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Preface

Visual object tracking (VOT) and face recognition (FR) are both essential tasks in
computer vision with various real-world applications, including human-computer
interaction, autonomous vehicles, robotics, motion-based recognition, video index-
ing, surveillance and security. VOT and FT have remained active research topics
due to both their opportunities and challenges. Significant efforts have been made
by the research community in the past few decades, but VOT and FR have amazing 
potential still to be explored. 

Major difficulties lie in different challenges, such as occlusions, clutter, illumina-
tion change, scale variations, low-resolution targets, target deformation, target
re-identification, fast motion, motion blur, in-plane and out-of-plane rotations, and 
target tracking in presence of noise.

Traditional object tracking algorithms employed hand-crafted features like pixel 
intensity, color, and Histogram of Oriented Gradients (HOG) to represent the
target in the object appearance model. Although hand-crafted features achieve
satisfactory performance in constrained environments, they are not robust to severe
appearance changes. 

Recently, deep learning using a Convolutional Neural Network (CNN) has achieved 
a significant performance boost to various computer vision applications. VOT and 
FR have been affected by this popular trend in order to overcome tracking chal-
lenges and obtain better performance in respect to hand-crafted features.

This book presents the state-of-the-art and new algorithms, methods, and systems
of these research fields by using deep learning. It is organized into nine chapters
across three sections. Section I discusses object detection and tracking ideas and 
algorithms. Section II examines applications based on re-identification challenges. 
Section III presents applications based on FR research.
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Chapter 1

Deep Siamese Networks toward 
Robust Visual Tracking
Mustansar Fiaz, Arif Mahmood and Soon Ki Jung

Abstract

Recently, Siamese neural networks have been widely used in visual object track-
ing to leverage the template matching mechanism. Siamese network architecture 
contains two parallel streams to estimate the similarity between two inputs and 
has the ability to learn their discriminative features. Various deep Siamese-based 
tracking frameworks have been proposed to estimate the similarity between the 
target and the search region. In this chapter, we categorize deep Siamese networks 
into three categories by the position of the merging layers as late merge, intermedi-
ate merge and early merge architectures. In the late merge architecture, inputs are 
processed as two separate streams and merged at the end of the network, while 
in the intermediate merge architecture, inputs are initially processed separately 
and merged intermediate well before the final layer. Whereas in the early merge 
architecture, inputs are combined at the start of the network and a unified data 
stream is processed by a single convolutional neural network. We evaluate the 
performance of deep Siamese trackers based on the merge architectures and 
their output such as similarity score, response map, and bounding box in various 
tracking challenges. This chapter will give an overview of the recent development 
in deep Siamese trackers and provide insights for the new developments in the 
tracking field.

Keywords: Siamese networks, visual object tracking, deep learning, neural network, 
end-to-end learning

1. Introduction

In the past few decades, visual object tracking (VOT) has become a promising and 
attractive research field in computer vision area. It became popular among research-
ers due to its wide range of applications including autonomous vehicles [1, 2], surveil-
lance and security [3, 4], traffic flow monitoring [5, 6], human computer interaction 
[7, 8] and many more. Popularity in the field is because of various tracking challenges 
and opportunities. In recent years, researchers have made remarkable endeavors and 
developed a number of state-of-the-art trackers to handle various tracking challenges. 
Despite the fact that significant progress has been made in the field but still trackers 
have not achieved consummate performance and VOT is still an open challenge yet 
to be fully addressed. Various challenges to be handled by VOT include fast motion, 
motion blur, occlusion, deformation, illumination variations, background clutter, in- 
or out-planer rotations, out-of-view, low resolution, and scale variations.

The objective of VOT is to identify a region of interest in video frames. VOT con-
sists of four sequential components such as target initialization, target appearance 
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modeling, motion estimation, and target localization. In target initialization, the 
region of interest is annotated using any of the representations including ellipse, 
centroid, object silhouette, object skeleton, object contour, or object bounding box. 
In generic object tracking, the position of the region of interest as the target is given in  
the first frame of a video and the tracking algorithm predicts the target location 
in the rest of the frames. The target appearance model represents a better target 
feature representation and a mathematical model to identify the region of interest 
using learning methodologies. While the target motion estimation module predicts 
the position of the target in sequential frames by either greedy search or maximum 
posterior prediction. The tracking problem is simplified as the constraints applied 
over the target appearance model and motion estimation. During tracking, both 
appearance and motion models are updated to capture the new target appearance 
and its behavior.

In this chapter, we focus on monocular, casual, model-free, short-term, 
and single-target trackers. The causality means that a tracker has the ability to 
estimate the target location in the current frame without prior information of the 
future frames. While model-free characteristic stands for supervised learning 
where target bounding box is given in the first frame of the video. Finally, short-
term denotes that during tracking, a tracker is unable to re-detect the target once 
it is lost.

The performance of the trackers is highly affected by the feature representa-
tions. Features are broadly classified into hand-crafted (HC) and deep features. 
Traditional features are known as HC features such as histogram of oriented gradi-
ents (HOG), local binary patterns (LBP), color names and scale-invariant feature 
transform, etc. Nowadays, computer vision researchers are selecting deep features 
for better representation. Deep features are more capable to capture multi-level 
information and to encode the target appearance variant features compared to HC 
features. Deep features are extracted using different methods such as convolutional 
neural networks (CNN) [9], recurrent neural networks (RNN) [10], auto-encoder 
[11], residual networks [12], and generative adversarial networks (GAN) [13] for 
different computer vision applications.

In recent years, CNN-based methods have been adopted in various computer 
vision tasks and gained popularity due to improved performance in face verification 
[14], image classification [15], semantic segmentation [16], medical image seg-
mentation [17], object detection [18], etc. An empirical and comprehensive study 
performed by Fiaz et al. [19] showed that deep trackers have shown an improved 
performance compared to HC feature-based trackers. The discriminative power of 
state-of-the-art deep trackers is explored by employing deep features. It is difficult 
to train a discriminative deep tracker efficiently due to data-hungry property. 
Various deep trackers are developed to handle scarce training data problem by 
employing shallow features extracted from pre-trained off-the-shelf models such as 
AlexNet [20], VGGNet [9], etc. Nevertheless, these approaches do not fully benefit 
from end-to-end learning. Deep trackers that apply stochastic gradient descent 
(SGD) methods are not real-time because they take a lot of time to fine-tune the 
multiple layers of the network.

In order to handle those restrictions, a simple advocate approach known as 
Siamese network is utilized to compute the similarity between the two input images. 
Siamese networks are trained offline to learn the similarity between two input 
images and are evaluated online without fine-tuning for new target estimation. In 
this chapter, we study different types of Siamese networks developed for tracking. 
We also present an experimental study to analyze the performance of the Siamese 
trackers over OTB2013 [21] and OTB2015 [22] benchmarks.
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2. Related work

In the literature, there exist many comprehensive studies on VOT. Each study 
focuses on specific research aspects going on in the field. Fiaz et al. [19] classified 
the tracking algorithms into correlation and noncorrelation filter-based trackers. An 
extensive experimental study was performed over hand-crafted and deep feature track-
ers. Similarly, Li et al. [23] also studied the deep trackers and categorized deep trackers 
into three classes including network structure, network function, and network training. 
Leang et al. [24] discussed single target trackers while Zhang et al. [25] performed their 
study over the sparse trackers. Yang et al. [26] focused on the context information by 
considering auxiliary objects as the target context of the tracking object.

These studies have been performed by tireless efforts made by the research com-
munity and developed various state-of-the-art trackers. The tracking algorithms 
can be classified as tracking by detection, discriminative correlation filters, deep 
convolutional neural networks, and Siamese network-based trackers.

2.1 Tracking by detection-based trackers

In many tracking algorithms, classifiers are considered as the fundamental part to 
discriminate the target object from nontarget objects such as support vector machine 
(SVM), random decision forest, as well as various boosting-based classifiers. Classifiers 
are updated to integrate the new target appearance during online learning in various 
tracking by detection algorithms. For example, multiple instance learning framework 
proposed by Babenko et al. [27] employed gradient boosting to learn the classifiers. 
Hare et al. [28] utilized structured output to estimate the target location and employed 
SVM for online adaptive tracking. Zhang et al. [29] applied Bayes classifiers for online 
adaptation of the target over a multi-scale feature space built on a data-dependent basis.

2.2 Discriminative correlation filter-based trackers

The development of trackers based on correlation filters has boosted the track-
ing performance. Bolme et al. [30] proposed a fast tracker by minimizing the sum of 
squared error (SSE) between the actual output and the desired output in the frequency 
domain. Kernelized correlation filters (KCF) [31] utilized the multi-channel features 
using circulant matrices in the Fourier domain and used the Gaussian kernel function to 
discriminate a target from the background. The discriminative correlation filter trackers 
have their own limitations such as they require to fix model and patch sizes. A model 
may learn undesired information resulting in reduced performance. SRDCF [32] intro-
duces a spatial regularization method in discriminative correlation trackers to reduce 
the effect of background information by penalizing it. SRDCFdecon proposed by 
Danelljan et al. [33] tackled the contaminated training samples to improve robustness. 
Li et al. [34] proposed STRCF that integrates the temporal regularization in SRDCF 
using a passive-aggressive algorithm to improve the tracking performance. CSRDCF 
[35] incorporates the channel and spatial reliability within correlation filters. CSRDCF 
integrates the spatial reliability using a spatial binary map at the target location, while 
the channel reliability by estimating the channel and detection reliability metrics.

2.3 Deep convolutional neural network-based trackers

Deep convolutional neural networks have presented an outstanding performance 
in many computer vision applications. Deep learning has limitations due to limited 
training data and high computational cost. However, much progress has been made and 
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2.3 Deep convolutional neural network-based trackers

Deep convolutional neural networks have presented an outstanding performance 
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many state-of-the-art deep trackers have been proposed. Nam and Han employed CNN 
to develop a multi-domain adaptive deep tracker [36]. Nam et al. [37] integrated CNN 
in a tree structure to model the target appearance. A tree is constructed from multiple 
hierarchical CNN-based target appearances. Ma et al. [38] exploited the rich hierarchi-
cal deep features using correlation filters. Qi et al. [39] hedged the weak classifiers and 
obtained a strong classifier by captivating the benefit from multi-level deep features.

2.4 Template matching-based trackers

Tracking by matching is one of the most basic concepts in tracking where target 
pixels are directly compared with the input patches from the video. Briechle and 
Hanebeck [40] introduced the simplest template matching mechanism in track-
ing via a normalized cross-correlation. TLD-tracker [41] also employs normalized 
cross-correlation mechanism. Later on, many template matching trackers focused 
on distorted tracking objects. Wang et al. [42] performed matching using super-
pixels. Nguyen and Smeulders [43] used color invariants to discriminate targets 
from the background. Godec et al. [44] employed HOG features for probabilistic 
matching. Held et al. [45] used deep regression networks for matching. Bertinetto 
et al. [46] exploited fully convolutional features to compute the correlation between 
the target and the search patches.

In this section, we noticed that various tracking algorithms have been proposed 
to solve the tracking problem but still research area is active. We also observed 
that there exist different comprehensive surveys that focus on various tracking 
frameworks. On the contrary, we present a study on Siamese networks employed in 
tracking. We categorized the Siamese trackers into three categories. Moreover, we 
also evaluated the robustness of the different Siamese trackers.

3. Siamese networks for tracking

In correlation filter-based trackers, a response map is computed between a target 
template and a candidate patch in the Fourier domain. In object tracking, the center 
of the target is focused and a weight matrix  w  is trained such that it minimizes the 
squared error from the target  y . The tracking problem can be defined as a regression 
problem which depicts a closed-form solution and is formulated as

    ‖Bw − y ‖   2  2  + λ   | |w| |   2  2 ,  (1)

where  B  is the search space feature vectors,  λ  is a regularization parameter, and || . ||2  
means the ℓ2-norm of a vector. The solution for Eq. (1) is described as:

  w =   ( B   T  B + 𝜆𝜆I)    
−1

   B   T  y.  (2)

Since Eq. (2) has high computational cost due to inverse matrix computation, 
thus cannot be used directly for tracking. Hence, the described problem can be 
resolved in the dual form as follows:

  w =  B   T  α,  (3)

where α denotes the discriminatory part. For tracking problems, the challenge is 
to optimize α in dual form solution in Eq. (3).

Another alternative approach is to learn a similarity function to compare the 
similarity between the template image and the candidate image. A Siamese network 
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architecture is a Y-shaped network that takes two images as inputs and returns 
similarity as output. Siamese networks determine if the two input images have identi-
cal patterns or not. The concept of Siamese was initially introduced for signature 
verification and fingerprint recognition, and later adapted in many computer vision 
applications such as large scale video classification [47], stereo matching [48], face 
recognition and verification [49], and patch matching [50] etc. A series of state-of-
the-art Siamese-based trackers have been proposed in the past few years. We observe 
that Siamese-based trackers utilize embedded features by employing CNN to com-
pute the similarity. By analyzing the architecture of deep Siamese trackers, we classify 
them into three categories based on layer position of the merge; (i) late merge, (ii) 
intermediate merge, and (iii) early merge architectures as shown in Figure 1.

• Late merge: the input images are processed separately by two individual parallel 
networks and are merged at the last layer of the network (Figure 1(a)).

• Intermediate merge: the input images are processed separately in the initial 
part of the network and then merged well before the final layer (Figure 1(b)).

• Early merge: the input images are stacked before feeding to the network and 
then a unified input is fed forward to the network for inference (Figure 1(c)).

We also observe that Siamese-based trackers produce different types of output 
such as similarity score, response map, and bounding box. Siamese-based trackers 
with similarity score as output mean that they return the similarity as probability 
measure, whereas the response map means a two-dimensional similarity score map. 
The maximum value in the similarity map represents the location of maximum 
similarity between two patches and low value for the dissimilar region. Some 
Siamese-based trackers directly yield the bounding box location of the target.

3.1 Siamese late merge trackers

This subsection studies the tracker where the two input images are fed forward to 
two separate CNN models and are merged at the final layer to get the final response.

3.1.1 SINT

Siamese instance search tracker (SINT) is proposed by Tao et al. [51]. SINT learns 
an offline matching function and estimates the best-matched patch for incoming 

Figure 1. 
Types of Siamese networks (a) Late merge, (b) Intermediate merge and (c) Early merge.
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frames in a video (Figure 2). The architecture of SINT consists of two streams includ-
ing query stream and search stream. Each stream is composed of 5 convolutional 
layers, 3 region-of-interest pooling layers, and 1 fully connected layer. Both query and 
search streams are merged using a matching function known as contrastive loss func-
tion. The matching function is responsible to differentiate the background informa-
tion from the target. The SINT is trained offline by giving template patch at query 
branch and candidate patches at the stream branch. During tracking, SINT does not 
update its weight parameters and template patch at query branch is matched with the 
candidate patches at the stream branch for each incoming frame. The SINT estimates 
the best-matched patch based on maximum score. A ridge-bounding box regression is 
employed to refine the bounding box.

3.1.2 SiameseFC

Siamese fully convolutional network (SiameseFC) proposed by Bertinetto et al. 
[46] addresses the general similarity learning between the target image and search 
image as shown in Figure 3. During training, SiameseFC exploits the deep features 
using embedding functions and learns the similarity between the two images. 
During tracking, SiameseFC takes two images and infers a response map. The new 
target position is estimated at the maximum value on the response map where input 
images have the maximum similarity.

3.1.3 CFNet

Valmadre et al. [52] proposed correlation filter network (CFNet) by adding two lay-
ers including correlation filter and crop layer within SiameseFC template branch which 
makes it more shallower but efficient. While SiameseFC learns the unconstrained 
features to estimate the similarity score, CFNet learns the discriminative features 

Figure 2. 
SINT tracking framework [51].
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using correlation filter layer and solves the ridge regression problem via exploiting the 
negative samples in the search region. Similar to SiameseFC, CFNet is trained offline 
and weight parameters are fixed during tracking. CFNet produces a response map for 
template and search region with a high value representing the maximum similarity.

3.1.4 SIAMRPN

Li et al. [53] proposed a Siamese region proposal network (SIAMRPN) in order 
to improve the robustness compared to SiameseFC and CFNet. Both SiameseFC 
and CFNet do not employ bounding box regression and thus require multi-scale 
testing. SIAMRPN integrates region proposal network (RPN) within SiameseFC 
which makes it more elegant. The concept of RPN was introduced in Faster RCNN 
[18]. RPN has capability to extract more precise and efficient proposals due to the 
supervision of bounding box regression and binary classifier.

SIAMRPN consists of two components including Siamese network and RPN 
as shown in Figure 4. Siamese network is responsible for feature computation. 
Its template branch takes z as target patch and gives  φ (z)   as output target features 
while detection branch requires x search image and returns  φ (x)   as search region 
features. Whereas RPN is composed of a pairwise correlation module and a super-
vision module. The supervision module has two outputs consisting of a binary 
classifier and a bounding box regressor. If there are k anchors, the pairwise cor-
relation module increases the channels for  φ (z)   using convolution layers by 2k for 
 classification denoted as    (  [φ (z) ]   cls  )   and 4k for regression represented as    (  [φ (z) ]   reg  )  .  
The search region features  φ (x)   are also divided into     [φ (x) ]   cls    and     [φ (x) ]   reg    
branches using convolutional layers while the number of channels for  φ (x)   is 
kept unchanged. A correlation operation is performed for both classification and 
regression branches by considering  φ (z)   as correlation kernel in a group manner. 
It means that the channel number of a group  φ (z)   is equal to the number of the 
channel  φ (x) .  The SIAMRPN is trained using Stochastic Gradient Descent (SGD) 
method to optimize the following loss function:

  loss =  L  cls   + λ  L  reg  ,  (4)

where   L  cls    represents the classification loss which is a cross entropy loss function 
and   L  reg    means bounding box regression loss, and λ is a balancing parameter.

3.2 Siamese intermediate merge trackers

This section describes the tracking models where the two input images are input 
separately to the network and are merged somewhere before the final layer of the CNN.

Figure 3. 
SiameseFC architecture [46].
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to improve the robustness compared to SiameseFC and CFNet. Both SiameseFC 
and CFNet do not employ bounding box regression and thus require multi-scale 
testing. SIAMRPN integrates region proposal network (RPN) within SiameseFC 
which makes it more elegant. The concept of RPN was introduced in Faster RCNN 
[18]. RPN has capability to extract more precise and efficient proposals due to the 
supervision of bounding box regression and binary classifier.

SIAMRPN consists of two components including Siamese network and RPN 
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Its template branch takes z as target patch and gives  φ (z)   as output target features 
while detection branch requires x search image and returns  φ (x)   as search region 
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where   L  cls    represents the classification loss which is a cross entropy loss function 
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3.2 Siamese intermediate merge trackers

This section describes the tracking models where the two input images are input 
separately to the network and are merged somewhere before the final layer of the CNN.

Figure 3. 
SiameseFC architecture [46].
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Figure 5. 
GOTURN tracking framework [45].

3.2.1 GOTURN

Held et al. [45] proposed generic object tracking using regression network 
(GOTURN) and exploited the target appearance and motion relationships. 
GOTURN predicts the new target object for the current frame by taking the 
template image from the previous frame. Both input images are cropped with the 
background region for prediction as demonstrated in Figure 5. GOTRUN consists 
of two streams of 5 convolutional layers for both template and search images. The 
template and search streams are fused and feed-forwarded to three shared fully 
connected layers. During tracking, GOTURN directly regresses the target position 
and does not update the weight parameters to adapt the new target appearances.

3.2.2 YCNN

Chen and Tao [54] proposed the YCNN tracker to estimate the similarity 
between two input images. YCNN model consists of two separate 3 convolutional 
layers and two shared fully connected layers. The target object and search images 

Figure 4. 
SIAMRPN architecture [53].
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are fed forward two separate 3 convolutional layers and then merged before for-
warding to two shared fully connected layers. The output of YCNN is a response 
map. The network is trained end-to-end using Gaussian map as a label with the 
maximum value at the center. During tracking, the maximum position on the confi-
dence map gives the new target position. The drift problem is handled by averaging 
the maximum five confidence values, while the scale problem is tackled by repeat-
ing the inference with different template sizes.

3.2.3 EAST

Huang et al. [55] proposed early stopping tracker (EAST) to exploit similar-
ity between the two input images and learn the different policies by employing 
Reinforcement Learning (RL) to improve the accuracy while maintaining high 
speed. On the contrary to SiameseFC, EAST infers the new target position in single 
evaluation on original template size. The tracking problem is formulated as Markov 
decision process. The network agent is trained offline such that agent decides 
whether the target object has high confidence on early layers or continue to go deep 
by processing subsequent layers to obtain the maximum confidence for each frame. 
Agent makes a decision based on early stopping criterion for each layer.

3.3 Siamese early merge trackers

In this subsection, we study the tracking models where the input images are 
aggregated or stacked before feeding to the network.

3.3.1 CNNSI

Fiaz et al. [56] proposed CNN with structural input (CNNSI) to exploit the deep 
discriminative features to learn the similarity between the target and candidate 
patches as shown in Figure 6. The target and candidate images are stacked together 
and feed-forwarded to the network to get the similarity and dissimilarity scores. 
The CNNSI is trained offline end-to-end using SGD method to learn the similarity. 
During the tracking, target and candidate patches are stacked and fed to the network 
to get similarity and dissimilarity scores for all the candidate patches. The maximum 
similarity score yields the new target position. The bounding boxes are refined using 

Figure 6. 
CNNSI network architecture [56].
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a bounding box regressor which is trained on the first frame of the sequence. Short-
term and long-term updates are performed to integrate the new target appearance.

3.3.2 SiameseCNN

Taixé et al. [57] presented a Siamese CNN (SiameseCNN) for pedestrian track-
ing to exploit the pedestrian appearance and geometrical position. The proposed 
network requires a stack of two target images along with their optical flow and 
forwarded to three CNN layers and three fully connected layers. The network is 
trained using a gradient boosting classifier to predict the final trajectory of the 
pedestrian. For negative samples, contextual features along with relative geometry 
are provided to train the classifier. To infer the pedestrian, the gradient boosting 
classifier makes the final decision based on the maximum score.

4. Experimental analysis

This section discusses the experimental results and analysis over the OTB2013 
[21] and OTB2015 [22] benchmarks. The OTB2013 consists of 50 different 
sequences having 11 challenges including fast motion (FM), background clut-
ter (BC), motion blur (MB), low resolution (LR), scale variation (SV), in-plane 
rotation (IPR), out-plane rotation (OPR), deformation (DEF), occlusion (OCC), 
illumination variation (IV), and out-of-view (OV). OTB2015 contains 100 videos, 
which is an improved version of OTB2013 having all the challenges from OTB2013.

The Siamese trackers are evaluated using precision, success, and speed mea-
sures. One pass evaluation (OPE) is utilized to evaluate the robustness of the 
Siamese trackers. Performance of the trackers is illustrated using precision and 
success graphs. Euclidean distance is calculated between the ground-truth center 
and predicted centers to compute the precision as:

   φ  tp   =  √ 
_________________

    ( x  t   −  x  p  )    2  +   ( y  t   −  y  p  )    2   ,  (5)

where   ( x  t  ,  y  t  )   and   ( x  p  ,  y  p  )   shows the ground-truth center and predicted center 
in a frame respectively. A frame is measured as successful if the value of   φ  tp    is less 
than a threshold else not. The precision threshold value is set to 20 pixels. The target 
changes its size in a sequence and precision only considers the pixel difference of 
the center of the target. Thus precision does not a true picture of the target shape. 
Hence, a more robust success metric is employed for evaluation of trackers. An 
overlap score (OS) is calculated between the ground-truth and predicted bounding 
box to compute success as:

   O  s   =    ∣  b  t   ∩  b  p   ∣ ___________ 
∣  b  t   ∪  b  p   ∣  ,  (6)
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For comparison of different Siamese architectures, we carefully selected Siamese 
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[45], and CNNSI [56]. All results are reported from the original authors except, the 
GOTURN because the authors did not report results over the selected benchmarks.

4.1 Quantitative evaluation

In this subsection, we discuss the quantitative comparison of Siamese Trackers.

4.1.1 Overall performance

Figures 7 and 8 and Table 1 show the precision and success of selected Siamese 
trackers over OTB2013 and OTB2015 respectively. The precision and success graphs 
show that SIAMRPN achieved outstanding performance compared to the other 
trackers. We also observe that the rank of the trackers does not change with respect 
to precision and success for both benchmarks. GOTURN does not perform well as 
compared to the other Siamese trackers.

4.1.2 Challenge-based evaluation

We also evaluated the performance of Siamese trackers for eleven different 
tracking challenges over OTB2015 benchmark. Figures 9 and 10 and Tables 2 and 3 
show the performance of Siamese trackers using precision and success respectively. 
We observe that SIAMRPN attained better performance for all the tracking challenges 

Figure 7. 
Precision and success plots over OTB2013.

Figure 8. 
Precision and success plots over OTB2015.
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Trackers SIAMPRN SINT SiameseFC CFNet CNNSI GOTURN

OTB2013 Precision 81.0 75.8 69.2 68.3 64.5 43.3

Success 59.2 55.3 51.6 51.7 45.8 32.4

OTB2015 Precision 85.1 78.9 77.1 76.9 72.1 51.1

Success 63.7 59.2 58.8 58.2 52.2 38.7

Speed (fps) 160 4 86 43 0.53 165

Table 1. 
Comparison of Siamese trackers over OTB2013 and OTB2015 benchmarks.

Figure 9. 
Precision plots for eleven tracking challenges over OTB2015.
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using both precision and success. While GORTURN does not show good performance 
and ranked at the last. We noted that SiameseFC exhibited better performance after 
SIAMRPN for fast motion and low-resolution challenges while SINT ranked second 
best for the rest of the challenges handling those challenges more efficiently.

