motor impairments [42–53].
Being considered as sharing a similar mechanistic basis [54], previous ASD subcate-
gories were unified under DSM5 (2013), and the classification today is based on
severity of symptoms and level of disability.

There is a remarkable increase in the number of children diagnosed with ASD
over the past 30 years, from less than 0.1% [55, 56] to �1% [57] and more. Among
infants at risk, premature infants have a five times higher risk of developing ASD,
and a significantly high incidence of autistic symptoms was identified in premature
infants [58, 59]. Changes in diagnostic criteria, different assessment tools, and
increased public awareness may be only partially responsible for the increase in
ASD epidemiology [60]. Studies indicate that genetic, neurological [59, 61–66], and
environmental [67–72] factors are involved in the emergence of autism spectrum
disorder (ASD).

Prenatal exposure to particulate matter solid fuels and traffic-related air pollut-
ants, especially in the third trimester of prenatal development [67], link the ambient
epigenetic aspects with internal genetic vulnerability due to lower, enzymatically
based, removal ability of harmful remnants from infant’s body. Indeed, these find-
ings are in agreement with recent neurological understanding about the develop-
mental time window of subcortical plate (SCP) during late prenatal and early
postnatal period.

Early and effective intervention, through the important developmental time
window of cortical subplate activity, may minimize neurological and functional
deficits.

2. Basics of INA intervention approach

We have developed a unique training model for water—INA (Infant Neural
Aquatics). The model consists of repetitive bilateral motor training and sustained
moderate aerobic activity and their influence on desensitization and reprocessing of
adverse events in utero and after birth.

After parents signed informed consent, INA was conducted in the hydrotherapy
pool— babies were placed in warm water in vertical and horizontal positions,
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ASD epidemiology [60]. Studies indicate that genetic, neurological [59, 61–66], and
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Prenatal exposure to particulate matter solid fuels and traffic-related air pollut-
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2. Basics of INA intervention approach
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Aquatics). The model consists of repetitive bilateral motor training and sustained
moderate aerobic activity and their influence on desensitization and reprocessing of
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supported by the buoyancy of water and the caring hands of parent or therapist.
Training started with a set of pre-structured movements through which parents
practice handling of the infant in the water, in a way that enables free and inte-
grated movement, eye contact, vocal communication, and increased confidence.

Figure 1.
INA (Infant Neural Aquatics) approach at work: Encouraging eye contact.

Figure 2.
INA (Infant Neural Aquatics) approach at work: Relaxed floating.

Figure 3.
INA (Infant Neural Aquatics) approach at work: 8 shape delicate mobilization.
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Working technique employed was modified for young and prematurely born
Infants, including: passive mobilization, various rotations, relaxed floating, 8 shape
delicate mobilization when the infant is supported under occiput and rib cage.
Infants were video recorded during water sessions, under water and above water,
once a week along 14 consecutive weeks (Figures 1–4).

3. Developmental track of babies

Developmental track of the babies with early intervention employing the INA
approach was conducted at fixed time points using the non-intrusive General Move-
ments (GM) tool [73–75]. The babies showed about 70% delta in developmental
improvement comparing w/wo INA when the babies were around 55 wPMA.

Using the developmental tool ABAS (Adaptive Behavioral Assessment Scale)
[76], the children showed about 40% delta in developmental improvement com-
paring w/wo INA, when the babies were around 1.5 years old (Graphs 1, 2).

Intervention group. 78.27% of the subjects got the same results in delta1 and
delta2 (for 8.70% both delta are equal 0 and for 69.57% both delta were equal 1),
21.74% of the subjects did not get the same results in delta1 and delta2—delta1 = 1
and delta2 = 0 (no opposite cases). We calculated the kappa coefficient (system
consistency) = 0.3575 (confidence limit 95% is �0.0242 till 0.7393). We conducted
McNemar’s Test (significance of results), P = 0.0625.