4.2 Qualitative evaluation

Qualitative study of Siamese-based trackers has performed over five different videos 
including Bolt, ClifBar, FaceOcc1, Jogging-1, and CarScale shown in Figure 11. The Bolt 
video depicts OCC, DEF, IPR and OPR challenges. Trackers such as SiameseFC, CFNet, 

Figure 10. 
Success plots for eleven tracking challenges over OTB2015.
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and GOTURN failed to track the runner while SIAMRPN, SINT, and CNNSI have 
successfully tracked the runner. Meanwhile, the ClifBar sequence portrays SV, BC, MB, 
FM, IPR and OCC challenges and CNNSI only tracked the object efficiently while oth-
ers failed. FaceOcc1 and Jogging-1 clearly show the occlusion challenge. We observe that 
all the trackers have tracked successfully face of the lady in FaceOcc1 sequence where 
lady partially rotates a book in front of her face. While in Jogging-1 sequence where 
occlusion is presented by a pole, all the Siamese trackers succeeded to track the lady 
except GOTURN. Another challenging sequence is CarScale which clearly shows that 
the size of the car is changing with the passage of time. We note that CFNet tracked the 
car efficiently while the rest of the trackers only tracked some region of the car.

4.3 Speed analysis

We also reported the speed of the trackers as frames per second (fps) as shown 
in Figure 12. We observe that GOTURN is computational cost effective and 

Trackers SIAMRPN SiameseFC SINT CFNet CNNSI GORTURN

FM 81.0 75.8 74.3 73.4 67.5 44.0

BC 80.3 69.0 77.6 73.4 68.7 44.3

MB 83.3 72.4 74.7 65.6 69.6 36.5

DEF 83.0 69.0 74.5 69.6 68.7 45.7

IV 86.8 74.0 81.6 71.2 60.0 51.4

IPR 84.6 72.8 81.9 75.1 68.8 50.9

LR 86.8 81.5 78.6 72.5 66.0 45.6

OCC 78.5 72.2 75.6 70.3 64.4 42.3

OPR 85.3 75.4 81.1 73.7 68.9 50.8

OV 72.8 66.9 72.0 53.6 59.4 36.2

SV 84.3 73.9 75.0 73.1 68.7 54.6

Table 2. 
Precision of Siamese tracker over different challenges.

Trackers SIAMRPN SiameseFC SINT CFNet CNNSI GORTURN

FM 61.3 57.8 56.5 57.2 51.5 36.3

BC 60.1 52.3 59.0 56.5 50.2 32.7

MB 63.5 56.8 58.8 53.7 53.2 31.5

DEF 62.2 50.6 55.0 50.8 47.3 35.2

IV 65.5 56.9 62.4 55.0 45.8 38.3

IPR 63.0 55.1 59.6 56.3 49.3 39.3

LR 60.1 57.3 54.3 55.2 43.4 32.4

OCC 59.2 54.3 57.4 54.0 47.6 34.0

OPR 63.1 55.7 59.8 54.6 48.9 38.0

OV 55.0 50.6 55.3 42.3 43.5 31.7

SV 62.5 55.7 56.4 55.6 48.6 41.6

Table 3. 
Success of Siamese tracker over different challenges.
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tracks objects at a speed of 165 fps. Similarly, SIAMPRN is also computational 
cost-efficient and can track at 160 fps. Although SiameseFC and CFNet have high 
computational cost compared to GOTURN and SIAMRPN but still manage to track 

Figure 11. 
Qualitative analysis of Siamese trackers over Bolt, ClifBar, FaceOcc1, Jogging-1, and CarScale sequences.

Figure 12. 
Speed analysis of the trackers.
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at high speed. However, SINT (4 fps) and CNNSI (0.53 fps) have very low speed 
and consume a lot of computational costs.

5. Summary of Siamese networks comparison

We study three different types of Siamese network architectures employed in 
visual tracking application. We observe that all the Siamese trackers exploit the 
discriminative ability of deep CNN features. Experimental study revealed that late 
merge technique is better than others. Table 4 shows the characteristics of the dif-
ferent architecture of Siamese networks.

6. Conclusions and future directions

In this chapter we study Siamese networks and their different variants for 
the task of visual object tracking. Siamese networks are classified into three 
categories based on their architecture including late merge, intermediate 
merge, and early merge. We observe that late merge Siamese trackers have 
shown better performance compared to the other trackers. Our study concludes 
that SIAMRPN has shown outstanding performance and ranked the best among 
the selected Siamese trackers. The tracking performance of the Siamese track-
ers can be improved by integrating both the spatial and temporal information. 
We observe that almost all the Siamese Networks do not perform the online 
model update. It would be a great challenge to update the model during the 
tracking while maintaining the robustness of the Siamese trackers. Other 
deep features such as RNN, Residual Net and GAN can be exploited within the 
Siamese networks to improve the tracking performance. Zero-shot and one-
shot learning are getting popular due to the limited data issue. Integration of 
zero-shot and one-shot with Siamese trackers is yet to be explored in the visual 
object tracking field.

Late merge Intermediate merge Early merge

Definition Inputs are combined 
at the final layer

Inputs are combined well 
before the final layer

Inputs are stacked before 
feeding network

Trackers SiameseFC, CFNet, 
SINT, SIAMRPN

GOTURN, YCNN, EAST CNNSI, SiameseCNN

Output 
(bounding box/
score map/
scores)

All All Scores

Features 
exploitation

Exploits the input 
images separately 
which are more 
discriminative

Initially exploits the 
input images features and 
then fused features are 
exploited which reduces 
the discriminative ability

Inputs are merged and 
then processed which 
reduces the discriminative 
ability of deep CNN 
features

Performance 
(precision and 
success)

Efficient Moderate Moderate

Speed Fast Fast Slow

Table 4. 
Characteristics of Siamese trackers.
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Chapter 2

Multi-Person Tracking Based on
Faster R-CNN and Deep
Appearance Features
Gulraiz Khan, Zeeshan Tariq
and Muhammad Usman Ghani Khan

Abstract

Mostly computer vision problems related to crowd analytics are highly
dependent upon multi-object tracking (MOT) systems. There are two major steps
involved in the design of MOT system: object detection and association. In the first
step, desired objects are detected in every frame of video stream. Detection quality
directly influences the performance of tracking. The second step involves the
correspondence of detected objects in current frame with the previous to obtain
their trajectories. High accuracy in object detection system results in less number of
missing detection and finally produces less fragmented tracks. Better object
association increases the affinity between objects in different frames. This paper
presents a novel algorithm for improved object detection followed by enhanced
object tracking. Object detection accuracy has been increased by employing deep
learning-based Faster region convolutional neural network (Faster R-CNN)
algorithm. Object association is carried out by using appearance and improved
motion features. Evaluation results show that we have enhanced the performance of
current state-of-the-art work by reducing identity switches and fragmentation.

Keywords: face-based tracking, target tracking, object detection, tracking

1. Introduction

Wewitness the truthfulness of the saying of Greek philosopher Aristotle “Man is
by nature a social animal” in our daily life, as we see thousands of humans walk on
roads, terminals, shopping malls, and other public places on a daily basis. They
intentionally or unintentionally keep interacting with each other. They also make
decision on where to go and how to reach their destinations. So their movement is
not always straight away. It changes based on external environmental factors. Study
and analysis of human dynamics play an important role in public security, public
space management, architecture, and design. These tasks are highly dependent
upon proper multi-person tracking (MPT) and trajectory extraction procedure. So
this thing motivated us to contribute in the development of such system which
performs these tasks with real-time speed and high accuracy.

Before moving further we have to know what is meant by multi-object tracking
(MOT). The multiple object tracking is the process of localizing multiple moving
objects over time using a camera as input or capturing device. A unique identity is
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assigned to every detected object. This identity remains specific for that object up to
the certain time period. Based upon these identities, we draw motion trajectories of
objects that are being tracked. We can also make an analysis of the behavior of
objects. Figure 1 depicts the steps involved in multi-object tracking. Here to be
noted that multi-object tracking is different from multi-object detection. Multi-
object detection is sub-part of multi-object tracking. In short object detection is the
process of locating object of interests in a single frame, while MOT is associated
with detecting multiple objects of interests across a series of frames. In tracking the
object detected in next frame should be able to relate same object detected in
previous frame.

MOT has a variety of uses, some of which are human-computer interaction,
surveillance and security, video communication and compression, augmented real-
ity, traffic control, medical imaging, and video editing. Apart from these mentioned
uses, there are some certain reasons which describe why tracking is useful.

• First of all, if there are too many objects detected in a video frame, then
tracking will make it possible to establish the identity of certain objects across
all the frames.

• Second, if there is the case that object detection has failed to detect object, then
it may be still possible to track those objects because tracking system extracts
and stores the location and appearance features of detected objects from the
previous frame.

• Third, tracking methods could perform very efficiently because they perform a
local search in place of a global. So, we can achieve a good performance in
terms of high frame rate for our proposed hybrid system. The proposed system
performs object detection for every nth frame and tracks the target object in
intermediate frames based on their position in the frame and appearance
features.

The proposed work has many applications in different fields, surveillance,
entertainment, gaming, and autonomous vehicles, as shown in Figure 2. This
system also has applications in crowded scene that enables the analysis of each
individual moving opposite to the group movement. Visual surveillance usually
requires the detailed human activity of each individual separately. Detecting
activity for each person separately demands people to be tracked. Precise informa-
tion of a person can be obtained by using previous trajectories of each subject. The
analysis of drawn trajectories for each area can be helpful to find whether a person
has been in forbidden area or not and performing what type of activities (running,
walking, and fighting). Combining the tracking information of two or more
characters can precisely elaborate the interaction between them.

Figure 1.
Flow of steps involved in multi-object tracking.
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Multi-human tracking is also useful for multiplayer interactive games. Two
humans playing fighting game can be easily tracked using MOT. Similarly, in
autonomous vehicle industry, self-driving cars can employ tracking system to
follow some specific vehicle. Based on the tracked vehicle, autonomous vehicles can
take decisions.

We can track an object continuously after the first-time detection. But a tracking
algorithm may sometimes lose track of the objects they are tracking. For instance,
when the movement of the target object is too high, a tracking algorithm may not be
able to maintain the track of the object. So the solution is to use detection and
tracking algorithms together.

In recent years, there has been a lot of focus on MOT because of advancements
in object detection techniques, which increased the robustness of tracking algo-
rithms. So, stat-of-the-art techniques are way better than tradition ones. Most of
traditional techniques do not perform well in real-time environments. For example,
there are some batch-based movement tracking methodologies [1, 2] in which
complete batch is required for tracking the human. Some others are probability-
based systems for finding the track of the subject [3–5]. These methods require a
complete batch of visual frames for processing and tracking the target object. But in
real-time scenarios, there is a continuous stream of frames which are being fed to
the system, and their number increases by time duration. So it is impossible to
convert into batch and perform tracking on real-time bases.

1.1 Challenges in tracking systems

Recent advancements in object detections have made MOT more realistic. Mul-
tiple object tracking requires precise tracking of multiple objects based on apparent
identity and relative position. MOT paradigm demands entire video batch at the
same time and applies global optimization for finding the associations. Individuals
in live stream need to be tracked based on history of each individual in the stream.
The strong basic emphasis of this work is on the time efficiency and less number of
identity switches.

The first and foremost topic of concern in the development of tracking system is
time efficiency. Due to limitations of batch-based tracking algorithms, there are
certain challenges to implement these systems in real-time scenarios. A plethora of
work has been done to compete related challenges to make multi-person tracking
and trajectory drawing real time and robust. A lot of efforts are being made to move
tracking system from batch based to real time.

Figure 2.
Applications of multi-object tracking system.
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it may be still possible to track those objects because tracking system extracts
and stores the location and appearance features of detected objects from the
previous frame.

• Third, tracking methods could perform very efficiently because they perform a
local search in place of a global. So, we can achieve a good performance in
terms of high frame rate for our proposed hybrid system. The proposed system
performs object detection for every nth frame and tracks the target object in
intermediate frames based on their position in the frame and appearance
features.

The proposed work has many applications in different fields, surveillance,
entertainment, gaming, and autonomous vehicles, as shown in Figure 2. This
system also has applications in crowded scene that enables the analysis of each
individual moving opposite to the group movement. Visual surveillance usually
requires the detailed human activity of each individual separately. Detecting
activity for each person separately demands people to be tracked. Precise informa-
tion of a person can be obtained by using previous trajectories of each subject. The
analysis of drawn trajectories for each area can be helpful to find whether a person
has been in forbidden area or not and performing what type of activities (running,
walking, and fighting). Combining the tracking information of two or more
characters can precisely elaborate the interaction between them.

Figure 1.
Flow of steps involved in multi-object tracking.
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Multi-human tracking is also useful for multiplayer interactive games. Two
humans playing fighting game can be easily tracked using MOT. Similarly, in
autonomous vehicle industry, self-driving cars can employ tracking system to
follow some specific vehicle. Based on the tracked vehicle, autonomous vehicles can
take decisions.

We can track an object continuously after the first-time detection. But a tracking
algorithm may sometimes lose track of the objects they are tracking. For instance,
when the movement of the target object is too high, a tracking algorithm may not be
able to maintain the track of the object. So the solution is to use detection and
tracking algorithms together.

In recent years, there has been a lot of focus on MOT because of advancements
in object detection techniques, which increased the robustness of tracking algo-
rithms. So, stat-of-the-art techniques are way better than tradition ones. Most of
traditional techniques do not perform well in real-time environments. For example,
there are some batch-based movement tracking methodologies [1, 2] in which
complete batch is required for tracking the human. Some others are probability-
based systems for finding the track of the subject [3–5]. These methods require a
complete batch of visual frames for processing and tracking the target object. But in
real-time scenarios, there is a continuous stream of frames which are being fed to
the system, and their number increases by time duration. So it is impossible to
convert into batch and perform tracking on real-time bases.

1.1 Challenges in tracking systems

Recent advancements in object detections have made MOT more realistic. Mul-
tiple object tracking requires precise tracking of multiple objects based on apparent
identity and relative position. MOT paradigm demands entire video batch at the
same time and applies global optimization for finding the associations. Individuals
in live stream need to be tracked based on history of each individual in the stream.
The strong basic emphasis of this work is on the time efficiency and less number of
identity switches.

The first and foremost topic of concern in the development of tracking system is
time efficiency. Due to limitations of batch-based tracking algorithms, there are
certain challenges to implement these systems in real-time scenarios. A plethora of
work has been done to compete related challenges to make multi-person tracking
and trajectory drawing real time and robust. A lot of efforts are being made to move
tracking system from batch based to real time.

Figure 2.
Applications of multi-object tracking system.
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The second and important area of interest includes finding the solution of the
problem of identity switches. Identity switch means how many times the particular
object changes its identity number across all the frames or in a specific time dura-
tion. Identity switches mostly occur due to missed detection of object in between
frames. The other reason is occlusion between different objects which causes iden-
tity switches.

The third one is fragmentation issue. Fragmentation occurs when identity switch
does not occur but detection of object is missing in some frames, and due to this a
fragmented trajectory is generated, meaning tracking breaks where human is not
detected.

As we have understood that the problem of identity switches is due to missing
detections. So there are two possible solutions for this problem. Solution one is to
reduce or eliminate the number of missing object detection in frames. This can be
done by improving the object detection algorithm. We have proposed a solution for
this problem, which uses the deep learning-based algorithm to detect a person by
detecting their shoulder, head, or complete body.

But the problem of identity switches will still persist due to occlusion mecha-
nism. Here comes the second solution, which is to make use of appearance and
localization features of objects. As every object have a different location in the
frame and different appearance relative to each other, we can build a tracking
algorithm which will track multiple objects in a series of frames based on these
features. Face recognition can also be used to reduce the number of identity
switches. Based upon appearance and motion features, we can relate a trajectory
fragmentation of one object with the other fragmentation of that object and can
complete the trajectory path. The complete process is shown in Figure 3.

One of the recent available tracking systems is simple online and real-time
tracking (SORT) [6] that tried to overcome these challenges. It is a simple frame-
work to track persons in real time. SORT utilizes the Kalman filter features on input
frames. Hungarian algorithm is employed to find the association in visual tracks.
Their proposed system is only applicable for human tracking in different appear-
ance scenes. This system still involves identity switch problem.

Another tracking system, simple online and real-time tracking with a deep
association metric (Deep SORT) [7], utilized apparent features extracted from deep
convolution neural network (CNN) for tracking the individuals. Deep SORT gen-
erates a cost matrix based on motion information and appearance features to avoid
missing tracking because of occlusion or missed detection of persons. Their system
includes convolution neural network for a person’s apparent features trained on
person reidentification dataset. Deep SORT has a high rate of missed detection for
elevated view, crowded view, and distant view because detected humans are
obtained from pre-trained models of object detection.

In this paper, we proposed a novel technique for individual human detection and
tracking. We provide a unique real-time tracking using motion information and
appearance information. Our system employs convolution neural network to pro-
vide the visual appearance features for tracking the individual. The CNN for visual

Figure 3.
Fragmentation removal steps.
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appearance is trained on person reidentification dataset [8]. Appearance features
allow us to improve the tracking results by making it robust for occlusion and
detection after multiple frames.

1.2 Major contribution

The proposed system improved the overall detection and tracking problem in
MOT problem. Furthermore, we have also improved the detection of human by re-
training the Faster region convolutional neural network (Faster R-CNN) on human
body parts. Provided better hardware resources, the proposed system outperforms
the existing state-of-the-art systems in terms of accuracy and performance. Major
contributions of our system are manifold.

• Improved detection by Faster R-CNN trained on human pedestrian dataset
from different views.

• We also improved the feature set for tracking the subjects that includes color
features, area, mutual distance, and HSV histograms for each region of interest.

• The system behaves better than both SORT and Deep SORT in real-time
scenarios for pedestrian tracking.

The rest of the paper is divided into different sections. Section 2 provides the
detailed background of previous methodologies for MOT systems. Methodology is
described in Section 3 along with complete architecture. Section 4 throws light on
experimentation. The last section concludes the proposed system for human track-
ing in a different environment.

2. Background

With the improvement in multi-object detection, research community has
started focusing on tracking of every single object in different environments. The
complete MOT problem can be considered as an association problem in which the
basic objective is to associate the detected objects. Tracking is carried out after
object detection using some object detector. In this section, we will focus on the
background of the following systems:

• Object detection algorithms as humans need to be detected before person
tracking

• Face recognition systems for target tracking based on recognized faces

• Tracking algorithms for reviewing already available tracking algorithms

2.1 Object detection in past years

In the early 1990s, object detection was carried out using template matching
based algorithms [9], where a template of the specific object is slid over the input
image to find the best possible match in the input image. In the late 1990s, the focus
was shifted toward the geometric appearance-based object detection [10, 11]. In
these methods, the basic focus was on height, width, angles, and other geometric
properties.
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The second and important area of interest includes finding the solution of the
problem of identity switches. Identity switch means how many times the particular
object changes its identity number across all the frames or in a specific time dura-
tion. Identity switches mostly occur due to missed detection of object in between
frames. The other reason is occlusion between different objects which causes iden-
tity switches.

The third one is fragmentation issue. Fragmentation occurs when identity switch
does not occur but detection of object is missing in some frames, and due to this a
fragmented trajectory is generated, meaning tracking breaks where human is not
detected.

As we have understood that the problem of identity switches is due to missing
detections. So there are two possible solutions for this problem. Solution one is to
reduce or eliminate the number of missing object detection in frames. This can be
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frame and different appearance relative to each other, we can build a tracking
algorithm which will track multiple objects in a series of frames based on these
features. Face recognition can also be used to reduce the number of identity
switches. Based upon appearance and motion features, we can relate a trajectory
fragmentation of one object with the other fragmentation of that object and can
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One of the recent available tracking systems is simple online and real-time
tracking (SORT) [6] that tried to overcome these challenges. It is a simple frame-
work to track persons in real time. SORT utilizes the Kalman filter features on input
frames. Hungarian algorithm is employed to find the association in visual tracks.
Their proposed system is only applicable for human tracking in different appear-
ance scenes. This system still involves identity switch problem.

Another tracking system, simple online and real-time tracking with a deep
association metric (Deep SORT) [7], utilized apparent features extracted from deep
convolution neural network (CNN) for tracking the individuals. Deep SORT gen-
erates a cost matrix based on motion information and appearance features to avoid
missing tracking because of occlusion or missed detection of persons. Their system
includes convolution neural network for a person’s apparent features trained on
person reidentification dataset. Deep SORT has a high rate of missed detection for
elevated view, crowded view, and distant view because detected humans are
obtained from pre-trained models of object detection.

In this paper, we proposed a novel technique for individual human detection and
tracking. We provide a unique real-time tracking using motion information and
appearance information. Our system employs convolution neural network to pro-
vide the visual appearance features for tracking the individual. The CNN for visual
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appearance is trained on person reidentification dataset [8]. Appearance features
allow us to improve the tracking results by making it robust for occlusion and
detection after multiple frames.

1.2 Major contribution

The proposed system improved the overall detection and tracking problem in
MOT problem. Furthermore, we have also improved the detection of human by re-
training the Faster region convolutional neural network (Faster R-CNN) on human
body parts. Provided better hardware resources, the proposed system outperforms
the existing state-of-the-art systems in terms of accuracy and performance. Major
contributions of our system are manifold.

• Improved detection by Faster R-CNN trained on human pedestrian dataset
from different views.

• We also improved the feature set for tracking the subjects that includes color
features, area, mutual distance, and HSV histograms for each region of interest.

• The system behaves better than both SORT and Deep SORT in real-time
scenarios for pedestrian tracking.

The rest of the paper is divided into different sections. Section 2 provides the
detailed background of previous methodologies for MOT systems. Methodology is
described in Section 3 along with complete architecture. Section 4 throws light on
experimentation. The last section concludes the proposed system for human track-
ing in a different environment.

2. Background

With the improvement in multi-object detection, research community has
started focusing on tracking of every single object in different environments. The
complete MOT problem can be considered as an association problem in which the
basic objective is to associate the detected objects. Tracking is carried out after
object detection using some object detector. In this section, we will focus on the
background of the following systems:

• Object detection algorithms as humans need to be detected before person
tracking

• Face recognition systems for target tracking based on recognized faces

• Tracking algorithms for reviewing already available tracking algorithms

2.1 Object detection in past years

In the early 1990s, object detection was carried out using template matching
based algorithms [9], where a template of the specific object is slid over the input
image to find the best possible match in the input image. In the late 1990s, the focus
was shifted toward the geometric appearance-based object detection [10, 11]. In
these methods, the basic focus was on height, width, angles, and other geometric
properties.
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In the 2000s, object detection paradigm was transferred to low-level features
based on some statistical classifiers such as local binary pattern (LBP) [12], histo-
gram of oriented gradient [13], scale-invariant feature transform [14], and covari-
ance [15]. Feature extraction-based object detection and classification involved
training of machine based on extracted features.

For many years in computer vision field, handcrafted traditional features were
used for object detection. But, with the progress in deep learning after
accomplishing the remarkable performance in 2012 image classification challenge
[16], convolution neural networks are being used for this purpose. After the success
of object classification in [16], researchers transferred their attentions toward object
detection and classification. Deep convolution neural networks work exceptionally
good for extraction of local and global features in terms of edges, texture, and
appearance.

In recent years, the research community has moved in the direction of region-
based networks for object detection. This type of object detection is being used in
different applications like video description [17]. In region-based algorithms for
object detection, convolution features are extracted over proposed regions followed
by categorization of the region into a specific class.

With the attractive performance of AlexNet [16], Girshick et al. [18] proposed
the idea of object detection using convolution neural network. They employed
selective search for proposing the areas where the potential objects can be found
[19]. They called their object detection network as region convolution neural net-
work (R-CNN). The basic flow of region convolution neural network (R-CNN) can
be described as follows:

• Regions are proposed for each object in the input image using selective
search [19].

• Proposed regions are resized to same consistent size for classification of the
proposal into predefined classes based on extracted CNN features of regions.

• Linear SVM classifier replaced the softmax layer for training the system on
fixed length CNN features.

• Finally, a bounding box regressor is utilized for perfect localization of object.

Although the proposed R-CNN was a major breakthrough in the field of object
detection, it has some significant weaknesses:

• Training processes is quite slow because R-CNN has different separate stages
to train.

• Regions are proposed by selective search that is itself a slow process.

• Training the separate SVM classifier is expensive as CNN features are extracted
for each individual region that makes the training of SVM even more
challenging.

• Object detection is slow because CNN features are extracted for individual
proposal for each testing image.

To overcome the feature extraction issue for each proposal, Kaiming He et al.
[20] proposed spatial pyramid pooling (SPP). The basic idea was that the
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convolution layers accept the input of any size; fully connected layers force input to
be fixed size for making matrix multiplication possible. They used SPP layer after
last convolution layer for obtaining the fix-sized features to feed in fully connected
layer. Using SPPNet R-CNN performance improved comprehensively. SPPNet
extracts convolution features on input image only once for proposals of different
sizes. This network improves the performance of testing, but it does not improve
the performance of training the R-CNN. Furthermore, weights of convolution
layers before SPP layer cannot be changed which limits the fine-tuning process.

The main contributor of R-CNN, Girshik et al. [21], proposed Fast-ECNN to
address some problems of R-CNN and SPPNet. Fast R-CNN employs the idea of
computation sharing of convolution for different proposed regions. It adds region of
interest (ROI)-pooling layer after the last convolution layer for generating fix-sized
features of individual proposals. The fix-sized features from ROI-pooling layers are
fed to the stack of fully connected layers that further split down into two branch
networks: one acts as the object classification network and the other for bounding
box regression. They claimed that the overall performance of training step of R-
CNN is enhanced by three times and ten times for testing.

Although Fast R-CNN improved the performance of R-CNN notably, it still uses
selective search as a region proposal network (RPN). Region proposal step con-
sumes the time comprehensively that acts as the bottleneck in Fast R-CNN. Modern
advancements in object localization using deep neural network [22] motivated Ren
et al. [23] to employ CNN for replacing slow process of region proposal using
selective search. They proposed efficient RPN for proposing proposals for objects.
In Faster R-CNN, RPN and Fast R-CNN share the convolution layers for region
proposal and region classification, respectively. Faster R-CNN is a purely convolu-
tion neural network without any handcrafted features that employ fully convolu-
tion neural network (FCN) for region proposal. They claimed that Faster R-CNN
can work at 5fps for testing phase.

Redmon et al. [24] proposed You Only Look Once (YOLO) for object detection.
They completely dropped the region proposal step; YOLO splits the complete image
into grids and predicts the detection on the bases of candidate regions. YOLO
divides the complete image into S� S grids. Each grid has a class probability C, B as
the bounding box locations and a probability for each box. Removing the RPN step
enhances the performance of the detection; YOLO can detect the objects while
running in real time with about 45 fps.