Control group. 87.50% of the subjects got the same results in delta1 and delta2
(for 66.67% both delta were equal 0 and for 20.83% both delta are equal 1), 12.50%
of the subjects did not get the same results in delta1 and delta2—delta1 = 0 and
delta2 = 1 (no opposite cases). We calculated kappa coefficient (system consis-
tency) = 0.6897 (confidence limit 95% is 0.3774 till 1.000). We conducted
McNemar’s Test (significance of results), P = 0.2500.

In order to test if group (w/wo early intervention) and the babies’ preliminary
grades were dependent, we used Fisher Exact test and got non-significant result
(P = 0.5806), which proves no link between group (w/wo early intervention) and
babies’ developmental grade. In order to test if group (intervention/control) and
the babies’ grades at 55 wPMA were dependent, we used Fisher Exact test and got

Figure 4.
INA (Infant Neural Aquatics) approach at work: Passive mobilizatio.
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significant result (P = 0.0016), which proves a link between intervention and infant
early developmental grade.

In order to test if group’s grade (intervention/control) and delta1 were dependent,
we used Fisher Exact test and got significant result (P < 0.0001). In the intervention
group. 8.70% got delta = 0, and in the control group. 79.17% got delta = 0. In order to
test if group’s grade (intervention/control) and delta2 were dependent, we used
Fisher Exact test and got significant result (P = 0.0199). In the intervention
group. 30.43% of delta = 0, and in the control group. 66.67% got delta = 0.

4. Conclusions, applicative potential, and future aims

Our results show significant improvement in developmental tracks of babies
receiving INA compared to babies who did not, that is, delta in developmental
tracks, between before and after early intervention, is �40% higher when babies
receive INA as observed without INA.

Screening of our videos, recording INA practice with the babies, we interpret
that in addition to the significant benefits of the water’s physical environment
(described above), INA model functions as a therapeutic tool for the babies who
experienced a trauma, much like the modern variants of EMDR (Eye Movement
Desensitization and Reprocessing) model [77]. The bilateral passive and active
stimulation and movement during INA training cause a scheduled activation of both

Graph 2.
Developmental grades before, immediately after, and 1 year after early intervention period.

Graph 1.
Difference in developmental tracks between before and after early intervention period (delta), in group with
INA (blue) compared to group without INA (red), at the age of 55 wPMA (delta1) and at the age of 1.5 years
(delta2).
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right and left cortical hemispheres, unlock the traumatic experience in the right
hemisphere, promote new connections in interhemispheric neural cycles, contrib-
uting to the high delta scores in the participants who received INA compared with
those who did not.

We assume that longer intervention periods would keep the high delta scores to
older age, allowing the brain more training and a longer period of enhanced conditions.

In the next stage of the project, we define the correlation between concentration
curves of biomarkers related to brain injury in the participants’ body fluids, and
neuro-developmental track.

Indeed, the research described here directs the light on a certain vulnerable
group of babies. However, the scientific and clinical products of this project, when
properly tuned, may be successfully applied to various groups who are at develop-
mental risk—children and youth diagnosed with post-trauma, or under extreme/
acute emotional load, etc.
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Chapter 8

Systems Biology Perspectives for
Studying Neurodevelopmental
Events
Elodie Mathieux and Marco Antonio Mendoza-Parra

Abstract

Brain development follows a complex process orchestrated by diverse molecular
and cellular events for which a perturbation can cause pathologies. In fact, multiple
neuronal cell fate decisions driven by complex gene regulatory programs are
involved in neurogenesis and neurodevelopment, and their characterization are
part of the current challenges on neurobiology. In this chapter, we provide an
overview of the various genomic strategies in use to explore the spatiotemporally
defined gene regulatory wires implicated in brain development. Finally, we will
discuss the intake of these approaches for understanding the multifactorial events
implicated in neurodevelopment and the future requirements for further expanding
our understanding of the brain.

Keywords: neurogenesis, gene regulatory networks, cell fate, systems biology,
functional genomics

1. Introduction

Since the release of the first draft of the human genome and the development of
massive parallel DNA sequencing strategies, our understanding of the genetic basis
for a variety of human illnesses, including neurological disease, has expanded rap-
idly. In fact, around 50% of the known Mendelian disorders were already matched
with their underlined genes [1] and this gap is expected to further decrease, namely
by the improvements in the analysis of non-coding genomic regions [2]. This being
said, the performance on the identification of the genetic context of diseases with
complex phenotypes is more modest, probably due to their multigenic etiology. In
fact, the use of exome sequencing for the detection of new mutations in an
unknown gene in family pedigrees appeared as a straight approach in the context of
Mendelian disorders, but at most it provides the list of common variants when
applied to neurological illnesses with complex phenotypes. As a consequence, fur-
ther functional genomic readouts, including transcriptomes, transcription factors
profiling, or epigenetic landscaping, are required to further narrow the observed
mutations and to reconstitute the complex relationship among the various genes
implicated on the inset of the disease.

In this context, this chapter will focus on the use of such further readouts to
complement previous exome sequencing efforts (for a review on the use of exome
sequencing applied to neurological diseases: [3]) and provide an overview of the
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integrative computational strategies in use. Importantly, the concept of gene net-
works as an approach to describe the inter-relationship among the various impli-
cated genes on the disease is discussed and illustrated by the major efforts
performed over the last years in the field of neurodevelopment and related diseases
(Figure 1). Finally, we discuss the arrival of new technological approaches for
enhancing our capacity to interrogate the human nervous tissue, which in contrary
to other tissues, remained till recently restricted to postmortem collected samples.

2. Interrogating neurodevelopment events by functional genomics

The evolution of genomics analyses, notably due to the sequencing of the human
genome, allowed to study neurodevelopment from a different perspective; i.e., by
the interrogation of the role of the genetic context during neurodevelopment. In
fact, while the implication of genes in this process was previously studied at the
individual level with the use of in-situ hybridization and RT-PCR methods, the
developments in DNA microarray and RNA-sequencing technologies provided a
global perspective as witnessed by the various studies focused on the brain
transcriptome either from the whole organ or particular regions and across stages of
development. Among them, the work, performed by Kang et al., for the establish-
ment of transcriptomes from 57 postmortem human brains in 16 regions across the
lifespan spanning developmental embryos through adulthood corresponds to one of
the earliest most comprehensive studies. In fact, beyond the large amounts of data,
they provided a spatiotemporal transcriptome regulation view enhanced by the
establishment of gene co-expression networks recapitulating different stages of
development. Importantly, this study highlighted that the majority of spatiotempo-
ral differences happen before the birth with a shift of gene expression patterns
around the birth in the neocortex. Principally in the fetal brain, genes with a role in
cell proliferation, cell migration, and neuronal differentiation are expressed in con-
trast to the late fetal period and infancy, where genes coding to dendrite and
synapse development are found [4].

Further studies performed by Colantuoni et al. focused on the temporal dynamic
of the transcriptome in prefrontal cortex in a large number of human brain samples
demonstrated that genes expressed differently in prenatal brain fetal development
are reversed during postnatal life [5] with the recruitment of new genes in the early
developmental brain [6]. With the same idea, the pattern of spatial gene expression
in brain was shown to follow a way determined by embryonic origin that can
change during development [7]. In fact, Pletikos et al. defined three phases in
neocortical development: the prenatal with highest differential gene expression, the
preadolescent phase with increasing synchronization of areal transcriptome, and

Figure 1.
Timeline recapitulating major achievements in understanding of healthy or disease-affected human brain
development by the use of functional genomics approaches.
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the adolescence where differential expressions among area reappear [8]. The spatial
part of transcriptome analysis gave the proof of structure gene regulation in human
brain. Especially, differences in gene expression profiling were demonstrated
between brain substructures or sites with the presence of region-specific genes
[9–11]. Hawrylycz et al. combined histological analysis with microarray in 900
neuroanatomic subdivisions from two human brains and observed that the spatial
topography of the neocortex is reflected in its transcriptomic topography where
closer cortical regions have similar gene expression [12]. However, symmetry bilat-
erally between two hemispheres was observed during development [8, 9, 11]. In
addition, the gene expression variability exists also between layers of neocortex.
The neocortex consists of six horizontal layers with subsets of neurons, the tran-
scriptional analysis of the layers in prefrontal cortex showed human specific layer
gene expression patterns [13]. A study realized by Miller et al. demonstrated dif-
ferential gene expression between proliferative and postmitotic layers in mid gesta-
tion human fetal brain with the presence of a molecular gradient frontotemporal in
cortical layers [14]. These observations supported the gene expression gradients
along the anteroposterior axis of neocortex [15].