2.2 Face recognition over past years

In current era, biometric identification systems are required more than ever
because of the improved security requirement in the globe. There have been a lot of
efforts by researchers for face recognition technology (FRT). The basic division of
FRT can be the traditional handcrafted feature-based identification and deep
learning-based identification.

2.2.1 Handcrafted feature-based identification

Eigenface [25] and Fisherface [26] were commonly used approaches in the last
decade for face identification. Eigenfaces reduced the feature points for measuring
maximum change in face features using minimum set of features. For reducing the
features, they used principal component analysis (PCA). Linear face can be recog-
nized based on linear structure of the face using Eigenfaces. In contrast with the
Eigenfaces, Fisherfaces are a supervised learning-based face identification method
based on traditional texture features. Fisherfaces employ linear discriminator
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In the 2000s, object detection paradigm was transferred to low-level features
based on some statistical classifiers such as local binary pattern (LBP) [12], histo-
gram of oriented gradient [13], scale-invariant feature transform [14], and covari-
ance [15]. Feature extraction-based object detection and classification involved
training of machine based on extracted features.

For many years in computer vision field, handcrafted traditional features were
used for object detection. But, with the progress in deep learning after
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[16], convolution neural networks are being used for this purpose. After the success
of object classification in [16], researchers transferred their attentions toward object
detection and classification. Deep convolution neural networks work exceptionally
good for extraction of local and global features in terms of edges, texture, and
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In recent years, the research community has moved in the direction of region-
based networks for object detection. This type of object detection is being used in
different applications like video description [17]. In region-based algorithms for
object detection, convolution features are extracted over proposed regions followed
by categorization of the region into a specific class.

With the attractive performance of AlexNet [16], Girshick et al. [18] proposed
the idea of object detection using convolution neural network. They employed
selective search for proposing the areas where the potential objects can be found
[19]. They called their object detection network as region convolution neural net-
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be described as follows:

• Regions are proposed for each object in the input image using selective
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• Proposed regions are resized to same consistent size for classification of the
proposal into predefined classes based on extracted CNN features of regions.

• Linear SVM classifier replaced the softmax layer for training the system on
fixed length CNN features.

• Finally, a bounding box regressor is utilized for perfect localization of object.

Although the proposed R-CNN was a major breakthrough in the field of object
detection, it has some significant weaknesses:

• Training processes is quite slow because R-CNN has different separate stages
to train.

• Regions are proposed by selective search that is itself a slow process.

• Training the separate SVM classifier is expensive as CNN features are extracted
for each individual region that makes the training of SVM even more
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• Object detection is slow because CNN features are extracted for individual
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To overcome the feature extraction issue for each proposal, Kaiming He et al.
[20] proposed spatial pyramid pooling (SPP). The basic idea was that the

30

Visual Object Tracking with Deep Neural Networks

convolution layers accept the input of any size; fully connected layers force input to
be fixed size for making matrix multiplication possible. They used SPP layer after
last convolution layer for obtaining the fix-sized features to feed in fully connected
layer. Using SPPNet R-CNN performance improved comprehensively. SPPNet
extracts convolution features on input image only once for proposals of different
sizes. This network improves the performance of testing, but it does not improve
the performance of training the R-CNN. Furthermore, weights of convolution
layers before SPP layer cannot be changed which limits the fine-tuning process.

The main contributor of R-CNN, Girshik et al. [21], proposed Fast-ECNN to
address some problems of R-CNN and SPPNet. Fast R-CNN employs the idea of
computation sharing of convolution for different proposed regions. It adds region of
interest (ROI)-pooling layer after the last convolution layer for generating fix-sized
features of individual proposals. The fix-sized features from ROI-pooling layers are
fed to the stack of fully connected layers that further split down into two branch
networks: one acts as the object classification network and the other for bounding
box regression. They claimed that the overall performance of training step of R-
CNN is enhanced by three times and ten times for testing.

Although Fast R-CNN improved the performance of R-CNN notably, it still uses
selective search as a region proposal network (RPN). Region proposal step con-
sumes the time comprehensively that acts as the bottleneck in Fast R-CNN. Modern
advancements in object localization using deep neural network [22] motivated Ren
et al. [23] to employ CNN for replacing slow process of region proposal using
selective search. They proposed efficient RPN for proposing proposals for objects.
In Faster R-CNN, RPN and Fast R-CNN share the convolution layers for region
proposal and region classification, respectively. Faster R-CNN is a purely convolu-
tion neural network without any handcrafted features that employ fully convolu-
tion neural network (FCN) for region proposal. They claimed that Faster R-CNN
can work at 5fps for testing phase.

Redmon et al. [24] proposed You Only Look Once (YOLO) for object detection.
They completely dropped the region proposal step; YOLO splits the complete image
into grids and predicts the detection on the bases of candidate regions. YOLO
divides the complete image into S� S grids. Each grid has a class probability C, B as
the bounding box locations and a probability for each box. Removing the RPN step
enhances the performance of the detection; YOLO can detect the objects while
running in real time with about 45 fps.

2.2 Face recognition over past years

In current era, biometric identification systems are required more than ever
because of the improved security requirement in the globe. There have been a lot of
efforts by researchers for face recognition technology (FRT). The basic division of
FRT can be the traditional handcrafted feature-based identification and deep
learning-based identification.

2.2.1 Handcrafted feature-based identification

Eigenface [25] and Fisherface [26] were commonly used approaches in the last
decade for face identification. Eigenfaces reduced the feature points for measuring
maximum change in face features using minimum set of features. For reducing the
features, they used principal component analysis (PCA). Linear face can be recog-
nized based on linear structure of the face using Eigenfaces. In contrast with the
Eigenfaces, Fisherfaces are a supervised learning-based face identification method
based on traditional texture features. Fisherfaces employ linear discriminator
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analysis for finding the uniquely describing data points. Both of these methodolo-
gies extract features in terms of Euclidean distance to identify the face.

Researchers have also used LBP for facial recognition [27, 28]. Hadid et al. [27]
exploited LBP features for face recognition. They worked on face detection and
recognition. Face detection was achieved by training a support vector machine of
second degree on extracted features. Face recognition was achieved using LBP-
based texture descriptor. Machine was trained on these descriptors for face recog-
nition.

2.2.2 Deep learning-based identification

Advancement in convolution neural networks has achieved remarkable perfor-
mance by increasing accuracy and efficiency. The very basic assumption in deep
neural networks is to feed as much data as possible for getting better results.
Requirement of huge data makes deep learning-based approaches data hungry.

Lu et al. [29] implemented a residual network (ResNet)-based model for face
recognition. They divided their complete network into three networks: one back-
bone network called trunk network and two other networks called branch networks
that emit from trunk network. The central network is trained once for learning the
deep features for face identification. The central network is generated using residual
blocks. Resolution-specific coupled mapping is employed in branch network for
training. Input image and comparison image from gallery are transformed to same
representation for comparing. Based on distance the decision is made about identi-
fied face.

Schroff et al. [30] developed a deep neural network based on convolution neural
network and then named it as FaceNet. Their proposed system extracts the feature
space in terms of Euclidean space. They optimized the feature mapping of facial
structure using deep convolution neural network. Their proposed system, FaceNet,
generates a feature vector of 128 dimensions that is optimized using triplet loss.
Their proposed triplet loss comprises three face images: two from the same pair and
one from a separate individual. The loss function tries to separate the same individ-
ual faces from different individual faces. Their triplet loss function is trained to
minimize the distance between the same identity faces and maximize the distance
between different identities. Inception model with little modification is employed
in FaceNet for extracting convolution features. They tested their system on LFW
dataset [31].

A research group from Facebook, Taigman et al. [32], developed a state-of-the-
art system for face alignment and face recognition, named as DeepFace. They used
deep convolution neural network having nine convolution layers for extracting
facial features. Facial landmarks are used in their system for face alignment. The
facial landmarks are estimated using support vector regressor (SVR). Extracted
features from nine-layered network are passed to Softmax layer for classification.
They employed cross-entropy to reduce the loss of correct labels. They also pro-
posed a huge face recognition dataset named as Social Face Dataset [32]. They used
their dataset for training the system for face identification.

2.3 Multi-object tracking

Multiple researchers have focused on movement and spatial features for tracking
the multiple objects [33, 34]. Some of the researchers have focused on appearance
features for capturing the associations between different detections [2, 35].
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There are some traditional methods that make prediction on frame-by-frame
basis. These traditional approaches involve multiple hypothesis tracking (MHT)
[36] and joint probability data association filter (JPDAF) [37]. Both of these old
methodologies require a lot of computation for tracking the detected objects. The
complexity of these methodologies increases exponentially with increasing the
number of trackable objects that makes them really slow to be used for online
applications in complex environment. In JPDAF hypothesis of single state is gener-
ated based on relation between individual measurement and association likelihood.
In MHT, a complete set of hypotheses is taken into consideration for tracking
followed by post pruning for tractability.

Rezatofighi et al. [1] made an effort to improve the JPDAF performance by
providing approximation of JPDA. They exploited recent advancement in solving
m-best solution for an integer program. The main advantage of this system is to
make JPDA less complex and more tractable. They redefined the method for calcu-
lating individual JPDAF assignment in terms of a solution to a linear program.
Another group of researchers Kim et al. [2] used appearance-based features for
tracking the target. They improved the MHT by pruning the graph of MHT for
achieving state-of-the-art performance. They employed regularized least squares
for increasing the efficiency of the MHT methodology.

These two improvements perform quite well as compared to the legacy
implementations, but these two methods still have much delay in the decision-
making step which makes these methods inappropriate for real-time applications.
These methods require large computational resources with increasing the individual
density.

Some researchers worked on graph theory for tracking human. Kayumbi et al.
[38] proposed an algorithm to find football players’ trajectories based on distributed
sensing algorithm in multi-camera view. Their algorithm starts with mapping of
camera view plane to virtual top-view of the ground plane. Finally, they exploited
graph theory for tracking each individual in the ground plane.

Some online tracking methods utilize appearance features of individuals for
tracking [39, 40]. These models extract apparent look features of individuals. Both
of the systems provide accurate appearance descriptors for providing guidance to
data association. First system incorporates temporal appearance of individuals along
with the spatial appearance features. Their appearance model is learned by applying
incremental evaluation after tuning the parameters in each iteration. In the second
system, Markov decision process (MDP) is employed to map the age of the detected
object in terms of Markov chain. MDP decides the tracks based on current status
and history of the target.

Recently, some of the researchers worked on simple online tracking and tried to
make tracking real time in live stream [6, 7]. These systems are named as simple
online and real-time tracking and simple online and real-time tracking with a deep
association metric, respectively. Both of these systems are two successive versions
of the same methodology. In both systems Kalman filter is employed to find the
movement features of the target. These systems used intersection over union,
central position, height, width, and velocity as the core features for tracking. In
Deep SORT, convolution features for targets appearance are also used along with
motion features to reduce the missing tracks after occlusions and missed detections
in multiple frames. Despite the real-time performance, these systems miss tracks
after the changed posture and missed detection in a large number of frames.

Our proposed system reduces the limitation of missed detection of the human
body, and it also reduces the track missed by incorporating extra features and better
human detection system.
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analysis for finding the uniquely describing data points. Both of these methodolo-
gies extract features in terms of Euclidean distance to identify the face.

Researchers have also used LBP for facial recognition [27, 28]. Hadid et al. [27]
exploited LBP features for face recognition. They worked on face detection and
recognition. Face detection was achieved by training a support vector machine of
second degree on extracted features. Face recognition was achieved using LBP-
based texture descriptor. Machine was trained on these descriptors for face recog-
nition.

2.2.2 Deep learning-based identification

Advancement in convolution neural networks has achieved remarkable perfor-
mance by increasing accuracy and efficiency. The very basic assumption in deep
neural networks is to feed as much data as possible for getting better results.
Requirement of huge data makes deep learning-based approaches data hungry.

Lu et al. [29] implemented a residual network (ResNet)-based model for face
recognition. They divided their complete network into three networks: one back-
bone network called trunk network and two other networks called branch networks
that emit from trunk network. The central network is trained once for learning the
deep features for face identification. The central network is generated using residual
blocks. Resolution-specific coupled mapping is employed in branch network for
training. Input image and comparison image from gallery are transformed to same
representation for comparing. Based on distance the decision is made about identi-
fied face.

Schroff et al. [30] developed a deep neural network based on convolution neural
network and then named it as FaceNet. Their proposed system extracts the feature
space in terms of Euclidean space. They optimized the feature mapping of facial
structure using deep convolution neural network. Their proposed system, FaceNet,
generates a feature vector of 128 dimensions that is optimized using triplet loss.
Their proposed triplet loss comprises three face images: two from the same pair and
one from a separate individual. The loss function tries to separate the same individ-
ual faces from different individual faces. Their triplet loss function is trained to
minimize the distance between the same identity faces and maximize the distance
between different identities. Inception model with little modification is employed
in FaceNet for extracting convolution features. They tested their system on LFW
dataset [31].

A research group from Facebook, Taigman et al. [32], developed a state-of-the-
art system for face alignment and face recognition, named as DeepFace. They used
deep convolution neural network having nine convolution layers for extracting
facial features. Facial landmarks are used in their system for face alignment. The
facial landmarks are estimated using support vector regressor (SVR). Extracted
features from nine-layered network are passed to Softmax layer for classification.
They employed cross-entropy to reduce the loss of correct labels. They also pro-
posed a huge face recognition dataset named as Social Face Dataset [32]. They used
their dataset for training the system for face identification.

2.3 Multi-object tracking

Multiple researchers have focused on movement and spatial features for tracking
the multiple objects [33, 34]. Some of the researchers have focused on appearance
features for capturing the associations between different detections [2, 35].
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There are some traditional methods that make prediction on frame-by-frame
basis. These traditional approaches involve multiple hypothesis tracking (MHT)
[36] and joint probability data association filter (JPDAF) [37]. Both of these old
methodologies require a lot of computation for tracking the detected objects. The
complexity of these methodologies increases exponentially with increasing the
number of trackable objects that makes them really slow to be used for online
applications in complex environment. In JPDAF hypothesis of single state is gener-
ated based on relation between individual measurement and association likelihood.
In MHT, a complete set of hypotheses is taken into consideration for tracking
followed by post pruning for tractability.

Rezatofighi et al. [1] made an effort to improve the JPDAF performance by
providing approximation of JPDA. They exploited recent advancement in solving
m-best solution for an integer program. The main advantage of this system is to
make JPDA less complex and more tractable. They redefined the method for calcu-
lating individual JPDAF assignment in terms of a solution to a linear program.
Another group of researchers Kim et al. [2] used appearance-based features for
tracking the target. They improved the MHT by pruning the graph of MHT for
achieving state-of-the-art performance. They employed regularized least squares
for increasing the efficiency of the MHT methodology.

These two improvements perform quite well as compared to the legacy
implementations, but these two methods still have much delay in the decision-
making step which makes these methods inappropriate for real-time applications.
These methods require large computational resources with increasing the individual
density.

Some researchers worked on graph theory for tracking human. Kayumbi et al.
[38] proposed an algorithm to find football players’ trajectories based on distributed
sensing algorithm in multi-camera view. Their algorithm starts with mapping of
camera view plane to virtual top-view of the ground plane. Finally, they exploited
graph theory for tracking each individual in the ground plane.

Some online tracking methods utilize appearance features of individuals for
tracking [39, 40]. These models extract apparent look features of individuals. Both
of the systems provide accurate appearance descriptors for providing guidance to
data association. First system incorporates temporal appearance of individuals along
with the spatial appearance features. Their appearance model is learned by applying
incremental evaluation after tuning the parameters in each iteration. In the second
system, Markov decision process (MDP) is employed to map the age of the detected
object in terms of Markov chain. MDP decides the tracks based on current status
and history of the target.

Recently, some of the researchers worked on simple online tracking and tried to
make tracking real time in live stream [6, 7]. These systems are named as simple
online and real-time tracking and simple online and real-time tracking with a deep
association metric, respectively. Both of these systems are two successive versions
of the same methodology. In both systems Kalman filter is employed to find the
movement features of the target. These systems used intersection over union,
central position, height, width, and velocity as the core features for tracking. In
Deep SORT, convolution features for targets appearance are also used along with
motion features to reduce the missing tracks after occlusions and missed detections
in multiple frames. Despite the real-time performance, these systems miss tracks
after the changed posture and missed detection in a large number of frames.

Our proposed system reduces the limitation of missed detection of the human
body, and it also reduces the track missed by incorporating extra features and better
human detection system.
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3. Methodology and framework

Multi-object tracking (MOT) in real time with good accuracy has been a chal-
lenge from decades. Many systems have been developed for this task during the last
few decades, using tradition computer vision techniques. But due to rebirth of deep
learning, object tracking has been robust. As object detection is the backbone of
object tracking systems and deep learning techniques are good at object detection
problem with real-time speed and accuracy, it is a better choice to use deep learning
algorithm for detection purpose.

We have solved the MOT problem using state-of-the-art techniques. The pro-
posed method is explained by the key components of human detection, position
prediction of objects in future frames, tracklet associations, and managing the life
span of identities for tracked objects. The mostly used state-of-the-art object detec-
tion algorithm is YOLO [24] which is fast enough to detect multiple objects in real
time, but it has the problem of missed detections which leads to fragmentation and
identity switch problems. So we conduct proper survey to choose the best detection
algorithm for the problem. We have divided this methodology into sub-components
for detection, track handling, and association as follows:

• Faster R-CNN for human detection

• Kalman filter

• CNN for appearance features

• Hungarian algorithm for tracking nearby rectangles

• Additional features like area, relative distance, color, nearest color, and HSV

The basic modules of the proposed system are described in the following sections.

3.1 Person detection using Faster R-CNN

As mentioned above, with the advancement in deep learning-based algorithms,
real-world object detection has been a lot easier. So we have employed Faster
Region Convolutional Neural Network (Faster R-CNN) detection network [23].

There are two stages of Faster R-CNN. In the first stage, region proposal
network (RPN) generates the anchors on the regions present in the image where
there might be a high possibility of the presence of an object. This process is further
divided into three steps:

1. First step involves the process of feature extraction by using convolution
neural network. Convolution feature maps are generated at the end of last
layer.

2. In second step, a sliding window approach is used on these feature maps to
generate anchor boxes. These anchor boxes are further refined in the next step
to indicate the presence of objects.

3. Finally, in the third step, generated anchors are refined using a smaller
network which calculates the loss function to select top anchors containing
objects.
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For region proposal network, prerequisite step is extraction of convolution fea-
tures that are extracted using backbone network.

3.1.1 Residual Network-30 (backbone network)

As object detection problem is dependent upon feature extraction process to
produce good quality proposals. So we used ResNet-based model containing 30
layers named as ResNet-30. ResNet or residual networks are special type of convo-
lution neural networks which have residual connections in between layers. The
benefit of these residual connections is that the network is able to learn local, global,
and intermediate features in parallel, making it more efficient as compared to
simple CNN. Residual connections also help in avoiding vanishing gradients prob-
lem, which is a major issue in networks containing high number of layers. So,
ResNet-30 is able to learn more patterns than simple CNN by grasping more infor-
mation. There are two types of short connections used in ResNet in different
scenarios as described below:

1. In the first case, when the inputs and outputs are of the same dimensions,
shortcuts (x) can be used directly. As illustrated in Eq. 1

l ¼ F x;Wið Þ þ x (1)

2. In the second case, we have changed dimensions, and the identity mapping
is performed by padding extra zero entries to make dimension suitable.
Another option is to use the projection shortcut to match the dimension (done
by 1� 1 conv) using Eq. 2:

l ¼ F x;Wið Þ þWjx (2)

where W is the weight matrix, x is the feature vector from previous layer, and
F is the convolution function. Pictorial representation for residual block is given in
Figure 4.

3.1.2 Anchor generation

Now to propose the regions in image which contains the high probability of
presence of objects, the sliding window approach is used. A sliding window moves
across the feature maps to generate anchors. The sliding window has the size of

Figure 4.
Basic building block of residual learning.
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• Additional features like area, relative distance, color, nearest color, and HSV

The basic modules of the proposed system are described in the following sections.
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As mentioned above, with the advancement in deep learning-based algorithms,
real-world object detection has been a lot easier. So we have employed Faster
Region Convolutional Neural Network (Faster R-CNN) detection network [23].

There are two stages of Faster R-CNN. In the first stage, region proposal
network (RPN) generates the anchors on the regions present in the image where
there might be a high possibility of the presence of an object. This process is further
divided into three steps:

1. First step involves the process of feature extraction by using convolution
neural network. Convolution feature maps are generated at the end of last
layer.

2. In second step, a sliding window approach is used on these feature maps to
generate anchor boxes. These anchor boxes are further refined in the next step
to indicate the presence of objects.

3. Finally, in the third step, generated anchors are refined using a smaller
network which calculates the loss function to select top anchors containing
objects.
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lution neural networks which have residual connections in between layers. The
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and intermediate features in parallel, making it more efficient as compared to
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lem, which is a major issue in networks containing high number of layers. So,
ResNet-30 is able to learn more patterns than simple CNN by grasping more infor-
mation. There are two types of short connections used in ResNet in different
scenarios as described below:

1. In the first case, when the inputs and outputs are of the same dimensions,
shortcuts (x) can be used directly. As illustrated in Eq. 1
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n� n. In our case n ¼ 3; this means a 3� 3 window is used. A set of nine anchors is
generated for each pixel, having the same center (x, y) for all anchors. All nine
anchors have three multiple aspect ratios and three varieties in scales. Figure 5
represents the nine anchors having the same center point. Anchors with the same
color have the same aspect ratio but different scaling. An intersection of union
(IoU) approach is used to determine how much of these anchors overlapped with
ground-truth bounding boxes. A threshold value is set based on IoU. Mostly anchors
are discarded and some are selected using threshold. Anchors having IoU value >0.7
are considered as object-containing regions and anchors with value <0.3 considered
as background. Eq. 3 represents the formula to find the probability of object based
upon IoU value.

IoU ¼ Anchor ∩ Gt
Anchor ∪ Gt

. 0:7 ¼ Object
, 0:3 ¼ NotObject

�
(3)

3.1.3 Loss function

The selected anchors are further fine-tuned using the loss function at the end of
region proposal network. A shallow network is used for this purpose which per-
forms two tasks: classification and regression. The classification performed here is
binary classification which classifies anchors in one of two classes. The first class is
object and the second is background.

The output of regressor determines the position of predicted bounding box in
terms of four parameters x; y;w; hð Þ, where x and y indicate the center point of
anchor, w stands for width, and h represents the height of anchor box. The formula
of loss function which calculates the loss for both regression and classification is
given in Eq. 4:

L pi; ri
� � ¼ 1

Ncls
∑
i
Gcls pi; p

∗
i

� �þ λ
1

Nreg
∑
i
P ∗
i Greg ri; r ∗i

� �
(4)

RPN is trained to propose regions of interest (ROIs) on feature maps which
are obtained from input image. These RoIs are enclosed in bounding boxes. RPN
outputs different scales of bounding boxes, on feature maps. These bounding boxes
contain high probability of presence of objects.

Now comes the second stage of Faster R-CNN, which is a classification of ROIs
obtained from RPN network. To bring the ROIs in feedable format for the classifier,
a ROI-pooling method is used which uses the pooling mechanism to shape all RoIs
in the same scales. Its purpose is to perform max pooling on inputs of nonuniform
sizes to obtain fix-sized feature maps for each RoI.

Figure 5.
Nine different proposed anchors for each single point.
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3.1.4 ROI classification and regression

Now same-sized feature maps or RoIs obtained from RoI-pooling are further
proceeded for classification and regression purpose. This step runs two stages in
parallel. Bounding box classification and regression loss are calculated based on the
optimization of the loss function. Classification head results in the class score for
each individual category, and regression head resizes the bounding box values
x; y;w; hð Þ to cover complete object. Overall performance and accuracy of Faster R-
CNN is better than all the traditional object detectors. A diagram for Faster R-CNN
is given in Figure 6.

We have trained Faster R-CNN on 4000 annotated images of human heads,
shoulders, and complete bodies which improved detection accuracy efficiently
having only few numbers of miss rate.

3.2 Track handling and state estimation of future frames

Kalman filter is used in its standard form as proposed in [41]. We have defined
tracking scenario on the multidimensional state space x; y; γ; h; s; t; u; vð Þ that con-
sists of the bounding box center location x; yð Þ, with height h, their respective
velocities s; t; u; vð Þ in image coordinates, and aspect ratio γ. We keep on calculating
the total count of frames for every individual track T, starting from previous correct
association ST. When Kalman filter predicts opposite features then this counter is
incremented. When the track is assigned with a previous list, then the counter is
reset to 0. In those tracks that are newly detected and cannot be assigned to any of
the current list, then new track prediction is initiated. For the first three frames,
these tracks are classified as tentative. If the association of a measurement at every
time step t is found, the tracks are kept for further processing and otherwise
deleted.

Figure 6.
Complete framework diagram of Faster R-CNN.
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3.1.4 ROI classification and regression
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tracking scenario on the multidimensional state space x; y; γ; h; s; t; u; vð Þ that con-
sists of the bounding box center location x; yð Þ, with height h, their respective
velocities s; t; u; vð Þ in image coordinates, and aspect ratio γ. We keep on calculating
the total count of frames for every individual track T, starting from previous correct
association ST. When Kalman filter predicts opposite features then this counter is
incremented. When the track is assigned with a previous list, then the counter is
reset to 0. In those tracks that are newly detected and cannot be assigned to any of
the current list, then new track prediction is initiated. For the first three frames,
these tracks are classified as tentative. If the association of a measurement at every
time step t is found, the tracks are kept for further processing and otherwise
deleted.

Figure 6.
Complete framework diagram of Faster R-CNN.

37

Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features
DOI: http://dx.doi.org/10.5772/intechopen.85215



3.2.1 Association of newly predicted states and current states

A traditional approach to find association between the current Kalman states and
newly arrived detections is to use the Hungarian algorithm. We integrated spatial
displacement and apparent features by creating two different metrics. For motion
information, we used Mahalanobis distance between current list of states and newly
arrived states. The Mahalanobis distance removes state estimation uncertainty by
measuring deviations between detection and mean track location. Further, false
associations can be excluded by thresholding at a 90% confidence interval com-
puted from the inverse x2 distribution. We have set the value of threshold t as 9 for
the decision based on Mahalanobis distance.

Mahalanobis distance matrix provides robust association metric when the over-
all motion transition is not high and the Kalman filter framework supply only a
vague approximation of the object position. Specifically, rapid movement of cap-
turing device can lead to displacements, making it uninformed metric for tracking
in the presence of occlusions. Therefore, we integrate a second metric for tracking
the pedestrians; we have utilized a pre-trained convolution network to extract the
bounding box appearance features. The complete architecture of the proposed
convolution neural network is shown in Table 1.

In combination, both techniques support each other by handling different
aspects of association problem. In particular, the Mahalanobis distance matrix is
employed to extract information about object positions based on movement of the
objects for a short period. Along with the distance matrix, we have employed
convolution for appearance feature descriptor; the CNN considers appearance
information for those long-term occluded detection that are not possible to be
captured through motion features. Moreover, we have used some additional fea-
tures like area of human, relative distance between tracked humans, color or nearest
color of object, and HSV to handle occlusions quite efficiently.

Area of human can accommodate the occlusion problem quite well because the
area mostly remains the same during the whole tracking, for example, if a person is
short, they will remain short before and after occlusion which makes it easy to
reidentify a person after a long-time occlusion. Similarly, if someone is sitting on a
wheel chair, their area will be the same throughout the time of tracking.

Name Filter size Stride Output size

Conv 1 3 � 3 1 32� 128� 64

Conv 2 3 � 3 1 32� 128� 64

Max pool 1 3 � 3 2 32� 64� 32

Residual block 1 3 � 3 1 32� 64� 32

Residual block 2 3 � 3 1 32� 64� 32

Residual block 3 3 � 3 2 64� 32� 16

Residual block 4 3 � 3 1 64� 32� 16

Residual block 5 3 � 3 2 128� 16� 8

Residual block 6 3 � 3 1 128� 16� 8

Dense layer 1 — 128

Batch norm — 128

Table 1.
Complete architecture for appearance feature extractor network.
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Relative distance is another important appearance feature to keep track
updated. Let us assume if the targeted person is moving in a group with few other
people, their relative distance can be used to keep track of target even after the
long-term occlusion.

Color or nearest color can be helpful to reidentify after occlusion because
humans mostly keep the same clothes within a session. Similarly, if the nearest color
is predicted, the person can be reidentified even after a sudden change of lighting or
contrast.

HSV and RGB histograms are employed for comparing the histogram based
on object appearances. We compare the histogram appearance model in both
color spaces using cumulative brightness transfer function (CBTF) as mapping
function between the two fields of views, which helps us handle occlusions in a
better way.

3.3 Tracking options

In this system we have provided multiple options for enabling the tracking.
Major tracking options include (1) face recognition-based tracking and (2) target
tracking.

3.3.1 Face recognition-based tracking

As the object tracking system trained by us also detects faces, so we take benefit
of this approach and make use of these detected faces in our tracking system. We
used the face recognition proposed by Lu et al. [29] to recognize the detected faces.
When any new face enters in frame, then the system extracts and stores these
features by assigning a specific ID for later use. These feature maps and IDs are used
in the future to associate the face detected with saved faces. That’s how data
association accuracy increased and helped in better tracking. But the limitation of
this system is that it works only in case-detected face that is visible enough. This
system works within 15 to 20 feet distance from camera. It also depends upon
camera resolution; as the resolution is high, the better feature will be extracted.

3.3.2 Target tracking

Developed system can also perform specifically selected object tracking task. We
have to basically select the object which we want to track by clicking on the
detected object. This system enables us to perform analysis of only desired object by
hiding the tracking details of other objects. The system is a practical implementation
of human-computer interaction facilitated by the user. The overall tracking of
pedestrians is improved based on robust detection of human using multiple views
and body parts (head, shoulder, and complete body). Furthermore, the problem of
identity switches and fragmentation is addressed by appearance features and
increased spatial features (area, relative distance, color, and histograms).

4. Evaluation

Training of proposed detection system is performed on self-generated dataset,
and for tracking purpose, we employed standard tracking dataset for evaluating the
overall system.
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information for those long-term occluded detection that are not possible to be
captured through motion features. Moreover, we have used some additional fea-
tures like area of human, relative distance between tracked humans, color or nearest
color of object, and HSV to handle occlusions quite efficiently.

Area of human can accommodate the occlusion problem quite well because the
area mostly remains the same during the whole tracking, for example, if a person is
short, they will remain short before and after occlusion which makes it easy to
reidentify a person after a long-time occlusion. Similarly, if someone is sitting on a
wheel chair, their area will be the same throughout the time of tracking.
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Residual block 3 3 � 3 2 64� 32� 16

Residual block 4 3 � 3 1 64� 32� 16

Residual block 5 3 � 3 2 128� 16� 8

Residual block 6 3 � 3 1 128� 16� 8

Dense layer 1 — 128

Batch norm — 128

Table 1.
Complete architecture for appearance feature extractor network.
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Relative distance is another important appearance feature to keep track
updated. Let us assume if the targeted person is moving in a group with few other
people, their relative distance can be used to keep track of target even after the
long-term occlusion.

Color or nearest color can be helpful to reidentify after occlusion because
humans mostly keep the same clothes within a session. Similarly, if the nearest color
is predicted, the person can be reidentified even after a sudden change of lighting or
contrast.

HSV and RGB histograms are employed for comparing the histogram based
on object appearances. We compare the histogram appearance model in both
color spaces using cumulative brightness transfer function (CBTF) as mapping
function between the two fields of views, which helps us handle occlusions in a
better way.

3.3 Tracking options

In this system we have provided multiple options for enabling the tracking.
Major tracking options include (1) face recognition-based tracking and (2) target
tracking.

3.3.1 Face recognition-based tracking

As the object tracking system trained by us also detects faces, so we take benefit
of this approach and make use of these detected faces in our tracking system. We
used the face recognition proposed by Lu et al. [29] to recognize the detected faces.
When any new face enters in frame, then the system extracts and stores these
features by assigning a specific ID for later use. These feature maps and IDs are used
in the future to associate the face detected with saved faces. That’s how data
association accuracy increased and helped in better tracking. But the limitation of
this system is that it works only in case-detected face that is visible enough. This
system works within 15 to 20 feet distance from camera. It also depends upon
camera resolution; as the resolution is high, the better feature will be extracted.

3.3.2 Target tracking

Developed system can also perform specifically selected object tracking task. We
have to basically select the object which we want to track by clicking on the
detected object. This system enables us to perform analysis of only desired object by
hiding the tracking details of other objects. The system is a practical implementation
of human-computer interaction facilitated by the user. The overall tracking of
pedestrians is improved based on robust detection of human using multiple views
and body parts (head, shoulder, and complete body). Furthermore, the problem of
identity switches and fragmentation is addressed by appearance features and
increased spatial features (area, relative distance, color, and histograms).

4. Evaluation

Training of proposed detection system is performed on self-generated dataset,
and for tracking purpose, we employed standard tracking dataset for evaluating the
overall system.
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4.1 Environment setup

To setup environment, we used GeForce GTX 1080 Ti GPU with Ubuntu OS
installed in the system. We chose Python programming language to perform the
experimentation steps. System is built by using Tensor Flow framework. We eval-
uated five different models of ResNet integrated with Faster R-CNN architecture on
self-generated dataset, and the results are further discussed in Section 4.4.

4.2 Self-generated dataset

For training the detection system, we have utilized self-generated dataset having
4000 image of human in different postures. Each image in the dataset contains on
average five different subjects with limited repetition in other images. The dataset
has images from different environment conditions (rain, snow, and shadow) and in
different lighting conditions (day and night). Some of the images are collected over
the Internet, and some are generated within university premises using surveillance
cameras. The dataset is comprehensive in terms of human densities, view angle,
posture, and scale. The dataset covers different scenes: streets, bazars, buildings,
malls, parks, roads, and stadium. Figure 7 shows some images from self-generated
dataset.

We have annotated human body parts in different categories. The visible human
body can be categorized into three classes based on occlusion and density of the
crowd. These classes include the head, shoulder, and complete body. Based on the
visible category, we have annotated the images. The details of each annotated
category in the dataset are shown in Table 2.

4.3 MOT benchmark dataset

For evaluating our proposed tracking system, we have employed multiple object
tracking (MOTChallenge) benchmark dataset [42] that contains a variety of

Figure 7.
Sample images from self-generated dataset.

Category Instances Number of images

Head 4325 987

Shoulder 3130 2031

Complete body 12,690 3411

Table 2.
Each category division in proposed dataset.
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sequences with dynamic camera and static camera. In this dataset, they have com-
bined 22 different available datasets. Some sample images from MOTChellange
dataset are shown in Figure 8.

They have provided a 10-minute video of individuals with 61,440 rectangles of
human detection. This dataset is composed of 14 different sequences with proper
annotations by expert annotators. They also annotated different objects like chair
and car for better representation of the occlusions. Three different aspects of
MOTChallenge are described below:

1. Dynamic or static stream: A camera while capturing can have multiple states,
placed on a stroller, in a car or a person holding the camera that makes it
dynamic and static.

2. Viewpoint variation: Video camera can be elevated, at same height as
pedestrian, or at low position.

3.Weather conditions: The weather condition of the captured stream is also
provided with sequences to get the idea of lighting, shadows and blurring of
the pedestrians.

4.4 Results

We integrated and tested multiple ResNet backbone network architectures in
Faster R-CNN-based object detection. We evaluated the networks based on detec-
tion accuracy and performance. After proper evaluation, we found that ResNet-30

Figure 8.
Samples from MOT dataset. Top, training images; bottom, test sequences.
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sequences with dynamic camera and static camera. In this dataset, they have com-
bined 22 different available datasets. Some sample images from MOTChellange
dataset are shown in Figure 8.

They have provided a 10-minute video of individuals with 61,440 rectangles of
human detection. This dataset is composed of 14 different sequences with proper
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and car for better representation of the occlusions. Three different aspects of
MOTChallenge are described below:

1. Dynamic or static stream: A camera while capturing can have multiple states,
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2. Viewpoint variation: Video camera can be elevated, at same height as
pedestrian, or at low position.

3.Weather conditions: The weather condition of the captured stream is also
provided with sequences to get the idea of lighting, shadows and blurring of
the pedestrians.

4.4 Results

We integrated and tested multiple ResNet backbone network architectures in
Faster R-CNN-based object detection. We evaluated the networks based on detec-
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Figure 8.
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performed better in our case as our major concern is minimum runtime with
maintaining the accuracy. Response time of our system is 25 frames per second. So,
we decided to use ResNet-30 in designed system for better speed and accuracy. The
evaluation matrix for different tested models is given in Table 3.

As Table 3 depicts, the runtime for ResNet-30 is lower than other ResNet
models, and Top-5 error rate is not significantly low. Based on this evaluation,
ResNet-30 was our ultimate choice for backbone architecture of Faster R-CNN.

Table 4 provides the evaluation results of our complete tracking system on
MOT dataset. This evaluation provides results of our designed system on seven
challenging test sequences, on human eye level and elevated view of camera scenes.
The tracking system highly relies on detection mechanism to perform better detec-
tion followed by better tracking; we used Faster R-CNN trained on our self-
collected dataset. We rerun Deep SORT on the same evaluation dataset for fair
comparison.

We set threshold of 0.7 for detection confidence score. We further fine-tuned
the other parameters of network to produce better model. Following metrics are
used for comparison purpose:

Model (residual networks) Layers Top-1 error Top-5 errors (avg.) Runtime (ms)

ResNet-34 34 25.27 8.51 52.09

ResNet-50 50 23.93 7.82 104.13

ResNet-101 101 22.81 7.11 158.35

ResNet-152 52 22.52 6.63 219.06

ResNet-30 (proposed) 30 26.02 8.04 48.93

Table 3.
Comparison table of different ResNet architectures as backbone network for object detection.

MOTA MOTP MT ML ID FM FP FN Runtime

KDNT [43] Batch
based

68.2 79.4 41.0% 19.0% 933 1093 11,479 45,605 0.7 Hz

LMP p [44] Batch
based

71.0 80.2 46.9% 21.9% 434 587 7880 44,564 0.5 Hz

MCMOT HDM
[45]

Batch
based

62.4 78.3 31.5% 24.2% 1394 1318 9855 57,257 35 Hz

NOMTwSDP16
[46]

Batch
based

62.2 79.6 32.5% 31.1% 406 642 5119 63,352 3 Hz

EAMTT [47] Real
time

52.5 78.8 19.0% 34.9% 910 1321 4407 81,223 12 Hz

POI [43] Real
time

66.1 79.5 34.0% 20.8% 805 3093 5061 55,914 10 Hz

SORT [6] Real
time

59.8 79.6 25.4% 22.7% 1423 1835 8698 63,245 60 Hz

Deep SORT [7] Real
time

61.4 79.1 32.8% 18.2% 781 2008 12,852 56,668 40 Hz

Proposed
system

Real
time

75.2 81.3 33.2 17.5 825 1225 4123 52,524 42 Hz

Table 4.
Evaluation table.
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• Multi-object tracking accuracy (MOTA): It provides complete accuracy of
system incorporating with false negatives, identity switches, and false positives.

• Multi-object tracking precision (MOTP): It gives complete tracking precision
for bounding boxes overlapping between predicted location and ground-truth
value.

• Mostly tracked (MT): It is the percentage of ground-truth tracks that do not
change their labels at least during 80% of their life span.

• Mostly lost (ML): It provides the percentage of actual tracks that are being
tracked by the system at most 20% of their life span.

• Identity switches (ID): It defines the total reported identity changes of ground-
truth tracks.

• Fragmentation (FM): It provides the detail of how many times the track is
interrupted by missed detection of person.

The results of our evaluation are shown in Table 4. The numbers of identity
switches have been reduced due to our alteration in detection network. As com-
pared to Deep SORT [7], MOTA is increased from 61.4 to 75.2.

5. Conclusion

The goal of this work was to implement a fast and competitive MOT system. We
presented a multiple object tracker that combines a deep learning-based object
detection network named as Faster R-CNN with the tracking algorithm. The pro-
posed system performed tracking by detecting multiple objects followed by
assigning each object a unique ID and generating their tracklets. In the case of
fragmentation in tracklet of any object, the system uses tracklet association mecha-
nism to generate a complete trajectory. Tracking is performed based upon appear-
ance and motion features of objects. When in any frame object detection network
fails to detect objects, these features are used to track object again with the same ID.
Kalman filter and Hungarian algorithm both collectively used to predict the position
of object in the frame. Other features like area, color, relative distance, nearest
color, and HSV histograms are also used to increase the tracking accuracy. Overall
the system performed very well, and it has shown improvement in MOTA, MOTP,
ML, and FP fields as shown in comparison in Table 4. But considering environ-
mental constraints and hardware limitations, our system has some pros and cons.
We have listed some strengths and weaknesses as follows.

5.1 Pros

• Efficient in terms of response time because of less number of layer of residual
network

• Have minimum number of missing detections because of improved object
detection process

• Less fragmentation in drawn trajectories because of continuous detection of
persons in consecutive frames
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• Introduction of visual and motion feature-based tracking for reducing identity
switches

• Trajectory completion in the case of fragmentation

5.2 Cons

• It requires GPU-based hardware for enabling real-time tracking.

• For highly dense crowd identity, switches may occur because of similar
features of the head for each person.

• Performance reduces in dark environmental condition.

Acknowledgements

This work is carried out at UET Lahore under Intelligent Criminology Lab,
National Center of Artificial Intelligence.

Author details

Gulraiz Khan1, Zeeshan Tariq1 and Muhammad Usman Ghani Khan2*

1 Al-Khawarizmi Institute of Computer Science, UET Lahore, Pakistan

2 Department of Computer Science and Engineering, UET Lahore, Pakistan

*Address all correspondence to: usman.ghani@kics.edu.pk

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

44

Visual Object Tracking with Deep Neural Networks

References

[1] Rezatofighi AM, Zhang Z, Shi Q,
Dick A, Reid I. Joint probabilistic data
association revisited. In: Proceedings of
the IEEE International Conference on
Computer Vision. 2015. pp. 3047-3055

[2] Kim C, Li F, Ciptadi A, Rehg JM.
Multiple hypothesis tracking revisited.
In: Proceedings of the IEEE
International Conference on Computer
Vision. 2015. pp. 4696-4704

[3] Yang B, Nevatia R. Multi-target
tracking by online learning of non-linear
motion patterns and robust appearance
models. In: 2012 IEEE Conference on
Computer Vision and Pattern
Recognition (CVPR); IEEE. 2012.
pp. 1918-1925

[4] Andriyenko A, Schindler K, Roth S.
Discrete-continuous optimization for
multi-target tracking. In: 2012 IEEE
Conference on Computer Vision and
Pattern Recognition (CVPR); IEEE.
2012. pp. 1926-1933

[5] Milan A, Schindler K, Roth S.
Detection-and trajectory-level exclusion
in multiple object tracking. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2013. pp. 3682-3689

[6] Bewley A, Ge Z, Ott L, Ramos F,
Upcroft B. Simple online and realtime
tracking. In: 2016 IEEE International
Conference on Image Processing (ICIP);
IEEE. 2016. pp. 3464-3468

[7] Wojke N, Bewley A, Paulus D.
Simple online and realtime tracking
with a deep association metric. In: 2017
IEEE International Conference on Image
Processing (ICIP); IEEE. 2017.
pp. 3645-3649

[8] Zheng L, Bie Z, Sun Y, Wang J, Su C,
Wang S, et al. Mars: A video benchmark
for large-scale person re-identification.
In: European Conference on Computer
Vision; Springer. 2016. pp. 868-884

[9] Jain AK, Zhong Y, Lakshmanan S.
Object matching using deformable
templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
1996;18(3):267-278

[10] Mundy JL. Object recognition in the
geometric era: A retrospective. In:
Toward Category-Level Object
Recognition. Springer; 2006. pp. 3-28

[11] Ponce J, Hebert M, Schmid C,
Zisserman A. Toward Category-Level
Object Recognition. Vol. 4170. Springer;
2007

[12] Ojala T, Pietikainen M, Maenpaa T.
Multiresolution gray-scale and rotation
invariant texture classification with
local binary patterns. IEEE Transactions
on Pattern Analysis and Machine
Intelligence. 2002;24(7):971-987

[13] Dalal N, Triggs B. Histograms of
oriented gradients for human detection.
In: IEEE Computer Society Conference
on Computer Vision and Pattern
Recognition, 2005. CVPR 2005; volume 1;
IEEE. 2005. pp. 886-893

[14] Lowe DG. Distinctive image
features from scale-invariant key points.
International Journal of Computer
Vision. 2004;60(2):91-110

[15] Tuzel O, Porikli F, Meer P. Region
covariance: A fast descriptor for
detection and classification. In:
European Conference on Computer
Vision; Springer. 2006. pp. 589-600

[16] Krizhevsky A, Sutskever I, Hinton
GE. Imagenet classification with deep
convolutional neural networks. In:
Advances in Neural Information
Processing Systems. 2012. pp. 1097-1105

[17] Khan G, Ghani MU, Siddiqi A, Seo
S, Baik SW, Mehmood I, et al.
Egocentric visual scene description
based on human-object interaction and

45

Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features
DOI: http://dx.doi.org/10.5772/intechopen.85215



• Introduction of visual and motion feature-based tracking for reducing identity
switches

• Trajectory completion in the case of fragmentation

5.2 Cons

• It requires GPU-based hardware for enabling real-time tracking.

• For highly dense crowd identity, switches may occur because of similar
features of the head for each person.

• Performance reduces in dark environmental condition.

Acknowledgements

This work is carried out at UET Lahore under Intelligent Criminology Lab,
National Center of Artificial Intelligence.

Author details

Gulraiz Khan1, Zeeshan Tariq1 and Muhammad Usman Ghani Khan2*

1 Al-Khawarizmi Institute of Computer Science, UET Lahore, Pakistan

2 Department of Computer Science and Engineering, UET Lahore, Pakistan

*Address all correspondence to: usman.ghani@kics.edu.pk

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

44

Visual Object Tracking with Deep Neural Networks

References

[1] Rezatofighi AM, Zhang Z, Shi Q,
Dick A, Reid I. Joint probabilistic data
association revisited. In: Proceedings of
the IEEE International Conference on
Computer Vision. 2015. pp. 3047-3055

[2] Kim C, Li F, Ciptadi A, Rehg JM.
Multiple hypothesis tracking revisited.
In: Proceedings of the IEEE
International Conference on Computer
Vision. 2015. pp. 4696-4704

[3] Yang B, Nevatia R. Multi-target
tracking by online learning of non-linear
motion patterns and robust appearance
models. In: 2012 IEEE Conference on
Computer Vision and Pattern
Recognition (CVPR); IEEE. 2012.
pp. 1918-1925

[4] Andriyenko A, Schindler K, Roth S.
Discrete-continuous optimization for
multi-target tracking. In: 2012 IEEE
Conference on Computer Vision and
Pattern Recognition (CVPR); IEEE.
2012. pp. 1926-1933

[5] Milan A, Schindler K, Roth S.
Detection-and trajectory-level exclusion
in multiple object tracking. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2013. pp. 3682-3689

[6] Bewley A, Ge Z, Ott L, Ramos F,
Upcroft B. Simple online and realtime
tracking. In: 2016 IEEE International
Conference on Image Processing (ICIP);
IEEE. 2016. pp. 3464-3468

[7] Wojke N, Bewley A, Paulus D.
Simple online and realtime tracking
with a deep association metric. In: 2017
IEEE International Conference on Image
Processing (ICIP); IEEE. 2017.
pp. 3645-3649

[8] Zheng L, Bie Z, Sun Y, Wang J, Su C,
Wang S, et al. Mars: A video benchmark
for large-scale person re-identification.
In: European Conference on Computer
Vision; Springer. 2016. pp. 868-884

[9] Jain AK, Zhong Y, Lakshmanan S.
Object matching using deformable
templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
1996;18(3):267-278

[10] Mundy JL. Object recognition in the
geometric era: A retrospective. In:
Toward Category-Level Object
Recognition. Springer; 2006. pp. 3-28

[11] Ponce J, Hebert M, Schmid C,
Zisserman A. Toward Category-Level
Object Recognition. Vol. 4170. Springer;
2007

[12] Ojala T, Pietikainen M, Maenpaa T.
Multiresolution gray-scale and rotation
invariant texture classification with
local binary patterns. IEEE Transactions
on Pattern Analysis and Machine
Intelligence. 2002;24(7):971-987

[13] Dalal N, Triggs B. Histograms of
oriented gradients for human detection.
In: IEEE Computer Society Conference
on Computer Vision and Pattern
Recognition, 2005. CVPR 2005; volume 1;
IEEE. 2005. pp. 886-893

[14] Lowe DG. Distinctive image
features from scale-invariant key points.
International Journal of Computer
Vision. 2004;60(2):91-110

[15] Tuzel O, Porikli F, Meer P. Region
covariance: A fast descriptor for
detection and classification. In:
European Conference on Computer
Vision; Springer. 2006. pp. 589-600

[16] Krizhevsky A, Sutskever I, Hinton
GE. Imagenet classification with deep
convolutional neural networks. In:
Advances in Neural Information
Processing Systems. 2012. pp. 1097-1105

[17] Khan G, Ghani MU, Siddiqi A, Seo
S, Baik SW, Mehmood I, et al.
Egocentric visual scene description
based on human-object interaction and

45

Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features
DOI: http://dx.doi.org/10.5772/intechopen.85215



deep spatial relations among objects.
Multimedia Tools and Applications.
2018:1-22

[18] Girshick R, Donahue J, Darrell T,
Malik J. Rich feature hierarchies for
accurate object detection and semantic
segmentation. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition. 2014.
pp. 580-587

[19] Uijlings JRR, Van De Sande KEA,
Gevers T, Smeulders AWM. Selective
search for object recognition.
International Journal of Computer
Vision. 2013;104(2):154-171

[20] He K, Zhang X, Ren S, Sun J. Spatial
pyramid pooling in deep convolutional
networks for visual recognition. In:
European Conference on Computer
Vision; Springer. 2014. pp. 346-361

[21] Girshick R. Fast R-CNN. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2015.
pp. 1440-1448

[22] Zhou B, Khosla A, Lapedriza A,
Oliva A, Torralba A. Learning deep
features for discriminative localization.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. 2016. pp. 2921-2929

[23] Ren S, He K, Girshick R, Sun J.
Faster R-CNN: Towards realtime object
detection with region proposal
networks. In: Advances in Neural
Information Processing Systems. 2015.
pp. 91-99

[24] Redmon J, Divvala S, Girshick R,
Farhadi A. You only look once: Unified,
real-time object detection. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2016. pp. 779-788

[25] Turk MA, Pentland AP. Face
recognition using eigenfaces. In: IEEE
Computer Society Conference on

Computer Vision and Pattern
Recognition, 1991. Proceedings
CVPR’91; IEEE. 1991. pp. 586-591

[26] Kwak K-C, Pedrycz W. Face
recognition using a fuzzy fisherface
classifier. Pattern Recognition. 2005;
38(10):1717-1732

[27] Ahonen T, Hadid A, Pietikainen M.
Face description with local binary
patterns: Application to face
recognition. IEEE Transactions on
Pattern Analysis and Machine
Intelligence. 2006;28(12):2037-2041

[28] Hadid A, Pietikainen M, Ahonen T.
A discriminative feature space for
detecting and recognizing faces.
In: Proceedings of the 2004 IEEE
Computer Society Conference on
Computer Vision and Pattern
Recognition, 2004. CVPR 2004; volume
2; IEEE. 2004

[29] Lu Z, Jiang X, Kot ACC. Deep
coupled resnet for low-resolution face
recognition. IEEE Signal Processing
Letters. 2018

[30] Schroff F, Kalenichenko D, Philbin
J. Facenet: A unified embedding for face
recognition and clustering. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 815-823

[31] Huang GB, Mattar M, Berg T,
Learned-Miller E. Labeled faces in the
wild: A database for studying face
recognition in unconstrained
environments. In:Workshop on Faces in
‘Real-Life’ Images: Detection,
Alignment, and Recognition. 2008

[32] Taigman Y, Yang M, Ranzato MA,
Wolf L. Deepface: Closing the gap to
human-level performance in face
verification. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition; 2014.
pp. 1701–1708

46

Visual Object Tracking with Deep Neural Networks

[33] Dicle C, Camps OI, Sznaier M. The
way they move: Tracking multiple
targets with similar appearance. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2013.
pp. 2304-2311