While informative, the transcriptome analysis over the whole brain or
performed on specific regions is issued from the analysis of multiple cells possibly
presenting heterogeneous cell types populations. The development in single-cell
transcriptomics appears as a relevant alternative for gathering information about
cell types. The single-cell whole transcriptomic analysis permitted to identify cellu-
lar heterogeneity in the brain and subtypes of neuronal cells with differential gene
expression between fetal and adult neurons [16]. Single nuclear transcriptome in
the adult cerebral cortex was used to see diversity in neuronal subtypes and neuro-
anatomical areas [17]. Habib et al. combined this technique of single nucleus
RNA-Seq with pulse-labeling proliferative cells using the thymidine analog, the
5-ethynyl-20-deoxyuridine (EdU), to identify hippocampal cellular types and track
transcriptional trajectories single proliferating cells in the adult hippocampal neu-
rogenic niche [18]. Similarly, a recent single-cell RNA-Seq study in the human fetal
cortex and medial ganglionic eminence during prenatal neurogenesis demonstrated
the presence of lineage specific trajectories dependent of transcription regulatory
[19]. This study also demonstrated the modest transcriptional differences in cortical
radial glia cascade which conducts robust typological differences in neurons. In the
same context, Lake et al. combined single-cell sequencing with epigenome readouts
in adult human brain cells to reveal chromatin/transcription factor regulatory
events within distinct cell types [20]. Recently, Fan et al. also performed single-cell
spatial transcriptome analysis in human brain mid gestation embryos, where they
observed heterogeneity in each cortex region with no synchronization in cortex
development and maturation [21].

The study of the transcriptional expression behavior during brain development
is expected to enhance our understanding of pathological situations. Autism spec-
trum disorder (ASD), a heterogeneous pathology with prevalence of 1 in 59 chil-
dren, is one of these examples. The pathogenesis of ASD is characterized by social
impairments, disrupted communication skills and repetitive behaviors. Numerous
genes were shown to be implicated in ASD and their gene co-expression and/or
gene regulatory networks analyses are providing new insights on the impaired/
affected pathways on this disorder. In fact, several studies have tried to identify
transcriptome alterations implicated in ASD using either DNA microarray hybridi-
zation assays or genome sequencing. By comparing autistic and control brain sam-
ples, upregulated genes implicated in immune function, while others repressed and
involved in neurodevelopment or synaptogenesis were highlighted [22–24].
Another study described a dysregulation in mitochondrial oxidative
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phosphorylation and protein translation pathways without seeing changes in DNA
methylation [25]. Consistent with this observation, the downregulation of genes
involved in mitochondrial and synaptic function were also reported by using mul-
tiple genomics datasets like RNA-Seq and microarray studies previously published
[26]. Interestingly, dysfunction in synaptic pathways was also described in another
neurodevelopmental disease, namely schizophrenia [27–30]. This pathology affect-
ing approximately 1% of the population is characterized by personality distur-
bances, hallucinations, delusions, and/or disorganizing behavior. High-throughput
transcriptomic analysis revealed multiple deregulated genes in schizophrenia
[29–32]. Several of them are implicated in neurodevelopmental pathways, neuronal
communication, energy metabolism, and synaptic function [29, 30, 32]. Changes
in DNA methylation related to the prenatal-postnatal life transition were also
reported by comparing schizophrenia postmortem and unaffected control brain
samples, strongly arguing for the implication of an epigenetic regulation in the
disease’s development [33–35].

In addition to the observed changes in gene expression, alternative RNA splicing
has been described to occur at high frequency in human brain samples,
corresponding to more than one-third of the human brain transcriptome [9, 36]. In
addition, beyond the reported changes in protein coding gene expression [37], non-
coding micro RNAs (miRNA) and/or long non-coding RNAs (lncRNA) were shown
to have a role in neurodevelopment, participating in the reinforcement of brain
complexity. Indeed, Ziats et al. described differential miRNAs expression in differ-
ent parts of human brain along time of development with a principal shift that
happens after the birth [38]. In the same idea, changes in lncRNA transcriptome
during brain development [39], preferentially across fetal development with spatial
regulation, were described [40]. LncRNAs also play a role in neuronal differentia-
tion and neurogenesis, as suggested by studies highlighting a differential expression
of lncRNAs during differentiation from human pluripotent stem cells [41, 42]. One
example is the lncRNA rhabdomyosarcoma 2-associated transcript (RMST) which
through its interaction with SOX2 regulates downstream genes implicated in
neurogenesis [43]. The dysregulation of miRNA or lncRNA expression was also
observed in autism [44–46], schizophrenia [47], and intellectual disability [48]. In
this last case, lncRNAs were shown to be implicated in synaptic transmission,
neurogenesis, or neurodevelopment.

Across these different transcriptome studies, a variety of databases hosting
microarray and/or RNA-Seq data are currently available (for a comprehensive
review, see [49]). Among them, we can cite the HB Atlas [4, 9], the BrainSpan
Consortium [14], Brain Cloud [5], the Allen Brain map portal [12], the cortex single
cells [19], or the single-cell portal [18]. In addition, several consortia, sometimes
covering topics beyond the brain tissue, are at the basis of the establishment of
major databases. Among others, we can cite the “Genotype Tissue Expression
(GTex)” regrouping gene expression data issued from different tissues covering
more than 600 donors [50]. Similarly, the “Encyclopedia of DNA Elements
(ENCODE)” regroups large-scale datasets from various projects and combines
multi-omics data from different species, variety of cell lines and tissues at different
stages of development. A more specialized version of ENCODE, the “Psychiatric
Encyclopedia of DNA Elements (PsychENCODE),” collects datasets concerning
epigenetic modifications and non-coding RNA in healthy and disease-related
human brains [51]. In the context of the data issued from brain samples, Huisman
et al. developed the web portal “Brainscope” providing an interactive visualization
of Allen Atlas adult brain transcriptome and across different stages of development
[52]. Recently, a method to predict mRNA expression in whole brain using micro-
array data from Allen Brain Atlas with in-vivo positron emission tomography (PET)
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data was developed [53]. Overall, the generation of these databases correspond to
major efforts for the research community, providing centralized access to the large
collections of data; thus, further efforts of data integration can be performed, for
instance by the reconstruction of gene regulatory networks on the basis of previ-
ously generated transcriptomes.

3. Inferring molecular coregulatory events from the integration of
collected functional genomic readouts

The development of mid/high throughput strategies for analyzing genome
sequences, their variants, gene expression, or even the proteome composition,
provided means to the scientific community to interrogate each of these layers of
complexity in a variety of model systems and tissues and in addition to integrate
them to reconstruct a regulatory view. As illustrated in the previous section, several
studies described major functional genomic readouts focused on studying brain
development in normal and disease settings.

While being comprehensive, in most cases they provide relevant list of players
(gene variants, differentially expressed genes, etc.) on the basis of statistical
descriptors but forgets completely to address their potential relationship. Or, from a
biological point of view, each of the players composing the system under study is
expected to directly (or indirectly) influence the behavior of others. As a conse-
quence, the current challenge is to evolve into an integrative view, focused on
studying the various “deregulated events” as interconnected entities by the incor-
poration of multiple types of readouts and supported by computational solutions.