[34] Yoon JH, Yang M-H, Lim J, Yoon
K-J. Bayesian multiobject tracking using
motion context from multiple objects.
In: 2015 IEEE Winter Conference on
Applications of Computer Vision
(WACV); IEEE. 2015. pp. 33-40

[35] Bewley A, Ott L, Ramos F, Upcroft
B. Alextrac: Affinity learning by
exploring temporal reinforcement
within association chains. In: 2016 IEEE
International Conference on Robotics
and Automation (ICRA); IEEE. 2016.
pp. 2212-2218

[36] Reid D et al. An algorithm for
tracking multiple targets. IEEE
Transactions on Automatic Control.
1979;24(6):843-854

[37] Fortmann T, Bar-Shalom Y, Scheffe
M. Sonar tracking of multiple targets
using joint probabilistic data association.
IEEE Journal of Oceanic Engineering.
1983;8(3):173-184

[38] Kayumbi G, Mazzeo PL, Spagnolo
P, Taj M, Cavallaro A. Distributed visual
sensing for virtual top-view trajectory
generation in football videos. In:
Proceedings of the 2008 International
Conference on Content-Based Image
and Video Retrieval; ACM. 2008.
pp. 535-542

[39] Yang M, Jia Y. Temporal dynamic
appearance modeling for online multi-
person tracking. Computer Vision and
Image Understanding. 2016;153:16-28

[40] Xiang Y, Alahi A, Savarese S.
Learning to track: Online multi-object
tracking by decision making. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2015.
pp. 4705-4713

[41] Kalman RE. A new approach to
linear filtering and prediction problems.
Journal of Basic Engineering. 1960;
82(1):35-45

[42] Leal-Taixé L, Milan A, Reid I, Roth
S, Schindler K. Motchallenge 2015:
Towards a benchmark for multi-target
tracking. 2015; arXiv preprint arXiv:
1504.01942

[43] Yu F, Li W, Li Q, Liu Y, Shi X, Yan
J. Poi: Multiple object tracking with high
performance detection and appearance
feature. In: European Conference on
Computer Vision; Springer. 2016.
pp. 36-42

[44] Keuper M, Tang S, Zhongjie Y,
Andres B, Brox T, Schiele B. A multi-cut
formulation for joint segmentation and
tracking of multiple objects. arXiv
preprint arXiv:1607.06317; 2016

[45] Lee B, Erdenee E, Jin S, Nam MY,
Jung YG, Rhee PK. Multi-class multi-
object tracking using changing point
detection. In: European Conference on
Computer Vision; Springer. 2016.
pp. 68-83

[46] Choi W. Near-online multi-target
tracking with aggregated local flow
descriptor. In: Proceedings of the IEEE
International Conference on Computer
Vision. 2015. pp. 3029-3037

[47] Sanchez-Matilla R, Poiesi F,
Cavallaro A. Online multi-target
tracking with strong and weak
detections. In: European Conference on
Computer Vision; Springer. 2016.
pp. 84-99

47

Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features
DOI: http://dx.doi.org/10.5772/intechopen.85215



deep spatial relations among objects.
Multimedia Tools and Applications.
2018:1-22

[18] Girshick R, Donahue J, Darrell T,
Malik J. Rich feature hierarchies for
accurate object detection and semantic
segmentation. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition. 2014.
pp. 580-587

[19] Uijlings JRR, Van De Sande KEA,
Gevers T, Smeulders AWM. Selective
search for object recognition.
International Journal of Computer
Vision. 2013;104(2):154-171

[20] He K, Zhang X, Ren S, Sun J. Spatial
pyramid pooling in deep convolutional
networks for visual recognition. In:
European Conference on Computer
Vision; Springer. 2014. pp. 346-361

[21] Girshick R. Fast R-CNN. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2015.
pp. 1440-1448

[22] Zhou B, Khosla A, Lapedriza A,
Oliva A, Torralba A. Learning deep
features for discriminative localization.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. 2016. pp. 2921-2929

[23] Ren S, He K, Girshick R, Sun J.
Faster R-CNN: Towards realtime object
detection with region proposal
networks. In: Advances in Neural
Information Processing Systems. 2015.
pp. 91-99

[24] Redmon J, Divvala S, Girshick R,
Farhadi A. You only look once: Unified,
real-time object detection. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2016. pp. 779-788

[25] Turk MA, Pentland AP. Face
recognition using eigenfaces. In: IEEE
Computer Society Conference on

Computer Vision and Pattern
Recognition, 1991. Proceedings
CVPR’91; IEEE. 1991. pp. 586-591

[26] Kwak K-C, Pedrycz W. Face
recognition using a fuzzy fisherface
classifier. Pattern Recognition. 2005;
38(10):1717-1732

[27] Ahonen T, Hadid A, Pietikainen M.
Face description with local binary
patterns: Application to face
recognition. IEEE Transactions on
Pattern Analysis and Machine
Intelligence. 2006;28(12):2037-2041

[28] Hadid A, Pietikainen M, Ahonen T.
A discriminative feature space for
detecting and recognizing faces.
In: Proceedings of the 2004 IEEE
Computer Society Conference on
Computer Vision and Pattern
Recognition, 2004. CVPR 2004; volume
2; IEEE. 2004

[29] Lu Z, Jiang X, Kot ACC. Deep
coupled resnet for low-resolution face
recognition. IEEE Signal Processing
Letters. 2018

[30] Schroff F, Kalenichenko D, Philbin
J. Facenet: A unified embedding for face
recognition and clustering. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 815-823

[31] Huang GB, Mattar M, Berg T,
Learned-Miller E. Labeled faces in the
wild: A database for studying face
recognition in unconstrained
environments. In:Workshop on Faces in
‘Real-Life’ Images: Detection,
Alignment, and Recognition. 2008

[32] Taigman Y, Yang M, Ranzato MA,
Wolf L. Deepface: Closing the gap to
human-level performance in face
verification. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition; 2014.
pp. 1701–1708

46

Visual Object Tracking with Deep Neural Networks

[33] Dicle C, Camps OI, Sznaier M. The
way they move: Tracking multiple
targets with similar appearance. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2013.
pp. 2304-2311

[34] Yoon JH, Yang M-H, Lim J, Yoon
K-J. Bayesian multiobject tracking using
motion context from multiple objects.
In: 2015 IEEE Winter Conference on
Applications of Computer Vision
(WACV); IEEE. 2015. pp. 33-40

[35] Bewley A, Ott L, Ramos F, Upcroft
B. Alextrac: Affinity learning by
exploring temporal reinforcement
within association chains. In: 2016 IEEE
International Conference on Robotics
and Automation (ICRA); IEEE. 2016.
pp. 2212-2218

[36] Reid D et al. An algorithm for
tracking multiple targets. IEEE
Transactions on Automatic Control.
1979;24(6):843-854

[37] Fortmann T, Bar-Shalom Y, Scheffe
M. Sonar tracking of multiple targets
using joint probabilistic data association.
IEEE Journal of Oceanic Engineering.
1983;8(3):173-184

[38] Kayumbi G, Mazzeo PL, Spagnolo
P, Taj M, Cavallaro A. Distributed visual
sensing for virtual top-view trajectory
generation in football videos. In:
Proceedings of the 2008 International
Conference on Content-Based Image
and Video Retrieval; ACM. 2008.
pp. 535-542

[39] Yang M, Jia Y. Temporal dynamic
appearance modeling for online multi-
person tracking. Computer Vision and
Image Understanding. 2016;153:16-28

[40] Xiang Y, Alahi A, Savarese S.
Learning to track: Online multi-object
tracking by decision making. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2015.
pp. 4705-4713

[41] Kalman RE. A new approach to
linear filtering and prediction problems.
Journal of Basic Engineering. 1960;
82(1):35-45

[42] Leal-Taixé L, Milan A, Reid I, Roth
S, Schindler K. Motchallenge 2015:
Towards a benchmark for multi-target
tracking. 2015; arXiv preprint arXiv:
1504.01942

[43] Yu F, Li W, Li Q, Liu Y, Shi X, Yan
J. Poi: Multiple object tracking with high
performance detection and appearance
feature. In: European Conference on
Computer Vision; Springer. 2016.
pp. 36-42

[44] Keuper M, Tang S, Zhongjie Y,
Andres B, Brox T, Schiele B. A multi-cut
formulation for joint segmentation and
tracking of multiple objects. arXiv
preprint arXiv:1607.06317; 2016

[45] Lee B, Erdenee E, Jin S, Nam MY,
Jung YG, Rhee PK. Multi-class multi-
object tracking using changing point
detection. In: European Conference on
Computer Vision; Springer. 2016.
pp. 68-83

[46] Choi W. Near-online multi-target
tracking with aggregated local flow
descriptor. In: Proceedings of the IEEE
International Conference on Computer
Vision. 2015. pp. 3029-3037

[47] Sanchez-Matilla R, Poiesi F,
Cavallaro A. Online multi-target
tracking with strong and weak
detections. In: European Conference on
Computer Vision; Springer. 2016.
pp. 84-99

47

Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features
DOI: http://dx.doi.org/10.5772/intechopen.85215



Chapter 3

Detecting and Counting Small
Animal Species Using Drone
Imagery by Applying Deep
Learning
Ravi Sahu

Abstract

This work represents deep learning approach for detecting lizards on the sum-
mer grass background. It is the main part of general use case formulation—“how
many animals are located now on this substitute habitat. Determine in which parts
they prefer to stay”. For this purpose, the U-Net architecture neural network was
implemented. Dilated convolution layer was added to usual U-Net. Smoothly
blending filter was applied to result probability patches for connecting them in one
big probability map without sewed edges. Designed flexible architecture allows to
train neural network for pixel-wise semantic segmentation with accuracy value
0.9863 on the tiny dataset.

Keywords: machine learning, deep learning, semantic segmentation, U-Net, Keras,
blending filter

1. Introduction

In 2018, the strictly protected sand lizards were relocated from several con-
struction sites to this formerly military-used area. If possible, even more animals
should be relocated here in the following years. Special habitat elements were
created for this area. The fenced area is grazed, so that there is no need for mowing.

The conservation status is controlled by monitoring the population. For this
purpose the animals have to be counted rotationally.

Machine learning (and deep learning in particular) focused on using modern
mathematics and programming tools to figure out numerical presentation of
abstract and stochastic source data. In the past few years, deep learning helped
moving the computer vision to production by extending possibilities and improving
result accuracy.

Before starting the model synthesis for the task of lizard localization on the
ground, we have collected objective features (issues):

• The object is very small. To be able to distinguish from leaves and branches,
drone camera should detect a back drawing of lizard and its legs.
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• Distribution of lizards on the ground is very small. After reviewing 1800
sample, images of two to three lizards were found.

• Nature has created lizards very similar to the leaves around them (natural
camouflage effect).

• Partially displayed. Except two to three lizards which were found in source
dataset, some potential objects were found too. It could be lizards hidden under
branches, leaves, and grass.

• Different sunlight angle and brightness.

• Motion blurring.

Some of these issues could be delegated to drone-shooting side, but most parts
should be solved by machine learning.

2. Data

Running ahead we could say that it is a classical binary classification problem
where the prediction result will be measured in continuous space.

In the notation of binary classification problem, there are two classes: positive—
part of image where lizards exist; and negative—all except lizards.

To narrow the negative class presentation, and make it representative for our
task, negative samples for this class were taken from the source image dataset. In
such a way, we specify all features on the ground except lizards as a negative class
(Figure 1).

The positive class was represented by extremely small number of lizards from
the initial dataset.

We reviewed manually 1800 images from the drone dataset, and only two to
three lizards had been found. It appeared that we have not enough positive images
for training. To solve this problem and move forward, we reused lizards’ images

Figure 1.
Example of negative sample images.
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from the Internet. About 1000 lizard images were taken from “ImageNet” dataset.
After obvious filtering, about 600 images remained. We left green lizards which
were shot from the top view (similar to drone view dataset) (Figure 2).

For labeling masks for positive image samples, we used simple and standalone
manual annotation software “VGG Image Annotator (VIA)” [1].

At the end of data presentation, we should note about the great approach of
growing the source dataset. The examples available for learning were limited so the
classification problem added a layer of complexity. So this is a challenging machine
learning problem, but it is also a realistic one: in a lot of real-world use cases, even
small-scale data collection can be extremely expensive or sometimes near-
impossible. Being able to make the most out of very little data is a key skill of a
competent data scientist.

In order to make the most of our few training examples, we “augment” them via
a number of random transformations, so that our model would never see twice the
exact same picture. This helps prevent overfitting and helps the model generalize
better:

• Flip vertical/horizontal

• Rotation

• Translation

• Zooming

• Color desaturation

3. Training scheme

Two-steps training scheme separates “rough training” and “subtle training”.
Each step is supported by fourfold cross-validation to obtain the best representative
results. Well parameterized model allows using the same model with different
parameters (Figure 3):

Figure 2.
Example of positive sample images.
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Step 1 (rough training)
Aims:

• Avoid class imbalance during initial training

• Attention to local minima

Methods:

• Training on samples which contains positive objects only (lizards)

• Rough regularization to avoid overfit

• Augmentation increase dataset size by �10

• Optimizer: Adam (learning rate: 0.001)

Step 2 (subtle training)
Aims:

• Training to obtain the best possible result

• Attention to global minima

Figure 3.
Multistage scheme of the training process.
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Methods:

• Training on all samples (as lizards as background)

• Tiny regularization

• Augmentation increase dataset size by �20

• Optimizer: Nadam (learning rate: default)

4. Data generator

Parameterized data generator allows to control the data filing used for training
and for testing. Augmentation allows to drastically increase the dataset size by
image transforming. Content filter allows filling the control of the percent of posi-
tive (lizards) pixels in each image used for training (Figure 4):

• Image augmentation parameters

◦ Rotation up to 360 degrees

◦ Width/height shifting up to 20%

◦ Shear up to 20 degrees

◦ Zoom +/� up to 20%

◦ Random horizontal/vertical flip

◦ Fill mode: “reflect”

• Content data filter controls class-imbalance in source dataset

• K-fold splitter provides datasets for separate training and implement cross-
validation

Figure 4.
Scheme of data generator.
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5. Model

We did not reuse the existing solution like YOLO [2] or MASK-RCNN [3]
because benefits of these networks focused on relatively big objects with at least 10–
20% covered by a whole image. In case with lizards, we have only 0.08% coverage
of the object on the image.

Instead, the model architecture was based on the well-known pixel-wise image
segmentation approach “U-Net” [4] and extended by adding atrous/dilated convo-
lution layers [5] to the low-resolution part of the neural network.

The model was implemented in Keras [6]—a high-level neural network API,
written in Python and capable of running on TensorFlow, CNTK, or Theano.

Input layer “input_1” gets three-channel (RGB) image in range 0–255.
Pre-processing layer “lambda_1” converts input 255-ranged values to 0–1 range.
As the usual U-Net neural network, it has encoder and decoder parts, connected

each other via residual connections.
Encoder block contains a pair of convolution layers with regularization block in

the middle and max pooling layer in output (Figure 5).
We found that encoder block requires only dropout regularization.

Figure 5.
Encoding block.

Figure 6.
Decoding block.
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Decoder block contains a pair of convolution layers with regularization block in
the middle as well as encoder block, but instead of max pooling output layer, it
uses Conv2DTranspose layer and input layer concatenation to connect the result of
the previous block with residual connection (Figure 6).

We found out the best regularization for decoder block is mix dropout with
batch normalization.

To extend basic U-Net, we added three dilated convolution blocks with dilation
rates 4, 8, and 12 between encoder and decoder parts of the NN.

The final block scheme of used neural network is displayed in Figure 7.
Model details:

• Encoder/decoder convolution layers

◦ Initializes: He normal

◦ Padding: Same

◦ Kernel size: 3

◦ Activation function: Rectified linear unit (ReLU)

• Dilated convolution layers

◦ Initializes: He normal

◦ Padding: Same

◦ Kernel size: 1

◦ Activation function: Rectified linear unit (ReLU)

◦ Dilation rates: 4, 8, 12

Figure 7.
Final scheme of neural network model.
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• Max Pooling

◦ Pooling size: 2

• Conv2DTranspose layers (except output layer)

◦ Initializes: He normal

◦ Padding: Same

◦ Kernel size: 3

◦ Activation function: Rectified linear unit (ReLU)

◦ Strides: 2

• Conv2DTranspose layers (output layer)

◦ Initializes: Glorot/Xavier normal

◦ Padding: Same

◦ Kernel size: 3

◦ Activation function: Sigmoid

◦ Filters: 1

• Loss function: BinCrossE-Log(Jaccard index)

It is obvious for the binary classification task to use logistic sigmoid function [7]
as activation function in output layer which represents the probability of relation
between each pixel to positive class.

Loss function of the neural network was binary cross entropy [8] extended by
Jaccard index [9].

Winners of Kaggle competitions, who used U-Net for proving their
approach said:

“It is well known that in order to get better results your evaluation metric and
your loss function need to be as similar as possible. The problem here however is
that Jaccard index is not differentiable. One can generalize it for probability pre-
diction, which on one hand, in the limit of the very confident predictions, turns into
normal Jaccard and on the other hand is differentiable—allowing the usage of it in
the algorithms that are optimized with gradient descent” [10].

6. Post-processing

In fact, the U-Net takes an image patch and makes predictions on those small local
windows, without data near the border of the patches, so there might first be a high
error on the predictions made near the boundary of the window, in plus of the fact
that predictions may be just concatenated, so it looks even more jagged (Figure 8).

To get with this problem, we reused well-designed solution prepared to deal
with it—“blending predicted patches smoothly is a must to please the human eye.”
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(https://github.com/Vooban/Smoothly-Blend-Image-Patches)
To get smoothed results, the following steps are applied to each patch:

• Use the four possible 90 degrees rotations, as well as a mirrored version of
those rotations, so as to augment the images eightfold for prediction before
blending the predictions together

• 2D interpolation between overlapping patches when doing the final predictions

After applying the post-processing filter, we obtain the following probability
map for the same samples (Figure 9).

7. Logs

We used online service https://www.comet.ml for monitoring the training
process. Following are the results of training network with different
hyperparameters values (Figures 10–11).

Figure 8.
Connected patches without any blending.

Figure 9.
Connected patches with applied blending.
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7.1 Model does not use bias in convolution layers and does not use additional
batch normalization in atrous blocks

Best validation accuracy: 0.9841.
Best Jaccard index: 0.8098.

7.2 Model use bias in convolution layers and do not use additional batch
normalization in atrous blocks

Best validation accuracy: 0.9844.
Best Jaccard index: 0.8857.

Figure 10.
The model’s training history which does not use bias in convolution layers and does not use additional batch
normalization in atrous blocks.

Figure 11.
The model’s training history which uses bias in convolution layers and does not use additional batch
normalization in atrous blocks.

Figure 12.
Model’s training history which does not use bias in convolution layers and use additional batch normalization in
atrous blocks.
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7.3 Model does not use bias in convolution layers and use additional batch
normalization in atrous blocks

Best validation accuracy: 0.9863.
Best Jaccard index: 0.8913.

8. Results

Below are the set of result images taken from a drone with highlighted objects
predicted as lizards.

The color of the highlighted rectangles has a range from blue to red with respect
to the probability of the predicted object. Blue rectangles highlighted predictions
with low probability. Red rectangles highlighted predictions with high probability
(Figures 13–15).

Figure 13.
Example of detection. Gray lizard detected with high probability. There are gaps between rocks that could have
quite high probability too.

Figure 14.
Example of detection. Green lizard detected with high probability. Branches have less but detected probabilities.
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9. Conclusion

The design and the architecture of the developed application allowed us to build
a flexible model of the neural network and find the best configuration of
hyperparameters.

As was found with the help of using CometML service, the best case of
hyperparameters is:

“Model does not use bias in convolution layers and use additional batch normal-
ization in atrous blocks.”

Best validation accuracy: 0.9863.
Best Jaccard index: 0.8913.
The following is a list of implemented features:

• Disk-caching allows to use unlimited size of datasets and avoid memory
overflow problem.

• Used GPU memory amount control allows using several trainings on the same
GPU.

• Attention to reproducing trainings allows to compare different results.

• Source data augmentation allows training on the tiny-size dataset.

• K-fold cross-validation allows training more deeper and obtain better results.

• Parametrized training allows stacking training solutions.

• Structured solutions allows to build multistep training.

• Post-processing allows to obtain smoothly blended probability for the whole
image and, as a result, better prediction quality for big image resolution.

Figure 15.
Example of detection. One gray (between rocks) and one white (on the rock) lizard detected with high
probability. Branches have less but detected probabilities.
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Chapter 4

Deep-Facial Feature-Based Person
Reidentification for
Authentication in Surveillance
Applications
Yogameena Balasubramanian, Nagavani Chandrasekaran,
Sangeetha Asokan and Saravana Sri Subramanian

Abstract

Person reidentification (Re-ID) has been a problem recently faced in computer
vision. Most of the existing methods focus on body features which are captured
in the scene with high-end surveillance system. However, it is unhelpful for
authentication. The technology came up empty in surveillance scenario such as in
London’s subway bomb blast, and Bangalore ATM brutal attack cases, even though
the suspected images exist in official databases. Hence, the prime objective of this
chapter is to develop an efficient facial feature-based person reidentification
framework for controlled scenario to authenticate a person. Initially, faces are
detected by faster region-based convolutional neural network (Faster R-CNN).
Subsequently, landmark points are obtained using supervised descent method
(SDM) algorithm, and the face is recognized, by the joint Bayesian model. Each
image is given an ID in the training database. Based on their similarity with the
query image, it is ranked with the Re-ID index. The proposed framework
overcomes the challenges such as pose variations, low resolution, and partial
occlusions (mask and goggles). The experimental results (accuracy) on benchmark
dataset demonstrate the effectiveness of the proposed method which is inferred
from the observation of receiver operating characteristic (ROC) curve and
cumulative matching characteristics (CMC) curve.

Keywords: video surveillance, person reidentification, facial feature-based
reidentification, Faster R-CNN, SDM

1. Introduction

Nowadays, a large network of cameras is predominantly used in public places
like airports, railway stations, bus stands, and office buildings. These networks of
cameras provide enormous video data, which are monitored manually and may be
utilized only when the need arises to ascertain the fact. Fascinatingly, an automated
analysis of such huge video data can improve the quality of surveillance by
processing the video faster. Above all, it is more useful for high-level surveillance
tasks like suspicious activity detection or undesirable event prediction for timely
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alerts. Especially, the person Re-ID task is one of the current attentions in computer
vision research. Establishing the correspondence between the image sequences of a
person, across multiple camera views or in same camera at different time intervals,
is known as person Re-ID. Simply, it implies that a person, seen previously, is
identified in his/her next appearance using a unique descriptor of the person.
Humans do it all the time without much effort. Our eyes and brains are trained to
detect, localize, identify, and later reidentify the objects and people in the real
world. Humans are able to extract such a descriptor based on the person’s face,
height and structure, attire, hair color, hair style, walking pattern, etc. However, a
person’s face is the most unique and reliable feature that human uses to identify the
people [1]. Therefore, facial feature-based Re-ID is used to verify and recognize
either the person seen in the camera is the same person spotted earlier in the same
camera at a different time. Especially, it is applicable in controlled environment
where the face database is available.

1.1 Facial feature-based person reidentification

In earlier days, it was stated that “reidentification cannot be done by face due to
immature camera capturing technology” [2]. Nowadays due to remarkable growth
of VLSI-based fabrication techniques, a person’s face-capturing ability of camera
has increased even in low illumination condition [3]. Therefore, facial feature Re-ID
booms, and it is a well-authenticated one. Facial feature-based reidentification is a
process of identifying a person using his/her face under consistent labeling across
multiple cameras or even with the same camera to reestablish different tracks. Since
the face is a biometric feature that cannot be replicated easily, it is used for human
reidentification [4]. Also the face is the most natural and unique hallmark widely
used as a person’s identifier [5]. In reality, reidentification cannot be applied to find
similarity among people after several days due to likely alterations in their visual
appearance like attire, gait, etc. Li et al. [6] say that the face is also helpful in person
reidentification and deserves attention. Li et al. [7] says the feature extracted from
neck and above is an important clue for person reidentification. Biometric recogni-
tion features like the face, iris, and fingerprint can overcome these constraints by
working on highly discriminative and stable features. Unlike the iris and finger-
print, to identify and recognize a person’s “face” are successfully captured in the
scene with improved camera technology. Beyond face recognition techniques, face
reidentification techniques improve the system’s metric learning and provide the
best assurance to person’s presence in the captured environment [8]. This proposed
framework focuses on facial feature-based Re-ID for indoor surveillance such as IT
sectors, government agencies, and ATM centers. The emergence of the facial
feature-based person Re-ID task can be attributed to the increasing demand of
public safety and the widespread huge camera networks in theme parks, university
campuses, streets, IT sectors, etc. However, it is extremely expensive to rely solely
on brute-force human labor to accurately and efficiently spot a person-of-interest or
to track a person across cameras [9, 10]. Automation of the facial feature-based
person Re-ID is quite difficult to be accomplished without human intervention. It is
still a challenging topic, due to the fact that the appearance of the same face looks
dramatically different in controlled or uncontrolled environments with pose varia-
tions, different expressions, illumination conditions, low resolutions, and partial
occlusions specifically, in the abovementioned scenarios.

The rest of the chapter is organized as follows. In Section 2, prior research works
on person reidentification including non-facial feature-based and facial feature-
based Re-ID are summarized. Section 3 includes problem formulation, objective,
and the key contribution toward this work. Section 4 elucidates the detailed
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description of the proposed Re-ID framework. Section 5 presents the experimental
results and discussion on face detection and Re-ID with challenging face detection
benchmark datasets and TCE dataset. The step-by-step process of the proposed
facial feature-based Re-ID framework’s result for TCE dataset is also explored in
Section 5. Finally, conclusions and the future research scope are presented in Sec-
tions 6 and 7, respectively.

1.2 Motivation

Three incidents in surveillance scenario motivate the research work toward
person Re-ID. The first, being the London’s subway bomb blast on July 7, 2005,
where 52 persons were killed and 784 persons injured. It took thousands of investi-
gators and several weeks to parse the city’s CCTV footage after the attacks. The
second, being the Boston Marathon bombing on April 15, 2013, where 3 persons
were killed and 264 persons injured. Investigators had gone through hundreds of
hours of video, looking for people “doing things that are different from what
everybody else is doing.” The work was painstaking and mind-numbing. One agent
watched the same segment of video 400 times [11]. The third incident was the
Bangalore ATM brutal attack on November 19, 2013, where one woman was seri-
ously injured. The police commissioner of Bangalore expressed that in spite of all
their sincere efforts, no arrest was made in the ATM attack case. However, they
could identify the assailant only through CCTV footage. In all these three cases, the
technology came up empty, even though the suspected images especially faces exist
in official databases.

1.3 Applications

Facial feature-based person reidentification has various applications. It is applied
in tracking a particular person across multiple nonoverlapping cameras and
detecting the trajectory of a person for surveillance, forensic, and security applica-
tions. Further, in government offices and IT parks, the access card-based entry
system can be replaced by facial feature-based Re-ID system to improve security
and authentication.

1.4 Challenges

Facial feature-based person Re-ID as a task has many challenges such as varying
poses, low resolution, illumination variations, different expressions, different hair-
styles, wearing goggles, and occlusions. These challenges create intricacy in face
detection and verification. In this chapter, the major challenges such as pose varia-
tions, partial occlusions, and wearing goggles are focused.

2. Related works

The person reidentification research started along with multi-camera tracking in
the year 2005 [12]. Several important Re-ID directions have been addressed since
then; some of them are based on camera setting, sample set, appearance-based,
nonappearance-based, and body model as shown in Figure 1. Comparison of recent
facial feature-based reidentification techniques are shown in Table 1.

Apart from facial feature-based person reidentification algorithms which suffer
from noisy samples with background clutter and partial occlusion, it is problematic
to differentiate an individual. Very few deep learning algorithms on “facial
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Section 5. Finally, conclusions and the future research scope are presented in Sec-
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Three incidents in surveillance scenario motivate the research work toward
person Re-ID. The first, being the London’s subway bomb blast on July 7, 2005,
where 52 persons were killed and 784 persons injured. It took thousands of investi-
gators and several weeks to parse the city’s CCTV footage after the attacks. The
second, being the Boston Marathon bombing on April 15, 2013, where 3 persons
were killed and 264 persons injured. Investigators had gone through hundreds of
hours of video, looking for people “doing things that are different from what
everybody else is doing.” The work was painstaking and mind-numbing. One agent
watched the same segment of video 400 times [11]. The third incident was the
Bangalore ATM brutal attack on November 19, 2013, where one woman was seri-
ously injured. The police commissioner of Bangalore expressed that in spite of all
their sincere efforts, no arrest was made in the ATM attack case. However, they
could identify the assailant only through CCTV footage. In all these three cases, the
technology came up empty, even though the suspected images especially faces exist
in official databases.

1.3 Applications

Facial feature-based person reidentification has various applications. It is applied
in tracking a particular person across multiple nonoverlapping cameras and
detecting the trajectory of a person for surveillance, forensic, and security applica-
tions. Further, in government offices and IT parks, the access card-based entry
system can be replaced by facial feature-based Re-ID system to improve security
and authentication.

1.4 Challenges

Facial feature-based person Re-ID as a task has many challenges such as varying
poses, low resolution, illumination variations, different expressions, different hair-
styles, wearing goggles, and occlusions. These challenges create intricacy in face
detection and verification. In this chapter, the major challenges such as pose varia-
tions, partial occlusions, and wearing goggles are focused.

2. Related works

The person reidentification research started along with multi-camera tracking in
the year 2005 [12]. Several important Re-ID directions have been addressed since
then; some of them are based on camera setting, sample set, appearance-based,
nonappearance-based, and body model as shown in Figure 1. Comparison of recent
facial feature-based reidentification techniques are shown in Table 1.
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to differentiate an individual. Very few deep learning algorithms on “facial
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feature-based” person reidentification are found in literature. However, deep
learning features are heavily dependent on large-scale labeling of samples, they deal
only with frontal and profile faces, and they fail under various illumination
conditions, pose variations, and partial occlusions.

2.1 Observation and inference

From the existing related works, it can be concluded that very few works focus on
deep learning methods for facial feature-based person reidentification. These works
do not concentrate on the real-world challenges such as low image resolution, pose
variations, and partial occlusions. Nevertheless, when we consider a controlled envi-
ronment, such as authenticated laboratories and IT parks, face recognition-based
person reidentification is possible which is vague currently. From the above discus-
sion and analysis, a deeply trained facial feature-based person Re-ID framework is
proposed which includes face detection by Faster R-CNN, joint Bayesian face-
verification approach, and face reidentification. The scope of this chapter incorpo-
rates the challenges in the real-world environment like pose variation, low resolution,
illumination changes, partial occlusion, and even goggle-wearing conditions.

3. Problem formulation

Existing works, related to the person Re-ID, deal only with the gait-based Re-ID
for a short period, and very few works focus on long period reidentification of an
individual. Research has been in progress toward long-term Re-ID (i.e., video is

Figure 1.
Categorization of person reidentification algorithms [3, 6, 12–36].
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recorded for a month using a single camera), but at the same time, it is the need of
the hour problem for authentication as well as for public safety. Here, facial feature-
based Re-ID is the authenticated one, and other feature-based Re-ID is the suspi-
cious one. Hence, there is a need to develop facial feature-based Re-ID using deep
learning algorithm which handles low resolution, illumination variation, pose
variation, and partial occlusion.

3.1 Objective

The main objective of the proposed framework is to develop facial feature-based
person reidentification algorithm, using deep learning technology that works well

Table 1.
Comparison of recent face reidentification techniques [3, 6, 24–37].
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for long-term Re-ID even in low illumination, pose variation, partial occlusion
condition (Goggles, Mask, etc.) for a controlled environment.

3.2 Contribution face-based: hybrid Re-ID method

The existing person reidentification is entirely based on global appearances or
gait features. The prevailing algorithms have been developed so far to reidentify a
person, based on his/her facial features that identify a person and do not address the
experimentation on the challenging conditions such as low resolution, varying
illumination, pose variations, and partial occlusion. This chapter proposes a hybrid
combination of deep learning method Faster R-CNN for face detection and uses
traditional method like joint Bayesian with SDM approach for reidentification
which takes the advantages of both methods.

Moreover, another key contribution is the strong experimentation with bench-
mark datasets and TCE dataset captured under varying illumination conditions,
with pose variations, various resolutions, and partial occlusion such as mask (green,
blue, black shawl), specs, and goggles.

4. Methodology

The proposed facial feature-based person reidentification framework for
surveillance applications in a controlled environment is portrayed in Figure 2.

Figure 2.
Overview of the proposed deep-facial feature-based person Re-ID framework.
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Here, the face detection module is implemented, by means of the deep learning-
based approach (Faster R-CNN), where several convolutional and pooling layers
are employed to extract deep features. Face recognition is performed, using the
joint Bayesian model. Finally, the ranking is done, based on the similarity measure
between the query image and the images in the database to provide a Re-ID. Finally,
the ranking is done, based on the similarity measure between the query image and
the images in the database to provide a Re-ID.

4.1 Overview of deep learning algorithms for face detection

After the remarkable success of a deep CNN in image classification on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, Ross Girshick
and his peers concluded that for a given complicated image, CNNs can be used to
identify different objects and their boundaries in the image. Ross et al. [38] intro-
duced a region-based CNN (R-CNN) for object detection. The pipeline consists of
two stages. First, R-CNN creates bounding boxes, or region proposals, using a
process called selective search. The selective search process identifies the object
selecting the image area through the windows of different sizes, and for each size, it
tries to group together the adjacent pixels by texture, color, or intensity. Once the
proposals are created, R-CNN warps the region to a standard square size (e.g.,
227� 227) and passes it through to a modified version of AlexNet. On the final layer
of the CNN, R-CNN adds a classifier that simply classifies whether this is an object,
and if so, identifies the type of the object. The final step of R-CNN is to tighten
the bounding box to fit the true dimension of the object. This is done, by using a
simple linear regressor on the region proposal. The significance of the R-CNN is that
it brings high accuracy by CNNs on classification tasks for the object detection
problem. Its success is largely due to the act of transferring the supervised
pretrained object representation for image classification. The R-CNN used different
models to extract CNN-based image features, classify, and tighten bounding boxes.
This makes the pipeline extremely hard to train these models. Ross Girshick, the
first author of R-CNN, solved these problems, leading to the second algorithm—the
Fast R-CNN [39]. Fast R-CNN uses a technique known as RoI Pool (region of
interest pooling), which shares the forward pass of a CNN for an image across its
subregions. For each region, the CNN features are obtained by selecting a respective
region from the CNN’s feature map. In addition, the Fast R-CNN jointly trains the
CNN, classifier, and bounding box regressor in a single model. The R-CNN used
different models to extract CNN-based image features, classify, and tighten
bounding boxes, whereas Fast R-CNN used a single network to compute all these
three. Figure 3a shows sample face detection results along with the confidence
score using R-CNN. Even with all these advancements, there was still one
remaining clog in the Fast R-CNN process, the region proposer. In the Fast R-CNN,
these were done, using a slow process selective search, which was found to be the
hindrance of the overall process. In [40], Ross Girshick and his team found a way to
solve this problem and named it Faster R-CNN. The Faster R-CNN works to combat
the complex training pipeline that both R-CNN and Fast R-CNN get exhibited.
The slowest part in the Fast R-CNN was the selective search.

4.2 Face detection using Faster R-CNN

This chapter trains the Faster R-CNN on the existing benchmark datasets and
in our TCE dataset for face detection. The input frames are resized based on the
ratio 1024/max (w, h) in order to fit it in the GPU memory, where w and h are the
width and height of the image, respectively. The Faster R-CNN is designed to
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extract the visual features hierarchically, from local low-level features to global
high-level ones, by using convolution and pooling operations. Region proposal
network (RPN) is used to generate region proposals for faces in an image. In the
RPN, the convolution layers of a pretrained network are succeeded by a 3 � 3
convolutional layer. This corresponds to map a large spatial window or receptive
field (e.g., 227 � 227 for AlexNet) in the input image to a low-dimensional
feature vector at a center stride. Two 1 � 1 convolutional layers are then added for
classification and regression branches for all spatial windows. Here, the regions
are positive if the sample is >0.5 (denoted as L = 1), when the region has an
intersection over union (IOU) overlap with the ground truth and the regions are
negative if sample is <0.35 (denoted as L = 0). The remaining regions are
ignored [41].

Softmax loss function given by Eq. (1) is used for training the face
detection task:

Figure 3.
(a) Face detection result using R-CNN for TCE dataset, (b) detected landmark points using SDM algorithm,
and (c) ranking list of the TCE gallery set with similarity.
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Loss ¼ � 1� Lð Þ: log 1� pð Þ � L: log pð Þ (1)

In the aforementioned equation, p is the probability of occurrence of the candi-
date region, which is a required facial feature. The probability values p and 1� p are
obtained from the final fully connected CNN layer for the detection task.

4.3 Face recognition using SDM and joint Bayesian approach

After detecting the face and extracting the facial feature, the next task is recog-
nition of face, i.e., the given face is verified with the class of faces (face verification)
and certified with face identity (face identification). Face verification means veri-
fying whether the given two faces belong to the same person or not. Face identifi-
cation means an identity number is assigned to the probe person face with respect
to the gallery. The conventional face recognition pipeline uses the facial features for
face alignment and face verification. To detect facial landmark points SDM is used.
SDM learns in a supervised manner generic descent directions and is able to over-
come many drawbacks of second-order optimization schemes, such as non-
differentiability and expensive computation of the Jacobians and Hessians. More-
over, it is extremely fast and accurate. This method improves the minimization of
analytic functions that overcomes the problem of facial feature detection and
tracking. SDM solves nonlinear least squares (NLS) and accurate in facial feature
detection and tracking in challenging databases. SDM algorithm [42] detects facial
landmarks as shown in Figure 3b. By detecting the landmarks, face images are
globally aligned by similarity transformation. Further based on the extracted fea-
tures, the face is recognized by joint Bayesian model [43]. The joint probability of
two faces of the same or different persons is calculated, by using joint Bayesian
model. The feature representation of a face is given as a combination of inter- and
intrapersonal variations, or f =

P
(μ, ɛ), where both μ and ɛ are estimated from the

training data and represented in terms of Gaussian distributions. Face recognition is
achieved through log-likelihood ratio test, as given in Eq. (2):

Log
p f 1; f2jHinterð Þ
p f1; f2jHintrað Þ (2)

Here, the numerator and denominator are the joint probabilities of two faces
(f1 and f2), when given the inter- or intrapersonal variation hypothesis (),
respectively.

4.4 Euclidean distance-based reidentification process

Let us consider a probe person image p and a gallery set G = {gi | i = 1, 2…n},
where n is the size of the gallery. Through computing their L2 (Euclidean) distances
(p, gi), the query result can be obtained as Rp (G) = {g1

0, g2
0, …..gn

0} where gi
0

represents i-th image in the rank list and the distances between ? and gi
0 satisfy d

(p, g1
0) < d(p, g2

0) < …….. < d(p, gn
0). Here a score S (p, gi

0) is used to define the
similarity between p and gi

0, and it is equal to the rank index of gi
0. Based on the

similarity score, a smaller distance indicates that the two images are more similar.
Finally, all gallery images are ranked in ascendant order, by matching their L2
distances with the probe image to find out, which top n images can perform the
corrected matches. Figure 3c shows the order in which the gallery images are
ranked based on their similarity with the query image. The first image on the left
corner has a higher similarity or a lower distance.
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5. Experimental results

5.1 Dataset description

The HALLWAY, the WIDER FACE, FDDB, SPEVI (surveillance performance
evaluation initiative) datasets are the benchmark datasets, used for face detection in
this experiment. The HALLWAY dataset is used to evaluate person-to-person
interaction recognition module. The WIDER FACE dataset is an effective training
source for face detection. The WIDER FACE dataset is 10 times larger than existing
dataset. The FDDB is designed for studying the problem of unconstrained face
detection. It contains annotations for 5171 faces in a set of 2845 images taken from
wild dataset. The SPEVI dataset is used for testing and evaluating target tracking
algorithms for surveillance-related applications. Apart from these benchmark
datasets, real-time TCE dataset is also used in this experiment. Sample frames of
various benchmark datasets and TCE dataset is depicted in Figure 4. It consists of
face images of various persons, captured under varying illumination conditions,
with pose variations, various resolutions, and partial occlusion such as mask (green,
blue, black shawl), specs, and black goggles. In TCE dataset, each row in figure
corresponds to the same person, but the variations exist due to the difference in
pose, viewpoint, illumination, image quality, and occlusion. Their corresponding
specifications are given in Table 2.

5.2 Evaluation using benchmark and TCE dataset

This chapter considers a single-size training mode. Figure 5a–c brings out the
sample detection results on the WIDER FACE, FDDB, and HALLWAY dataset,
where the red color bounding boxes are ground-truth annotations and the yellow
color bounding boxes are the detection results, using Faster R-CNN. Finally, more

Figure 4.
Sample frames with challenging conditions (a) HALLWAY, (b) and (c) WIDER FACE, (d) FDDB,
(e) SPEVI, and (f) TCE dataset.

Table 2.
Specifications of various benchmark datasets and TCE dataset.
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Figure 5.
Sample detection results on the various dataset, where red color bounding boxes are ground-truth annotations
and yellow color bounding boxes are detection results using Faster R-CNN sample detection results using Faster
R-CNN, (a) WIDER FACE dataset, (b) FDDB dataset, and (c) HALLWAY dataset.

Figure 6.
(a) TCE dataset gallery—persons with ID and (b) sample detection results using Faster R-CNN-TCE dataset.
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number of faces are trained and learned, and the experiments prove that Faster R-
CNN achieves highly triggering results against the other state-of-the-art face detec-
tion methods.

Apart from the above benchmark datasets, our approach is evaluated on TCE
dataset. It is captured to test all the challenges in one single dataset which is absent
as benchmark. The gallery of the TCE dataset consists of the images of 30 students,
under varying pose conditions, illumination variations, and occlusion conditions.
For each student, at least 300 images are tested under those conditions. Moreover,
an ID is provided for each student in the database such as TCE_ECE_IP_01,
TCE_ECE _IP_02, TCE_ECE_IP_03... TCE_ECE_IP_30 (as shown in Figure 6a).
Once a student enters the lab, her face is detected using Faster R-CNN. Figure 6b
shows some of the sample detection results on the real-time TCE dataset, where the
red color bounding boxes are ground-truth annotations and the yellow color
bounding boxes are detection results, using Faster R-CNN.

The detected face is recognized, using the joint Bayesian model after finding
facial landmarks, by means of the SDM algorithm. Afterward, the images in the

Figure 7.
The proposed facial feature-based Re-ID results for LFW and TCE dataset.
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gallery set are arranged, based on their similarity. Finally, from the ranking list, the
image with lower distance (rank 1) or with higher similarity score is displayed along
with the Re-ID. The overall schematic representation of the proposed framework’s
result for a sampled query frame is shown in Figure 7.

5.3 Comparative analysis

The performance of face detection is measured in terms of recall and intersec-
tion over union (IoU). Each detection is considered as positive, if the IoU ratio is
>0.5, matched with ground-truth annotation. The threshold of the detected scores is
varied to generate a set of true positives and false positives. Finally, ROC curve is
plotted. The larger the threshold is, the fewer the proposals that are considered to be
true objects. Figure 8a and b illustrates the quantitative comparisons of using
300–2000 proposals. RPN is compared with other approaches including selective
search (SS) and edge box (EB), and the N proposals are the top N-ranked ones,
based on the confidence generated by these methods. The recall of SS and EB drops

Figure 8.
(a) Recall vs. IoU overlap ratio with 300 proposals and (b) recall vs. IoU overlap ratio 2000 proposals.

Figure 9.
(a) Comparisons of R-CNN, Fast R-CNN, and Faster R-CNN face detection methods on TCE dataset and
(b) ROC comparison with the deep face method.
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more quickly than RPN for fewer proposals. The plots show that using RPN yields a
much faster detection system than using either SS or EB, when the number of
proposals drops from 2000 to 300.

In addition the face detection performance of the R-CNN is compared with the
Fast R-CNN and the Faster R-CNN on TCE dataset. As observed from Figure 9a,
the Faster R-CNN significantly outperforms the other two. Deeply trained network

Table 3.
Accuracy comparison on TCE dataset.

Figure 10.
(a) CMC curve for different ranking methods and (b) CMC curve for various face recognition methods.

Figure 11.
CMC curve for various state-of-the-art facial feature-based Re-ID methods.
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such as RPN boosts the performance of Faster R-CNN. Also, the Faster R-CNN has
high computational speed than R-CNN and Fast R-CNN.

The comparison of the joint Bayesian method with the recent state-of-the-art
deep face method in terms of the mean accuracy and ROC curves are presented in
Table 3 and Figure 9b, respectively. It can be observed that the joint Bayesian
method advances the state-of-the-art deep face method, closely approaching human
performance in face recognition. An accuracy of about 98.3 � 1.1% in face recogni-
tion is achieved on TCE dataset.

The most widely used evaluation methodology for Re-ID is the cumulative
matching characteristics curve, also known as CMC curve. This performance metric
is adopted since Re-ID is intuitively posed as a ranking problem, where each ele-
ment in the gallery is ranked, based on its comparison to the probe face. Figure 10a
represents the comparison of rank vs. matching rate of Euclidean (L2) method with
the XQDA method. It is evident from the plot that Euclidean (L2) method achieves
better Re-ID matching rate than XQDA method on TCE dataset.

Recognition rate indicates probabilities of recognizing an individual, depending
on how similar their measurements are to other individuals measurements in the
gallery set and compared with performance of a biometric system, operating in the
closed-set identification task. The probability of the equivalent match is ranked, and
the value has been plotted against the size of the gallery set. Figure 10b represents
the comparison of the recognition rate of joint Bayesian with the PCA-based
eigenface approach algorithm. This shows PCA algorithm fails in some low-
resolution images, wearing goggles, and different hairstyles. Figure 11 represents
the comparison of the reidentification rate of joint Bayesian method with other
recent methods. Table 4 shows the success and failure cases of the proposed frame
work on TCE dataset and LFW dataset.

6. Conclusion

This chapter has presented an approach to robustly detect human facial regions
from image sequences collected under various challenging conditions, such as par-
tial occlusions, low resolutions, varying face poses, illumination variations, etc., and
to reidentify a person even under those conditions. The well-established Faster R-
CNN method is adopted to confirm whether the detected region proposals are
human faces. Although the Faster R-CNN is designed for generic object detection, it
manifests the impressive face detection performance, when attempted on a suitable
face detection training set. The approach is tested on challenging benchmark
datasets such as the WIDER FACE dataset, the FDDB, HALLWAY, and on own
TCE dataset as well. The experimental results and various performance measures
depict that the facial feature-based Re-ID results achieved are competitive and
exclusive approach even in the presence of partial occlusions and other challenging
conditions as mentioned above.

7. Future work

Till now, the scope of the algorithm (as shown in Table 5) is limited for frontal
and profile face verifications, handling partial occlusions in a sparse crowd. Future
work focuses on person Re-ID in a high-dense crowd under severe occlusions.
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Chapter 5

Object Re-Identification Based on
Deep Learning
Xiying Li and Zhihao Zhou

Abstract

With the explosive growth of video data and the rapid development of computer
vision technology, more and more relevant technologies are applied in our real life,
one of which is object re-identification (Re-ID) technology. Object Re-ID is cur-
rently concentrated in the field of person Re-ID and vehicle Re-ID, which is mainly
used to realize the cross-vision tracking of person/vehicle and trajectory prediction.
This chapter combines theory and practice to explain why the deep network can re-
identify the object. To introduce the main technical route of object Re-ID, the
examples of person/vehicle Re-ID are given, and the improvement points of
existing object Re-ID research are described separately.

Keywords: object re-identification, deep learning, person re-identification,
vehicle re-identification, feature extraction

1. Introduction

In a surveillance camera without overlapping vision, a recognized object is
identified again after imaging conditions (including monitoring scene, lighting
conditions, object pose, etc.) change, which is called object re-identification (Object
Re-ID). Object Re-ID technology has important research significance in intelligent
monitoring, multi-object tracking and other fields. In recent years, scholars have
paid extensive attention to it. The main application areas of object Re-ID are person
Re-ID and vehicle Re-ID.

Person re-identification (Re-ID) is a technology that uses computer vision tech-
nology to judge whether there is a specific person in the image or video sequence. It
is widely regarded as a sub-problem of image retrieval. Given a monitor person
image, retrieve the image of the row of people across the device. It aims to make up
for the visual limitations of the current fixed cameras, and can be combined with
person detection and pedestrian tracking technology, which can be widely used in
intelligent video monitoring, intelligent security and other fields.

Vehicle re-identification (Re-ID) aims to quickly search, locate and track the
target vehicles across surveillance camera networks, which plays key roles in
maintaining social public security and serves as a core module in the large-scale
vehicle recognition, intelligent transportation, surveillance video analytic plat-
forms. Vehicle Re-ID refers to the problem of identifying the same vehicle in a large
scale vehicle database given a probe vehicle image. In particular, vehicle Re-ID can
be regarded as a fine-grained recognition task that aims at recognizing the subordi-
nate category of a given class. The wide popularization and use of road video
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monitoring makes vehicle matching based on video image become the hot spot in
current intelligent traffic research, and the typical applications are vehicle origin-
destination analysis and vehicle trajectory reconstruction. In some cases which
license plate number could be recognized clearly and accurately, vehicle Re-ID
could be realized by match the license plate number. However, in more cases, such
as license plate can’t be recognized (for most surveillance video), license plate
occlusion and so on in the criminal investigation, it is necessary to realize the
vehicle Re-ID without license plates by using computer vision and other related
technologies.

2. Related work of object Re-ID

As an emerging research topic, object Re-ID has attracted great efforts. Existing
research directions of object Re-ID are mainly divided into person Re-ID and vehi-
cle Re-ID. In this section, we will review the relevant works from person Re-ID and
vehicle Re-ID.

2.1 Person Re-ID

We will review the relevant work [1] of person Re-ID from following aspects:
person Re-ID based on representation learning, metric learning, local features and
video sequence.

2.1.1 Person Re-ID based on representation learning

Methods based on representation learning are a kind of very common person Re-
ID methods, which is mainly thanks to the deep learning, especially the
Convolutional neural network (CNN) development. Sunderrajan et al. [2] propose a
clothing context-aware color extraction method to learn color drift patterns in a
non-parametric manner using the random forest distance (RFD) function. Geng
et al. [3] proposed a person Re-ID algorithm which used Classification loss and
verification loss to train the network (including Classification Subnet and Verifica-
tion Subnet), and the network inputs several pairs of pedestrian images. The classi-
fication subnetwork makes ID prediction on the image, and calculates the
classification error loss according to the predicted ID. The sub-network integrates
the features of two images and judge whether these two images belong to the same
pedestrian. The sub-network is essentially equivalent to a binary classification net-
work. After enough data training, input a test image again, and the network will
automatically extract a feature, which is used for person Re-ID. For the problem
that pedestrian ID information alone is not enough to learn a model with strong
generalization ability, the researchers added attributes such as gender, hair and
clothing to the pedestrian images. By introducing the pedestrian attribute label, the
model should not only accurately predict the pedestrian ID, but also predict the
correct pedestrian attributes, which greatly increases the generalization ability of
the model. Most papers also show that this method is effective. Lin et al. [4]
proposed a person Re-ID algorithm based on multiple attributes. In this algorithm,
the features of network output are not only used to predict the ID information of
pedestrians, but also to predict the attributes of each pedestrian. The combination
of ID loss and attribute loss can improve the generalization ability of the network.
Currently, there is still a lot of work based on representational learning. Represen-
tational learning has also become a very important baseline of Re-ID field. More-
over, the method of representational learning is more robust, the training is more
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stable, and the results are easier to reproduce. However, representation learning is
easy to be overfitted in the domain of the data set, and when the training ID is
increased to a certain extent, it will be weak.