From an historical perspective, the article of Walsh et al. released in Science in
2008, corresponds to one of the first major studies aiming at identifying
neurodevelopmental programs involved in a disease context like schizophrenia
[54]. In this study, the authors hypothesized that the collective contribution of each
of the rare structural variants retrieved on neurological/neurodevelopmental syn-
dromes accounts for these disorders, and in the specific case of schizophrenia, they
have demonstrated a difference of at least 3-fold between controls and individuals
with schizophrenia on the frequency of rare structural variants within coding
regions. Furthermore, they have focused on structural mutations that disrupt genes,
and evaluated their functions with the help of computational solutions querying for
gene enrichment in one or more functionally defined pathways (PANTHER and
Ingenuity Pathway Analysis). This strategy per se aims at establishing gene rela-
tionships on the basis of their annotation to a given program (or pathway), even
though in this case such relationships are inferred in-silico.

Since then, further studies incorporated other types of data, like the use of RNA-
Seq transcriptomic analysis to identify the differentially expressed genes between
controls and individuals with schizophrenia, which are then associated to biological
functions by Gene ontology analysis [55–57]. Furthermore, the development of
computational solutions for enhancing data integration has being performed like in
the case of NETBAG, which allows to integrate multiple types of genetic variations
like single nucleotide variants (SNVs), rare copy number variants (CNVs), and
genome-wide association studies (GWAS), to identify highly connected gene clus-
ters, potentially related to functional roles. NETBAG was initially described in the
context of de novo CNVs in autism [58] and schizophrenia [59].

Beyond correlating changes in gene expression with the identification of genetic
variations, further efforts are required for stratifying information, like the use of
gene co-expression strategies. This approach aims at aggregating genes on the
grounds of their expression levels under the hypothesis that co-expressed genes are
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the consequence of a common regulatory force; e.g., the action of transcription
factors. This analysis can be represented under a network structure, on which a pair
of genes is displayed interconnected on the basis of their significant co-expression
relationship. This strategy has been applied by Voineagu and colleagues to resolve
consistent differences in transcriptomes assessed over autistic and normal brain
samples [23]. Specifically, they have resolved gene expression levels in cortical
regions (suggesting cortical abnormalities in the context of autism), but in addition
they have managed to identify discrete modules of co-expressed genes, clearly
demonstrating the advantages of such strategy for enhancing the analytical resolu-
tion. Since then, various studies incorporated gene co-expression analysis together
with genome-wide association data (GWAS) [60, 61], incorporated multiple human
brain regions and issued from various human development stages as a way to
identify specific biological processes and defined brain regions associated to autism
disorder [62, 63].

While gene co-expression networks are expected to be the consequence of the
action of defined master transcription factors, their identity remains unknown in
this type of analysis. The combination of chromatin immunoprecipitation (ChIP)
with massive parallel sequencing provided means to scrutinize the genome locations
on which given TFs are located. Furthermore, on the basis of their proximity to
annotated coding regions, it is possible to infer their transcriptional regulation
activity over proximal genes. Following such strategy, factors like TBR1 [64] or
Auts2 [65, 66], initially identified by rare genetic variant studies were ChIP-
sequenced to reveal their direct targets. In both cases, they were found located on
genomic regions adjacent to autism spectrum disorder (ASD)-related genes. A
similar strategy has been applied to map the gene targets associated to the chroma-
tin modifier CHD8 (chromodomain helicase) [67], previously shown to be mutated
in rare genetic variant studies [68].