2.1.2 Person Re-ID based on metric learning

Metric learning is a method widely used in the field of image retrieval. Unlike
representational learning, metric learning aims to learn the similarity between two
images through the network. In the problem of person Re-ID, the similarity of
different images of the same pedestrian is greater than that of different images of
the different pedestrians. Finally, the loss function of the network makes the dis-
tance between the same pedestrian images (positive sample pairs) as small as
possible, and the distance between different pedestrian images (negative sample
pairs) as large as possible. Common measures of learning loss include Contrastive
loss, Triplet loss, Quadruplet loss, Triplet hard loss with batch hard mining
(TriHard loss) and Margin sample mining loss (MSML). Varior et al. [5] proposed
Siamese Network, and trained the network model by contrast loss. By reducing the
contrast loss, the distance between positive sample pairs is gradually reduced, and
the distance between negative sample pairs is gradually increased, so as to meet the
need of person Re-ID. Triplet loss is a widely used metric learning loss and a lot of
metric learning methods have evolved based on triples. Ding et al. [6] considered
the re-identification problem as a ranking issue and used triplet loss to obtain the
relative distance between images. Chen et al. [7] designed a quadruplet loss process,
which can lead to model outputs with larger inter-class variation and smaller intra-
class variation compared with the triplet loss method. Hermans et al. [8] proposed a
batch training based online difficult sample sampling method, which is named
TriHard Loss. Traditional triplet sample mining strategy randomly select three
images from training data, and most of the sampled images are simple and easily
distinguishable sample pairs, which is not conducive to better representation of
network learning. This paper proposes a sample mining strategy that can obtain
more difficult samples which can improve the generalization ability of the network.
Xiao et al. [9] proposed Margin sample mining loss which introduces the idea of
hard sample sampling. MSML losses are calculated by picking only the hardest
positive sample pair and the hardest negative sample pair. It is a measure learning
method that takes into account both relative distance and absolute distance and
introduces the idea of difficult sample sampling.

2.1.3 Person Re-ID based on local features

In the early stage of ReID’s research, people still focused on global feature, but
later the global feature encountered a bottleneck, so they began to study local
feature gradually. The commonly used methods to extract local features include
image segmentation, positioning of skeleton key points and posture correction, etc.
Image segmentation is a very common way to extract local features. Wei et al. [10]
develop a pedestrian image descriptor named Global-Local-Alignment Descriptor,
this descriptor explicitly leverages the local and global cues in human body to
generate a discriminative and robust representation. In order to solve the failure of
manual image slice in the case of image misalignment, some papers first align
pedestrians with some prior knowledge, which mainly includes pre-trained human
Pose and Skeleton key points model. Su et al. [11] proposed a pose-driven deep
convolutional model to alleviate the pose variations and learn robust feature repre-
sentations from both the global images and different local parts. Liang et al. [12]
first estimated the key points of pedestrians with the model of attitude estimation,
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later the global feature encountered a bottleneck, so they began to study local
feature gradually. The commonly used methods to extract local features include
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develop a pedestrian image descriptor named Global-Local-Alignment Descriptor,
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generate a discriminative and robust representation. In order to solve the failure of
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pedestrians with some prior knowledge, which mainly includes pre-trained human
Pose and Skeleton key points model. Su et al. [11] proposed a pose-driven deep
convolutional model to alleviate the pose variations and learn robust feature repre-
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first estimated the key points of pedestrians with the model of attitude estimation,
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and then made the same key points align with affine transformation. To extract
local features at different scales, they set three different PoseBox combinations;
afterwards, the three PoseBox corrected images were sent to the network together
with the original corrected images to extract features, which contained both global
and local information. In order to solve the problem of local feature alignment, most
methods need an additional skeleton key point or pose estimation model. Zhang
et al. [13] proposed an automatic alignment model based on SP distance
(AlignedReID), which automatically aligned local features without requiring addi-
tional information.

2.1.4 Person Re-ID based on video sequence

The main difference between video sequence-based methods is that such
methods not only consider the content information of the image, but also consider
the motion information between frames. Liu et al. [14] propose an algorithm called
Accumulative motion context network (AMOC), the input of AMOC includes the
original image sequence and the extracted optical flow sequence. AMOC has Spatial
network and Motion network. Each frame of an image sequence is input into Spat
Nets to extract the global content features of the image, the two adjacent frames will
be sent to the Moti Nets to extract the optical flow pattern features; then the spatial
features and optical flow features are merged and input into an RNN to extract the
temporal features. Through the AMOC network, each image sequence can be
extracted with a feature that integrates content information and motion informa-
tion. The network adopts classification loss and comparison loss to train the model.
Sequential image features with motion information can improve the accuracy of
person Re-ID. Mazzeo et al. [15] propose a multi camera architecture for wide area
surveillance and a real time people tracking algorithm across non overlapping
cameras, they proposed different methodologies [16] to extract the color histogram
information from each object patches for the intra-camera and compared different
methods to evaluate the colour Brightness Transfer Function (BTF) between non
overlapping cameras for inter-camera tracking. This method outperforms the per-
formance in terms of matching rate between different cameras.

2.2 Vehicle Re-ID

We will review the relevant works of vehicle Re-ID from three aspects: vehicle
re-identification based on artificial design feature, vehicle re-identification based on
deep learning feature and vehicle re-identification based on fusion feature.

2.2.1 Vehicle Re-ID based on artificial design feature

In the initial vehicle matching problem, sensor tag matching is adopted. Tian
et al. [17] proposed an algorithm for vehicle Re-ID based on multiple sensor nodes.
According to the matching results of the same vehicle label obtained by different
nodes, the vehicle state was determined and the label segmentation was modified.
Meanwhile, the time difference between vehicles was modified according to the
relationship between different acquired labels. Coifman [18] proposed a matching
algorithm for individual vehicles measured on the highway detector and made
corresponding measurements on another detector upstream. Rios-Cabrera et al.
[19] proposed a comprehensive scheme for solving the problems of vehicle detec-
tion, recognition and tracking in view of the practical application of tunnel moni-
toring, and proposed compact binary features to improve the recognition effect for
the influence of poor imaging conditions and vehicle lights in tunnel monitoring.
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Due to the late rise of vehicle Re-ID research, when traditional methods have not
been applied to this problem too much, the deep learning technology has developed
in a big bang. Almost all subsequent studies are based on deep learning technology,
which greatly improves the effect of Re-ID.

2.2.2 Vehicle Re-ID based on deep learning feature

In recent years, convolutional neural network has been widely used in the field
of computer vision and achieved remarkable effects. Because the depth features
extracted by deep convolutional networks have stronger description ability, more
and more scholars have applied them in vehicle Re-ID. Liu et al. [20] proposed a
large-scale vehicle Re-ID data set “VeRi,” and puts forward a method of feature
Fusion FACT by combining the depth of the vehicle network features, color fea-
tures and SIFT features to match the same vehicle, the follow-up of vehicle recog-
nition of other study, a large number of experiment based on the data set, thereby
evaluating effectiveness and superiority of the proposed algorithm. Liu et al. [21]
solved the problem of difficulty in triplet loss convergence by adding a feature
representation between the sample and each individual vehicle into the triplet
network to model intra-class variance. Li et al. [22] proposed DJDL (Deep Joint
Discriminative Learning) model, which projects the original vehicle image into
Euclidean space through a two-branch Deep convolution network. Zhang et al. [23]
proposed a guided Triplet network, which added classification loss to the original
triplet loss function and strongly restricted the original training network, thus
improving the Re-ID efficiency. Marin et al. [24] designed a metric learning model
based on the supervision of the local constraints, its use in pairs and triple constraints
to train a network, the network is able to share the same identity of the sample
distribution of high similarity, and keep a distance of different identity in the feature
space, the algorithm is one of the biggest advantage is to use the vehicle tracking to
automatically generate a set of weak tag data, and will automatically generate data
sets used in depth training network to complete the vehicles Re-ID task.

2.2.3 Vehicle Re-ID based on fusion feature

For monitoring video, in addition to appearance information of images, infor-
mation other than appearance features (such as, space-time information) is also of
great mining significance. Liu et al. [25] proposed a segmented vehicle Re-ID algo-
rithm, which first used appearance features for preliminary screening, then used
license plate information for matching, and finally used spatial and temporal infor-
mation for reordering. After the method was integrated with spatial and temporal
information, the effect was improved to a certain extent. Jiang et al. [26] proposed a
vehicle Re-ID algorithm based on multiple attribute training and sort by spatial-
temporal similarity, the vehicle image color, models, vehicle feature extraction with
individual respectively. Through the fusion of multiple features for the initial Re-
ID, the Re-ID results are reordered by the spatial-temporal similarity, and good
results are obtained. Shen et al. [27] proposed a two-stage architecture containing
complex spatiotemporal information, given a pair of vehicle images with spatio-
temporal information, candidate visual spatio-temporal paths (where each visual
spatio-temporal state corresponds to an actual vehicle image with spatio-temporal
information) are generated by an MRF chain model with a deep learning function,
and then candidate paths and paired queries are used to generate their similarity
scores for the model. In addition to fusion of information other than the apparent
features of images, many scholars have also studied fusion of manual features and
deep convolution features, fusion of various attribute features or feature fusion
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between different image regions. Li et al. [28] proposed a vehicle Re-ID algorithm
based on fusion features extract from different part of vehicle, firstly, a part detec-
tion algorithm [29] is used to obtain the attention area with big difference between
different vehicles. Then, feature extraction was carried out on the detected area,
and features of the two areas were fused to generate new fusion features. Liang et al.
[30] put forward a new method of supervision and the depth of the hash to handle
large-scale vehicle search problem, the use of multitasking learning to learn, vehicle
model, vehicle image color depth features of individual ID hash code, the experi-
mental results show the effectiveness of the proposed method, the method in
classification loss and triple loss case depth hash method is superior to single task.

3. Some public database for object Re-ID

With the development of Re-ID research, many scholars have published the data
sets of relevant fields. The following are some commonly used person Re-ID data
sets and vehicle Re-ID data sets.

3.1 Person Re-ID data sets

Person Re-ID data sets commonly used in deep learning methods include VIPeR
[31], PRID2011 [32], CUHK03 [33], Market1501 [34], CUHK-SYSU [35], MARS
[36], DukeMTMC-reID [37]. In addition to the common data sets that are already
open source, there are several newer data sets, such as SYSU-MM01 [38], LPW
[39], MSMT17 [40], LVreID [41], the download link is not yet open. The following
is a detailed description of CUHK03 and Market1501.

3.1.1 CUHK03

The dataset includes 13,164 images of 1360 pedestrians. The whole dataset is
captured with six surveillance cameras. Each identity is observed by two disjoint
camera views and has an average of 4–8 images in each view. Some examples are
shown in Figure 1. Besides the scale, it has the following characteristics.

This dataset is partitioned into training set (1160 persons), validation set (100
persons), and test set (100 persons). Each person has roughly 4–8 photos per
view, which means there are almost 26,000 positive training pairs before data
augmentation.

3.1.2 Market1501

During dataset collection, a total of six cameras were placed in front of a campus
supermarket, including five 1280 � 1080 HD cameras, and one 720 � 576 SD
camera. Overlapping exists among these cameras. This dataset contains 32,668
boxes of 1501 identities. Due to the open environment, images of each identity are
captured by at most six cameras. Each annotated identity is captured by at least two
cameras, so that cross-camera search can be performed. Overall, the dataset has the
following featured properties.

The dataset is randomly divided into training and testing sets, containing 750
and 751 identities, respectively. During testing, for each identity, it selects one
query image in each camera. Note that, the selected queries are hand-drawn,
instead of DPM-detected as in the gallery. The reason is that in reality, it is very
convenient to interactively draw a box, which can yield higher recognition
accuracy. The search process is performed in a cross-camera mode, i.e., relevant
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images captured in the same camera as the query are viewed as “junk.” In this
scenario, an identity has at most six queries, and there are 3368 query images in
total. Dataset examples are shown in Figure 2.

3.2 Vehicle Re-ID data sets

Vehicle Re-ID data sets commonly used in deep learning methods include
VRID-1 [42], VeRi-776 [25], VehicleID [21].

3.2.1 VRID-1

The open dataset VRID-1 for vehicle re-identification contains 10,000 images,
which are captured by 326 surveillance cameras within 14 days. The resolutions of

Figure 2.
Person samples selected from the Market1501 dataset.

Figure 1.
Person samples selected from the CUHK03 dataset.
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images are distributed from 400 � 424 to 990 � 1134. VRID collects 1000 vehicle
IDs (vehicle identities) of top 10 common vehicle models (Table 1) to reconstruct
the interference with the same vehicle model in the real world. The vehicle IDs
belong to the same model have very similar appearance and their differences
appears in the area of the logo and accessories. Besides, each vehicle IDs contains
10 images which are in various illuminations, poses and weather condition. Dataset
examples are shown in Figure 3.

The attributes of VRID is illustrated in Table 2. The vehicle model column
represents the vehicle model information. The license plate column is used for the
correlation of the same vehicle. The window location column shows the location of
vehicle window area. The vehicle color column contains the vehicle color informa-
tion. Besides, with the rich attributes of vehicles, the dataset could also be used for
vehicle fine-grained recognition as well as vehicle color recognition.

3.2.2 VeRi-776

To collect high-quality videos in real-world surveillance scene, we select 20
cameras deployed along a circular road of a 1.0 km2 area as shown in Figure 4.

Vehicle model Vehicle IDs Total images

Audi_A4 100 1000

Honda_Accord 100 1000

Buick_Lacrosse 100 1000

Volkswagen_Magotan 100 1000

Toyota_Corolla_I 100 1000

Toyota_Corolla_II 100 1000

Toyota_Camry 100 1000

Ford_Focus 100 1000

Nissan_Tiida 100 1000

Nissan_Sylphy 100 1000

Table 1.
The 10 vehicle models in the dataset.

Figure 3.
Vehicle samples selected from the VRID-1 dataset.
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Image_ID Vehicle model License plant number Window location Color

IDs_1 Toyota_Corolla License_1 X1, Y1, X2, Y2 Yellow

IDs_12 Toyota_Corolla License_2 X1, Y1, X2, Y2 Black

IDs_1000 Honda_Accord License_10 X1, Y1, X2, Y2 White

Table 2.
The attributes of VRID.

Figure 4.
The urban surveillance environments and cameras distribution for the VeRi dataset.

Figure 5.
Vehicle samples selected from the VeRi dataset.
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The scenes of the cameras include two-lane roads, four-lane roads, and crossroads.
All cameras are set to 1920 � 1080 resolution and 25 fps. The cameras are deployed
with arbitrary orientations and tilt angles. Besides, there are overlaps for part of the
cameras.

The VeRi dataset is collected with 20 cameras in real-world traffic surveillance
environment. A total of 776 vehicles are annotated. Two hundred vehicles are used
for testing. The remaining 576 vehicles are for testing. There are 11,579 images in
the test set, 1678 images as queries and 37,778 images in the training set. Each
vehicle is captured by at least two cameras. One advantage of this data set is that the
camera ID and timestamp (frame ID) are reserved with tracks for further annota-
tion. Dataset examples are shown in Figure 5.

4. General technical route

In deep learning method, the general technical route of object Re-ID includes
three stages: data input stage, feature extraction model and distance measurement
(Figure 6).

4.1 Data input

Data input mainly refers to feeding data to feature extraction model, and the
commonly used data type in object Re-ID is three-channel image. In this part, we do
not describe the input data, but mainly introduce data augmentation. In the training
stage of deep learning model, insufficient data often leads to the situation that the
model cannot converge or overfit. In order to avoid this situation, data augmenta-
tion is one of the solutions. Common operations for data augmentation are as
follows:

• Color Jittering. Color data enhancement, such as Change image brightness,
saturation, contrast and so on.

• Random Scale. Randomly change the original size of the image.

• Horizontal/vertical flip. Flip the original image horizontally or vertically.

In the data input stage, we need to pay attention to not only the data amplifica-
tion, but also, in some special cases such as contrast loss or triplet loss model, we
may need to construct the image pair or triplet sample in advance. Due to the
limitation of GPU memory, it is impossible to input a batch of data includes all
images, so it is possible that there is no negative sample which might result in the
failure of image pair or triplet sample construction, at the same time, due to the
large number of target individuals in the re-identification problem, the imbalance
between positive and negative samples is very likely to exist, which easily leads to
the unscientific network model trained. Therefore, we need to set some rules in the
data input stage to correctly construct these image pairs or triplet samples.

Figure 6.
General technical route of object re-identification.
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4.2 Feature extraction model

The core of object Re-ID algorithm is feature extraction model, the effectiveness
of the whole algorithm is also almost determined by this part. In other words, the
essence of Re-ID is to compare the similarity or distance between the features
extracted from two images. Image features mainly include color feature, texture
feature, shape feature and spatial relationship feature. Feature extraction is a con-
cept in computer vision and image processing. It refers to the use of computer to
extract image information to determine whether each image pixel belongs to an
image feature. Features are the best way to describe patterns, and we often think
that each dimension of a feature can describe a pattern from a different perspective.
Ideally, the dimensions are complementary and complete. In the field of image
recognition or image Re-ID, traditional methods of feature extraction include His-
togram of Oriented Gradient (HOG), scale-invariant feature transform (SIFT),
Speeded Up Robust Features (SURF), Local Binary Pattern (LBP) and so on; the
deep learning methods of feature extraction include Convolution Neural Network
(CNN), Recurrent Neural Network (RNN) and so on. We present a feature extrac-
tion method in detail in both traditional and deep learning methods.

4.2.1 Histogram of oriented gradient (HOG)

The essence of HOG feature extraction is to constitute features by computing
and statistics the histogram of gradient direction in the local area of the image. Hog
feature combined with SVM classifier has been widely used in image recognition,
especially in pedestrian detection, which has achieved great success. How to extract
HOG feature? Firstly, the image is divided into small connected regions, which are
called cell units. Then the direction histogram of the gradient or edge of each pixel
in the cell is collected. Finally, these histograms can be combined to form a feature
descriptor.

4.2.2 Convolution neural network (CNN)

It is a kind of feedforward neural network with deep structure including convo-
lution calculation. A convolutional neural network contains three types of neural
network layers: convolutional layer, pooling layer and fully connection layer. As is
shown in Figure 7.

Figure 7.
Basic structure diagram of convolutional neural network.
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4.2.2.1 Convolutional layer

The convolution layer is mainly used for learning the feature representation of
input data. The convolution layer is composed of multiple convolution kernels, and
the convolution operation is carried out on the input image to calculate different
feature maps.

In general, the input data is RGB image, as shown in Figure 8. If the color image
is 6*6*3, the three refers to three color channels, and the convolution operation is
carried out with a 3*3*3 convolution kernel, corresponding to the red, green and
blue channels. Take the 27 numbers in turn, multiply them by the Numbers in the
corresponding red, green and blue channel, and then add them all up to get the first
number in the output of the feature graph.

The convolution layer principle is shown in equation:

xlj ¼ f ∑
i
xl�1i ∗ klij þ blj

� �
(1)

where f ∗ð Þ is activation functions; xlj denotes the j� th feature map of output

layer l, xli is the i� th feature map of the layer l; Kl
ij represents the convolution

kernel of the i� th feature graph of the current input layer and the j� th feature
graph of the output layer on the layer l; blj is the bias term of the j� th feature graph
in the layer l.

4.2.2.2 Pooling layer

Pooling layer is often used in the convolutional network to reduce the size of the
model, improve the computational speed, and improve the robustness of extracted
features. Pooling operation can maintain the invariance of translation, rotation and
scale. Common pooling layer operations are averaging and pooling. The maximum
pooling operation is as shown in Figure 9. The input of 4*4 is divided into different
regions. For the output of 2*2, each element output is the maximum element value
in its corresponding color region.

4.2.2.3 Fully connection layer

Each node of the fully connection layer is connected to all nodes of the previous
layer to integrate the features extracted from the previous layer. Due to its fully
connected nature, the general fully connected layer also has the most parameters.
The full join layer act as a mapping of the learned “distributed feature representa-
tion” into the sample tag space. It’s essentially a linear transformation from one

Figure 8.
Convolution diagram.
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eigenspace to another eigenspace. Any dimension of the target space is affected by
every dimension of the source space. In CNN, the full connection is often found
in the last few layers, which is used to make a weighted sum of the features
designed before. The schematic diagram of the entire connection layer is shown
in Figure 10.

4.3 Distance measurement

After feature extraction, we need to compare the distance between the query
image and all images in the retrieval set, and there are many ways you can measure
the difference between two features, It is divided into distance measure (such as,
Euclidean distance, Manhattan Distance etc.) and similarity measure (such as,
Cosine Similarity, Jaccard Coefficient, etc.).

Distance measure is used to measure the distance of an individual in space, the
greater the distance, the greater the difference between individuals. Similarity
measurement is to calculate the degree of similarity between individuals. Contrary
to distance measurement, the smaller the value of similarity measurement is, the
smaller the similarity between individuals is, and the greater the difference is.
Therefore, we can judge which images are more likely to be the same individual by
the value of the difference between image features.

Figure 10.
Fully connection layer.

Figure 9.
Max pooling diagram.
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5. One case of person Re-ID

Person Re-ID is a technology that uses computer vision technology to judge
whether there is a specific person in the image or video sequence. It is widely
regarded as a sub-problem of image retrieval. Given a monitor person image,
retrieve the image of the row of people across the device. It aims to make up for the
visual limitations of the current fixed cameras, and can be combined with person
detection and pedestrian tracking technology, which can be widely used in intelli-
gent video monitoring, intelligent security and other fields. In this section, we show
a classic person Re-ID algorithm Part-based Convolutional Baseline (PCB) [43].

5.1 Structure of PCB

PCB can take any network without hidden fully-connected layers designed for
image classification as the backbone, e.g., Google Inception and ResNet. Original
paper employs ResNet50 as the backbone network to reproduce the PCB algorithm.

The structure of PCB illustrated in Figure 11. The input image goes forward
through the stacked convolutional layers from the backbone network to form a 3D
tensor T. PCB replaces the original global pooling layer with a conventional pooling
layer, to spatially down-sample T into p pieces of column vectors g. A following
1 � 1 kernel-sized convolutional layer reduces the dimension of g. Finally, each
dimension-reduced column vector h is input into a classifier, respectively. Each
classifier is implemented with a fully-connected (FC) layer and a sequential
Softmax layer. During training, each classifier predicts the identity of the input
image and is supervised by Cross-Entropy loss. During testing, either p pieces of g
or h are concatenated to form the final descriptor of the input image.

5.2 Experimental results

5.2.1 Dataset

The original paper tested this algorithm on person Re-ID dataset Market-1501.
The Market-1501 dataset contains 1501 identities observed under six camera view-
points, 19,732 gallery images and 12,936 training images detected by DPM.

5.2.2 Performance comparison

It compares PCB and PCB + RPP with state of the art. Comparisons on Market-
1501 are detailed in Table 3. PCB + RPP get mAP = 81.6% and Rank-1 = 93.8% for
Market-1501, setting new state of the art on this dataset. All the results are achieved
under the single-query mode without re-ranking. Reranking methods will further

Figure 11.
Structure of PCB [43].
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boost the performance especially mAP. For example, when “PCB + RPP” is com-
bined with the reranking method, mAP and Rank-1 accuracy on Market-1501
increases to 91.9 and 95.1%, respectively.

6. One case of vehicle Re-ID

Considering the spatiotemporal logic of vehicle driving process, we present a
vehicle re-identification (Re-ID) algorithm based on multi-camera data’s spatio-
temporal information and joint learning mechanism without license plate. The
algorithm is divided into feature extraction and spatiotemporal re-rank. In the
feature extraction stage: on the basis of convolutional neural network (CNN),
triplet loss and Softmax loss were used for joint training to model a feature extractor
and calculate the feature distance measurement matrix between query image and
retrieval set images. In the spatiotemporal re-rank stage: we calculate the spatio-
temporal distance matrix and fuse the spatiotemporal distance with the normalized
feature distance metric. The final distance measurement matrix is sorted to obtain
the vehicle re-identification result. Extensive experiments were carried out on the
benchmark datasets “VeRi” to verify the effectiveness of the proposed method and
the result have shown that the proposed algorithm outperforms the state-of-the-art
approaches for vehicle Re-ID.

6.1 Mathematical principles of joint learning

The architecture of proposed algorithm is illustrated in Figure 12. The algorithm
is divided into two steps: feature extraction and spatiotemporal re-rank. In the
feature extraction phase, triplet loss and Softmax loss are integrated for joint train-
ing, triplet loss is used to calculate the distance of the sample features, increasing
the distance between the anchor and negative sample, reducing the distance
between the anchor and the positive sample. Softmax loss performs label-level

Methods Rank-1 Rank-5 Rank-10 mAP

KLFDA 46.5 71.1 79.9 —

Triplet Loss 84.9 94.2 — 69.1

DML 87.7 — — 68.8

MultiScale 88.9 — — 73.1

GLAD 89.9 — — 73.9

PCB 92.3 97.2 98.2 77.4

PCB + RPP 93.8 97.5 98.5 81.6

Table 3.
Comparison of the proposed method with the art on Market-1501.

Figure 12.
The proposed algorithm for vehicle Re-ID.
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supervision and constraint on the feature extraction network. In the
spatiotemporal re-rank stage, calculating the spatiotemporal distance between
images, and re-rank the retrieval results by merging the spatiotemporal distance
and the feature distance.

6.1.1 Triplet loss

In order to learn high discriminative features from images to Euclidean space,
where the distance can measure the discrepancy between two images. The idea of
learning to rank has gradually been applied to many fields, such as face recognition
[12], person Re-ID, and so on. One of the important steps in learning to rank is to
find a good similarity function, and triplet loss is a very broad one. In the calculation
of the triple loss, the feed data includes an anchor, a positive sample, and a negative
sample, and the sample similarity calculation is realized by optimizing the distance
between the anchor and the positive sample being smaller than the distance
between the anchor and the negative sample. We suppose T ¼ xiji ¼ 1; 2…mf g
denotes the training set, where xi is the i� th image in the training set and m
denotes the total amount of training images. For an image triplet xai ; x

p
i ; x

n
i

� �
, where

xai denotes an anchor, xpi denotes a positive of the same class as the anchor, xni
denotes a negative of a different class as the anchor, the triplet loss is calculated
as Eq. (2).