Although powerful for the identification of the target genes for a given factor,
performing ChIP-Seq assays remains still challenging for covering a large number of
TFs, epigenetic modifications, and/or chromatin remodelers which could appear
associated to neurodevelopmental events. In fact, identifying strategies to prioritize
the list of TFs to be immunoprecipitated remains a key step, which is currently
handled by applying computational strategies. In this context, we have recently
developed TETRAMER, a computational approach able to reconstruct gene regula-
tory networks from the integration of transcriptomes provided by the user and
annotations retrieved in various databases concerning TF-Target gene relationships
[69]. Furthermore, TETRAMER simulates transcription regulation propagation
over the reconstructed connectivity to identify master TFs, which could then be
prioritized for experimental assays. This strategy has been initially used for identi-
fying novel master TFs implicated on neurogenesis by reconstructing gene regula-
tory networks from temporal transcriptomes [70]; then, it has been extrapolated to
a collection of more than 3000 transcriptomes covering �300 cell/tissue types and
representing 14 different anatomical systems in the human body. Among them, 58
cell/tissue types composing the human nervous system were analyzed, for which
their relevant master TFs as well as their related gene regulatory networks were
inferred. As illustrated in Figure 2, this type of analysis allows to compare the
fraction of shared TFs retrieved on different nervous systems, thus providing
to highlight relevant players implicated on their transcriptional regulation. In
Figure 2, a comparison between the TFs retrieved on frontal cortex and hypothal-
amus is depicted, revealing the presence of factors like TBR1 or ARNT2, previously
identified as presenting rare genetic variants associated to autism disorders [64, 71]
or NPAS3, previously described as a master regulator of neuropsychiatric related
genes [72].
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Overall, the analytical strategies aforementioned clearly suggest the necessity of
incorporating various types of genetic and functional genomic readouts such that
their inter-relationship might enhance our comprehension of the phenomena under
study. This is more relevant when studying neurodevelopment and their related
diseases as the consequence of multigenetic events. Furthermore, it is important to
mention that data integration is systematically supported by computational devel-
opments, as witnessed by the various tools and computational strategies devoted to
infer relationships among the available data, but also to model systems behavior.
Notably, the use of machine learning strategies for modeling the maturity and
regional identity obtained during neuronal in-vitro assays in comparison with
human fetal brain data, provide means to take advantage of in-vitro systems that
manage to reconstitute as close as possible the in-vivo events [73]. In a similar
manner, major efforts like the “blue brain project” are currently combining data
assessment with computational modeling to reconstruct cell atlas for instance of the
mouse brain [74], strongly suggesting that over the coming years major discoveries
in neuroscience might arise from such multidisciplinary efforts.

4. Perspectives for the coming years: from the use of new in-vitro 3D-
brain tissue models, single cell strategies to big-data systems biology

The majority of transcriptome or related studies in human brain used postmor-
tem tissues as source of material. As consequence, technical concerns like the
potential RNA degradation following pre- and postmortem factors as environment,
collection methods, or postmortem interval could directly influence the quality of
the readouts [75–77]. The use of animal models as an alternative is losing interest
due to the reported differences, for instance in human corticogenesis relative to
mouse models, which are further supported by human specific gene signature and/
or divergences in gene regulatory programs [78–80]. Even if few percentages of
genes have different trajectories in non-human primate and human in contrast to
rodent, this model can help to understand brain development, but it cannot model
all features found in human [79, 81]. In fact, comparison between non-human

Figure 2.
Comparison of 58 nervous system cell/tissue types on the basis of their master TF co-regulatory networks. The
fraction of common TFs pairwise is displayed in percentage (heatmap). The inset displays the identity of the
major TFs retrieved in Frontal cortex compared with those retrieved on hypothalamus. The illustrated data are
extracted from the analysis performed over more than 3000 Affymetrix arrays corresponding to�300 cell/tissue
types describing 14 different systems on the human body (Cholley et al. [69]).
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primate and human brains transcriptome analysis showed human specificity in gene
expression profiling [82–84] with demonstration that genes differentially expressed
are principally upregulated in human brains in contrast to other organs [85, 86]. In
addition, the transcriptome remodeling during postnatal periods appears delayed in
human brain comparing to non-human primate [87].

More recently, the use of human-induced pluripotent stem cells (hIPSCs) com-
bined with in-vitro culture strategies for generating two- or three-dimensional
nervous tissue appears as an alternative to animal model systems. In fact, nowadays
it is possible to generate hIPSCs from tissue samples collected from patients
presenting neurological disorders which can be differentiated toward nervous tis-
sue. In this context, a recent study compared the transcriptome of neural stem cells
driven in-vitro toward corticogenesis and discovered a strong conservation with in-
vivo gene expression with the conservation of cortical gene network implicated in
ASD [73]. In contrast to the in-vitro neuronal differentiation in two dimensions, the
generation of three-dimensional models (known as cerebral organoids) appears as a
more relevant physiological model to study neurodevelopment [88–91]. Comparing
human cerebral organoids and fetal brain development demonstrated the similarity
in gene expression programs and epigenomic signatures [92–94]. Furthermore,
single-cell transcriptome analysis over cerebral organoids revealed an important
cellular heterogeneity, reminiscent to what is observed in the human brain [95]. As
a consequence, the use of human cerebral organoids corresponds to a new approach
for modeling the neuronal development and providing means to study neurogenesis
from a systems biology perspective. For example, Mariani et al. generated cerebral
organoids from hIPSCs derived from patients with ASD and recapitulated tran-
scriptional programs present in fetal cortical development. In this study, the use of
gene network analyses allowed to identify upregulated gene programs implicated in
cell proliferation, neuronal differentiation and synaptic process [90]. Similarly,
Amiri et al. identified gene modules implicated in ASD that overlap those described
previously in postmortem data. This study supported the idea that cerebral
organoids provide means to reveal gene regulatory elements contributing to ASD
[94]. Due to these success, major efforts focused on the development of protocols to
generate tissues reminiscent to different brain structures like forebrain [90, 96],
midbrain [96, 97], or hypothalamus [96] were developed. Recently, chimeric
organoids issued from the fusion different regionalized organoids (like dorsal-
ventral forebrain organoids) were generated to increase the complexity of the
generated tissues [98].

The use of cerebral organoids as a model system for studying neurodevelopment
and related diseases is in its infancy. This approach still requires improvements, for
instance in the context of the reproducibility, but due to its alternative to human
postmortem samples and animal models, it is expected to continue to evolve over
the coming years. In fact, this tendency is also boosted by multiple other develop-
ments, including the use of CRISPR/CAS9 system to engineer organoids [99], the
democratization of single cell omics strategies [95], as well as the gain in multidis-
ciplinary approaches, specifically by the incorporation of computational approaches
for modeling brain tissue organization [74].

5. Conclusion

Understanding the brain complexity corresponds to one of the major challenges
for the scientific community. This does not only imply its physiological function,
but also its relationship with the human mind. The use of omics strategies is revo-
lutionizing the way to interpret any living system from the expression of their
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genome, and in the particular case of the human brain, it is enhancing the compre-
hension of neurological disorders. In this chapter, we have discussed the use of
transcriptomes, exome sequencing, and gene regulatory network strategies for
revealing the influence of multiple genes. Furthermore, we have highlighted the
arrival of cerebral organoids as a novel model system for studying human nervous
system, which in combination with further developments (single-cell strategies,
CRISPR-Cas9 engineering, etc.) is a promising major progress for understanding
the brain function. This enthusiasm is further supported with the major advance-
ments in computational developments, notably the artificial intelligence, which
together with the major amounts of data (issued from omics strategies) is expected
to accelerate discoveries. Overall, we expect that this chapter will open the mind to
young readers to further explore the multidisciplinary approaches described herein
to directly participate in the exploration of the human brain in the following years.
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ARNT2 aryl hydrocarbon receptor nuclear translocator 2
NPAS3 neuronal PAS domain protein 3
hIPSCs human-induced pluripotent stem cells
CRISPR/CAS9 clustered regularly interspaced short palindromic

repeats/CRISPR-associated 9
Transcriptome total of RNA molecules expressed in a cell or a popu-

lation of cells
Exome the part of the genome composed of exons which are

the coding portions of gene
Epigenome multitude of chemical compounds and proteins that

modify and control the expression of genes without
change in DNA sequence

MicroRNA class of small non-coding RNA molecules of about 22
nucleotides in length that function as posttranscrip-
tional regulators of target genes

LncRNA non-coding RNA molecules greater than 200 nucleo-
tides in length

Single nucleotide variants loci with alleles that differ at a single base
Rare copy number
variants

number of copies of a particular gene that varies
between individuals

Genome-wide association
study (GWAS)

approach to associate specific genetic variations with
particular diseases

Chromatin
immunoprecipitation

procedure to investigate interaction between pro-
teins and genomic DNA regions
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