Ltriplet ¼ ∑
m

i
max 0; f xai

� �� f xpi
� ��� ��2

2 � f xai
� �� f xni

� ��� ��2
2 þ α

� �
(2)

where f xið Þ denotes the embedded of the image, α denotes the parameter of
expected gap between the distance of xai ; x

p
i

� �
and xai ; x

n
i

� �

6.1.2 Triplet sampling

This algorithm directly performs on-line triplet mining on image features, which
is to compute useful triplets on the fly. For each batch of inputs, given a batch of N
examples, we compute the N embeddings and we then can find a maximum of N3

triplets. For three indices a, p, n∈ [1, N], if examples a and p have the same label
but are distinct, and example n has a different label, we say that (a, p, n) is a valid
triplet. We suppose that have a batch of vehicle images as input of size N = PK,
composed of P different vehicle ID with K images each. Choose the batch hard
strategy: for each anchor, select the hardest positive and the hardest negative among
the batch, finally we can obtain PK triplets.

d a; bð Þ ¼ a� bk k2 ¼ ak k2 � 2 a; ph i þ bk k2 (3)

6.1.3 Softmax loss

We impose a strong constraint on distinguishing different vehicle label by
adding Softmax loss to the loss function. The embedded obtained by CNN tend to
clusters, and the embedded of same vehicle ID will be similar, so the convergence
time of triplet loss will be cut down. In Softmax loss stream, each vehicle ID in the
training set is considered as a category, the Softmax loss function is formulated as:

Lsoftmax ¼ � 1
m

∑
m

i¼1
∑
k

j¼1
1 y ið Þ ¼ j
n o

log
eθ

T
j x

ið Þ
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l¼1e
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(4)
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where m is the total amount of classes, k is the number of training image, 1 ∗ð Þ is
the indicator function (if * is true, then the value set 1, or 0), and θ0s are the
parameters of the final full-connection layer of the CNN.

6.1.4 Joint multiple loss

The joint learning mechanism is mainly applied to the training phase of vehicle
images. After the shared images pass through the shared CNN layer, they are
divided into two branch streams, one is subjected to online triplet mining for the
calculation of triplet loss, and the other stream enters the Softmax layer for Softmax
loss calculation. The final joint learning loss function can be formulated as:

LJL ¼ Lsoftmax þ Ltriplet (5)

6.2 Experimental results

6.2.1 Dataset

In order to verify the validity of the algorithm, we conduct experiments in the
latest version of the vehicle re-identification dataset “VeRi.” The dataset has a total
of 49,357 images, which are taken for actual road monitoring and contains various
angles and various vehicle models, as shown in Figure 13.

It is divided into two subsets for training and testing. The train set has 576
vehicle IDs with 37,778 images and the test set has 200 vehicle IDs with 11,579
images. For the vehicle re-identification task, we divided the test set to query set
(1678 images) and retrieval set (9901 images).

Figure 13.
Vehicle samples selected from the VeRi dataset.
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6.2.2 Experimental setting

All of the experiments are based on the deep learning framework Tensorflow.
The base network is VGG_CNN_M, and the model was pre-trained on the
ImageNet. In the calculation of triplet loss, we set α ¼ 1, the learning rate is set to
0.001, and the mini-batch is set to 32.

In order to evaluate the effect of this algorithm objectively, we set up two
algorithms to compare with the method proposed to verify that the improvement of
the algorithm. These algorithms are: (1) VGG + Softmax loss; (2) VGG + Triplet
loss; (3) VGG + Softmax loss + Triplet loss (our method). All of network based on
VGG16, “Softmax loss” denotes use Softmax loss to train the network, and “Triplet
loss” denotes use triplet loss to train the network. At the same time, we also make
comparison our experiment results with some state-of-the-art algorithms on the
same dataset “VeRi.”

6.2.3 Performance comparison on VeRi dataset

We conduct the experiment as described in experimental setting, and use
cumulative matching curve (CMC), HIT@1, HIT@5 as metrics to evaluate the
performance. In our method, S, T denote using Softmax loss and using triplet loss
respectively. Table 4 and Figure 14 illustrate the performances of the proposed
methods and some state-of-the-art algorithms in vehicle Re-ID field.

The results show that the proposed method “VGG + S + T” achieves the best
results, the HIT@1 and HIT@5 hit 89.75 and 95.05% respectively. It is obvious that
the CNN-based method has a significant improvement over the handcraft feature-
based approach when compare BOW-CN and LOMO algorithm with other algo-
rithms based on CNN feature. Compared with “VGG + S” which only utilizes
Softmax loss, our method has much better results, improving 16.81% in HIT@1 and
11.38% in HIT@5. Compared with “VGG + T” which only utilizes triplet loss, our
method makes improvement about 16.81% in HIT@1 and 8.67% in HIT@5. Com-
pare to “FACT + Plate-SNN + STR” which additionally utilizes license plate infor-
mation (Plate-SNN) and spatiotemporal relation (STR), our method improves
28.31% in HIT@1 and 16.27% in HIT@5. In summary, the proposed algorithm is
feasible in vehicle re-identification task, and achieves outstanding results compared
to other algorithms.

Method HIT@1 HIT@5

BOW-CN 33.91 53.69

LOMO 25.33 46.48

ABLN 58.14 74.41

FACT + Plate-SNN+ STR 61.44 78.78

VAMI 77.03 90.92

JFSDL 82.90 91.60

This method VGG+ S 72.94 83.67

VGG + T 72.94 86.83

VGG + S + T 89.75 95.05

Table 4.
Comparison of the proposed method with the art on VeRi.
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7. Summary

This chapter mainly introduces the concept of object Re-ID and two core
applications: person Re-ID and vehicle Re-ID. In this chapter, the definitions of
person Re-ID and vehicle Re-ID are given, some research methods of the two
applications are reviewed, and the commonly used public data sets are
described in detail.

In this chapter, the general process of object Re-ID by deep learning method is
given, and the data input, feature extraction network structure, distance measure-
ment and other parts are described in detail. At the same time, two examples are
given to illustrate the algorithm in detail and experiment comparison. Person Re-ID
refers to the network structure and experimental results of PCB algorithm [43].
Vehicle Re-ID is introduced in detail in terms of feature extraction and measure-
ment calculation. The influence of parameters in the deep learning method is
illustrated through the analysis of experimental results, and the evaluation compar-
ison is given.

These can help relevant researchers to understand the context of technology, the
general implementation process, as well as important parameters and evaluation
indicators in this field, so that they can quickly start relevant research.

The object Re-ID is the basis of realizing cross-camera tracking. Person and
vehicles are just two typical applications. In the future, with the gradual solution of
the following problems, we will have a more extensive application:

• High-quality standard database is important to generalization performance of
Re-ID algorithm. The database should be more suitable for the real
environment and including different and varying scenes.

• Deep networks have poor interpretability. Although the deep learning method
has achieved good performance in Re-ID tasks, few studies have shown which
information has a greater impact on Re-ID behind the continuous
improvement in accuracy.

Figure 14.
The CMC curves on VeRi.
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comparison our experiment results with some state-of-the-art algorithms on the
same dataset “VeRi.”

6.2.3 Performance comparison on VeRi dataset

We conduct the experiment as described in experimental setting, and use
cumulative matching curve (CMC), HIT@1, HIT@5 as metrics to evaluate the
performance. In our method, S, T denote using Softmax loss and using triplet loss
respectively. Table 4 and Figure 14 illustrate the performances of the proposed
methods and some state-of-the-art algorithms in vehicle Re-ID field.

The results show that the proposed method “VGG + S + T” achieves the best
results, the HIT@1 and HIT@5 hit 89.75 and 95.05% respectively. It is obvious that
the CNN-based method has a significant improvement over the handcraft feature-
based approach when compare BOW-CN and LOMO algorithm with other algo-
rithms based on CNN feature. Compared with “VGG + S” which only utilizes
Softmax loss, our method has much better results, improving 16.81% in HIT@1 and
11.38% in HIT@5. Compared with “VGG + T” which only utilizes triplet loss, our
method makes improvement about 16.81% in HIT@1 and 8.67% in HIT@5. Com-
pare to “FACT + Plate-SNN + STR” which additionally utilizes license plate infor-
mation (Plate-SNN) and spatiotemporal relation (STR), our method improves
28.31% in HIT@1 and 16.27% in HIT@5. In summary, the proposed algorithm is
feasible in vehicle re-identification task, and achieves outstanding results compared
to other algorithms.

Method HIT@1 HIT@5

BOW-CN 33.91 53.69

LOMO 25.33 46.48

ABLN 58.14 74.41

FACT + Plate-SNN+ STR 61.44 78.78

VAMI 77.03 90.92

JFSDL 82.90 91.60

This method VGG+ S 72.94 83.67

VGG + T 72.94 86.83

VGG + S + T 89.75 95.05

Table 4.
Comparison of the proposed method with the art on VeRi.
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7. Summary

This chapter mainly introduces the concept of object Re-ID and two core
applications: person Re-ID and vehicle Re-ID. In this chapter, the definitions of
person Re-ID and vehicle Re-ID are given, some research methods of the two
applications are reviewed, and the commonly used public data sets are
described in detail.

In this chapter, the general process of object Re-ID by deep learning method is
given, and the data input, feature extraction network structure, distance measure-
ment and other parts are described in detail. At the same time, two examples are
given to illustrate the algorithm in detail and experiment comparison. Person Re-ID
refers to the network structure and experimental results of PCB algorithm [43].
Vehicle Re-ID is introduced in detail in terms of feature extraction and measure-
ment calculation. The influence of parameters in the deep learning method is
illustrated through the analysis of experimental results, and the evaluation compar-
ison is given.

These can help relevant researchers to understand the context of technology, the
general implementation process, as well as important parameters and evaluation
indicators in this field, so that they can quickly start relevant research.

The object Re-ID is the basis of realizing cross-camera tracking. Person and
vehicles are just two typical applications. In the future, with the gradual solution of
the following problems, we will have a more extensive application:

• High-quality standard database is important to generalization performance of
Re-ID algorithm. The database should be more suitable for the real
environment and including different and varying scenes.

• Deep networks have poor interpretability. Although the deep learning method
has achieved good performance in Re-ID tasks, few studies have shown which
information has a greater impact on Re-ID behind the continuous
improvement in accuracy.

Figure 14.
The CMC curves on VeRi.
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• At present, most methods are carried out under the prior condition that object
has been detected, but this requires a very robust detection model. We need to
combine object Re-ID with object detection, which is more in line with
practical application requirements.

• The research should focus on semi-supervised, unsupervised and transfer
learning methods. The collected data are limited after all, and the cost of
labeling data is also very high. Therefore, although the semi-supervised and
unsupervised learning methods may not be as good as the supervised learning
methods in terms of performance, they are valuable.
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Chapter 6

Spatial Domain Representation for
Face Recognition
Toshanlal Meenpal, Aarti Goyal and Moumita Mukherjee

Abstract

Spatial domain representation for face recognition characterizes extracted
spatial facial features for face recognition. This chapter provides a complete under-
standing of well-known and some recently explored spatial domain representations
for face recognition. Over last two decades, scale-invariant feature transform
(SIFT), histogram of oriented gradients (HOG) and local binary patterns (LBP)
have emerged as promising spatial feature extraction techniques for face recogni-
tion. SIFT and HOG are effective techniques for face recognition dealing with
different scales, rotation, and illumination. LBP is texture based analysis effective
for extracting texture information of face. Other relevant spatial domain represen-
tations are spatial pyramid learning (SPLE), linear phase quantization (LPQ),
variants of LBP such as improved local binary pattern (ILBP), compound local
binary pattern (CLBP), local ternary pattern (LTP), three-patch local binary
patterns (TPLBP), four-patch local binary patterns (FPLBP). These representations
are improved versions of SIFT and LBP and have improved results for face recog-
nition. A detailed analysis of these methods, basic results for face recognition and
possible applications are presented in this chapter.

Keywords: spatial domain representation, face recognition, scale-invariant feature
transform, histogram of oriented gradients, local binary patterns

1. Introduction

Face recognition is a powerful biometric system in today’s highly technological
world. It is widely accepted over other biometric systems like, finger print, iris or
speech recognition for security, surveillance, and commercial applications. Face
recognition system is generally a procedure of multiple major stages: face detection,
preprocessing, feature extraction and verification. A complete structure of face
recognition system is shown in Figure 1. Face detection detects a single face or
number of faces present in a given image. Viola-Jones face detection algorithms
using Haar features [1], faster R-CNN face detector [2], and face detection based on
Histograms of Oriented Gradient [3] are popular methods for detecting faces in an
image. Generally, images are captured under unconstrained environment and hence
needed to be preprocessed before feeding to feature extraction stage. Preprocessing
mainly aims to reduce noise effect, difference of illumination, color intensity,
background, and orientation. The correct recognition of image depends upon qual-
ity of captured image, lighting condition etc. [4]. Recognition rate can be improved
by performing pre-processing on the captured image. Various pre-processing
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1. Introduction

Face recognition is a powerful biometric system in today’s highly technological
world. It is widely accepted over other biometric systems like, finger print, iris or
speech recognition for security, surveillance, and commercial applications. Face
recognition system is generally a procedure of multiple major stages: face detection,
preprocessing, feature extraction and verification. A complete structure of face
recognition system is shown in Figure 1. Face detection detects a single face or
number of faces present in a given image. Viola-Jones face detection algorithms
using Haar features [1], faster R-CNN face detector [2], and face detection based on
Histograms of Oriented Gradient [3] are popular methods for detecting faces in an
image. Generally, images are captured under unconstrained environment and hence
needed to be preprocessed before feeding to feature extraction stage. Preprocessing
mainly aims to reduce noise effect, difference of illumination, color intensity,
background, and orientation. The correct recognition of image depends upon qual-
ity of captured image, lighting condition etc. [4]. Recognition rate can be improved
by performing pre-processing on the captured image. Various pre-processing
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techniques are used in image processing to improve the recognition rate such as
cropping, image resizing, histogram equalization and de-nosing filtering as
described below.

1. Face Detection and Cropping: - Face detection involves detecting face image
from whole image. Cropping can be done based on one or more features of the
image such as eyes, lips, nose etc.

2. Image Resizing: - Variation in face image size, shape, pose etc. raises difficulty
for designing face recognition algorithms. So it is very important to resize
image before feature extraction. For this, face images are cropped again into a
standard size. Affine transformation can be applied on face with Bilinear
Interpolation algorithm.

3. Image Equalization: - Illumination variation problem in the original resized
image is overcome by using histogram equalization.

4.Image De-noising and Filtering: - Raw images are captured with many noise
during the time of capturing the image and later also. Wiener filter and median
filter are used to remove noises [5].

Next is feature extraction which is considered as the most prominent stage in
face recognition system to extract discriminative facial features. Extracted features
are then represented as feature vector and are fed to verification stage. Feature
selection is an optional stage before verification which reduces feature vector
dimensions using dimensional reduction techniques [6]. Final stage is verification
to identify an unknown by finding closest matching in gallery.

2. Existing face databases

There are a number of benchmark face databases for fair face recognition eval-
uation by researchers. These databases are designed with images or videos of a

Figure 1.
A complete structure of face recognition system.
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number of individuals with varying conditions and resolutions. A summary of
benchmark face databases is tabulated in Table 1.

A detailed structure of some of these face databases are provided below.

2.1 A&T Database

A&T Database originally known as ORL database has face images captured in
the interval April 1992 to April 1994. This database is collected by researchers of
Cambridge University Engineering department for face recognition project. There
are total 400 images in A&T database captured by taking 10 different images of 40
individuals. All images are captured in a dark homogeneous background with reso-
lution 92 � 112 pixels. Different varying conditions under which images captured
are- times, lighting, open eyes, closed eyes, smiling, not smiling, glasses, no glasses,
some images also have rotation variation. This database has 40 different directories,
each with 10 images of an individual stored as .pgm format. Samples of images of
A&T database is shown in Figure 2.

2.2 CAS-PEAL-R1

CAS-PEAL-R1 Database is collected under sponsors of National Hi-Tech Pro-
gram and ISVISION by the Face Recognition Group of JDL, ICT, CAS. This database
contains 30,900 images of 1040 individuals captured under different conditions as
such, variation in pose, facial expression, accessory, illumination, background, dis-
tance, and time. For pose variation, each of 1040 individuals has approximately 21
different poses. Facial expression is captured for 377 individuals with 6 different

Database No. of
individual

Conditions Image
Resolution

Images

A&T Database [7] 40
40
40
40
40

Lighting,
Open eye,

closed eyes, smiling, not smiling,
glasses, no glasses

92 � 112 400

CAS-PEAL-R1 [8] 1040
377
438
233
297
296
66

Pose
Facial expressions

Accessory
Illumination
Background
Distance
Time

360 � 480 30,900

CMU Multi-PIE
Database [9]

68 Pose
Illumination

Facial expressions

640 � 486 41,368

FERET [10] 1199 Pose
Illumination

Facial expressions
Time

256 � 384 14,051

Korean Face Database
(KFDB) [11]

1000 Pose
Illumination

Facial expressions

640 � 480 52,000

Yale Face Database B
[12]

10 Pose
Illumination

640 � 480 5850

Table 1.
Summary of benchmark face recognition databases.
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number of individuals with varying conditions and resolutions. A summary of
benchmark face databases is tabulated in Table 1.

A detailed structure of some of these face databases are provided below.

2.1 A&T Database

A&T Database originally known as ORL database has face images captured in
the interval April 1992 to April 1994. This database is collected by researchers of
Cambridge University Engineering department for face recognition project. There
are total 400 images in A&T database captured by taking 10 different images of 40
individuals. All images are captured in a dark homogeneous background with reso-
lution 92 � 112 pixels. Different varying conditions under which images captured
are- times, lighting, open eyes, closed eyes, smiling, not smiling, glasses, no glasses,
some images also have rotation variation. This database has 40 different directories,
each with 10 images of an individual stored as .pgm format. Samples of images of
A&T database is shown in Figure 2.

2.2 CAS-PEAL-R1

CAS-PEAL-R1 Database is collected under sponsors of National Hi-Tech Pro-
gram and ISVISION by the Face Recognition Group of JDL, ICT, CAS. This database
contains 30,900 images of 1040 individuals captured under different conditions as
such, variation in pose, facial expression, accessory, illumination, background, dis-
tance, and time. For pose variation, each of 1040 individuals has approximately 21
different poses. Facial expression is captured for 377 individuals with 6 different
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expressions, similarly for accessory, 6 different images of 438 individuals with
different accessory are used. Illumination variation has images of 233 individuals
captured for minimum 10 and maximum 31 lighting variations. Background varia-
tion has images of 297 individuals for 2 to 4 different backgrounds. Further distance
and time parameters have 296 and 66 individuals at an interval of 6-month. Samples
of images of CAS-PEAL-R1 database are shown in Figure 3.

2.3 CMU Multi-PIE Database

CMU Multi-PIE Database is collected from October 2000 to December 2000 by
taking 41,368 images of 68 individuals designed for 14 different poses, 43 illumina-
tion variation, and 4 different expressions. This database is known as CMU Multi-
PIE by its varying conditions- pose, illumination, and expression. Image resolution
is set to resolution 640 � 486 pixels. Samples of images of CMUMulti-PIE database
is shown in Figure 4.

This chapter mainly focuses on feature extraction stage in face recognition. It
presents some well-known and recently explored spatial domain representations for

Figure 2.
Samples of images of A&T database with 10 varying conditions [7].

Figure 3.
Samples of images of CAS-PEAL-R1 database [8].
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face recognition. Scale-invariant feature transform (SIFT), histogram of oriented
gradients (HOG), and local binary patterns (LBP) are most commonly used spatial
feature representations over past decade. Recently, other relevant feature represen-
tations, such as, spatial pyramid learning (SPLE), linear phase quantization (LPQ),
variants of LBP such as improved local binary pattern (ILBP), compound local
binary pattern (CLBP), local ternary pattern (LTP), three-patch local binary pat-
terns (TPLBP), four-patch local binary patterns (FPLBP) are effectively used for
face recognition.

3. Histogram of oriented gradients (HOG)

Histogram of oriented gradients (HOG) is introduced by Dalal et al. [13] in 2005
for human detection. HOG is an effective descriptor for face recognition by com-
puting normalized histograms of face gradient orientations in dense grid [14].
Basically, HOG generates local appearance and shape of face rather than local
intensity gradients. HOG is based on computation, fine orientation binning,
normalization and descriptor blocks.

A detailed implementation for extracting HOG features for face recognition is
given as:

1. Facial image is first divided into small regions called cells. For an image of size
64 � 64, overlapping cells of 8 � 8 pixels are obtained. Gradient directions
over pixels are computed for each cell. Simple 1-D derivatives are used in
horizontal and vertical directions with the following masks:

Dx ¼ �1 0 1½ � (1)

and Dy ¼
�1
0

1

2
64

3
75 (2)

Results for a sample facial image using horizontal (DxÞ and vertical Dy
� �

deriva-
tive masks are shown in Figure 5.

Figure 4.
Samples of images of CMU Multi-PIE Database [9].
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face recognition. Scale-invariant feature transform (SIFT), histogram of oriented
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feature representations over past decade. Recently, other relevant feature represen-
tations, such as, spatial pyramid learning (SPLE), linear phase quantization (LPQ),
variants of LBP such as improved local binary pattern (ILBP), compound local
binary pattern (CLBP), local ternary pattern (LTP), three-patch local binary pat-
terns (TPLBP), four-patch local binary patterns (FPLBP) are effectively used for
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3. Histogram of oriented gradients (HOG)

Histogram of oriented gradients (HOG) is introduced by Dalal et al. [13] in 2005
for human detection. HOG is an effective descriptor for face recognition by com-
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Basically, HOG generates local appearance and shape of face rather than local
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2.Next step is fine orientation binning for extracting HOG features. Histogram
channels are evenly selected in the range 0–180° for unsigned and 0–360° for
signed gradient. Each cell can contribute in the form of pixel magnitude, gradient
magnitude, square root or square of magnitude. In general, gradient magnitude
yields the best results while square root reduces the performance [13].

3.Gradients in each cell are normalized for local contrast normalization. Cell
gradients are normalized from all blocks and are concatenated to form HOG
feature vector. Dalal et al. [13] proposed 9 histogram channels (bins) to be
computed for unsigned gradient. Hence, for 64 � 64 image, 1764 dimensional
HOG feature vector is obtained representing full facial appearance. It can be
explained as:

64� 64
8� 8

� 50% overlapping ¼ 196 blocks (3)

196 blocks� 9 bin ¼ 1764 dimensional HOG vector (4)

4.Different normalization schemes are presented in [15] for block normalization.
Let ν represents un-normalized block with νk kk as kth norm for k = 1, 2 and

Figure 5.
Sample facial image and resultant derivatives. (a) Horizontal derivative. (b) Vertical derivative.

Figure 6.
Sample example of (a) Input facial image of size 64 � 64. (b) Resultant HOG features (1764 dimensions).
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ϱ a small constant. Different normalization schemes used are L1-norm, L1-sqrt,
L2-norm and L2-hys. Generally, L2-hys is used for block normalization. L2-hys
is obtained by first computing L2-norm and then clipping such that maximum
value of ν is limited to 0.2 and then renormalizing.

Sample input facial image and resultant HOG features are shown in Figure 6.

4. Scale invariant feature transform (SIFT)

Scale invariant feature transform (SIFT) is introduced by Lowe et al. [16] for
extracting discriminative invariant features in an image. SIFT descriptor is widely
used for facial feature representation by extracting blob-like local features [17].
These features are invariant to scale, translation and rotation resulting reliable
matching. SIFT is described in four sections as: (1) Detection of scale-space
extrema, (2) Detection of local extrema, (3) Orientation assignment, and
(4) Keypoint descriptor representation.

4.1 Detection of scale-space extrema

First step is to identify keypoints in scale-space of grayscale input image
f a; bð Þwhich is defined as:

L a; b; σð Þ ¼ G a; b; σð Þ ∗ f a; bð Þ (5)

such that, G a; b; σð Þ ¼ 1
2Пσ2

e� a2þb2ð Þ=2σ2 (6)

where σ is standard deviation of Gaussian G a; b; σð Þ.
Two closest scales of image with difference of multiplication factor k are used to

effectively detect extrema in scale-space. Difference of Gaussian (DOG) is com-
puted by taking difference of these two scaled versions of image convolved with
original image given as:

D a; b; σð Þ ¼ G a; b; kσð Þ � G a; b; σð Þð Þ ∗ f a; bð Þ
¼ L a; b; kσð Þ � L a; b; σð Þ (7)

4.2 Detection of local extrema

Local extrema (maxima/minima) of D a; b; σð Þ is calculated by comparing sample
pixel with eight neighbors in 3 � 3 patch as well as nine neighbors above and below
scaled images. To select sample point as local minima, it should be smaller than all
26 neighbors whereas for local maxima, selected point should be larger than all
neighbors. After keypoint localization, low contrast and poorly localized points are
removed by computing |D a; b; σð Þ∣ and discarding points with lower value to
defined threshold.

4.3 Orientation assignment

Orientation assignment to each keypoint results in rotation invariance. For each
Gaussian smoothened image L a; bð Þ, orientation is assigned by computing gradient
magnitude m a; bð Þ, and gradient direction θ a; bð Þ by its neighbor using Eqs. (8) and
(9) respectively.
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ϱ a small constant. Different normalization schemes used are L1-norm, L1-sqrt,
L2-norm and L2-hys. Generally, L2-hys is used for block normalization. L2-hys
is obtained by first computing L2-norm and then clipping such that maximum
value of ν is limited to 0.2 and then renormalizing.

Sample input facial image and resultant HOG features are shown in Figure 6.

4. Scale invariant feature transform (SIFT)

Scale invariant feature transform (SIFT) is introduced by Lowe et al. [16] for
extracting discriminative invariant features in an image. SIFT descriptor is widely
used for facial feature representation by extracting blob-like local features [17].
These features are invariant to scale, translation and rotation resulting reliable
matching. SIFT is described in four sections as: (1) Detection of scale-space
extrema, (2) Detection of local extrema, (3) Orientation assignment, and
(4) Keypoint descriptor representation.

4.1 Detection of scale-space extrema

First step is to identify keypoints in scale-space of grayscale input image
f a; bð Þwhich is defined as:

L a; b; σð Þ ¼ G a; b; σð Þ ∗ f a; bð Þ (5)

such that, G a; b; σð Þ ¼ 1
2Пσ2

e� a2þb2ð Þ=2σ2 (6)

where σ is standard deviation of Gaussian G a; b; σð Þ.
Two closest scales of image with difference of multiplication factor k are used to

effectively detect extrema in scale-space. Difference of Gaussian (DOG) is com-
puted by taking difference of these two scaled versions of image convolved with
original image given as:

D a; b; σð Þ ¼ G a; b; kσð Þ � G a; b; σð Þð Þ ∗ f a; bð Þ
¼ L a; b; kσð Þ � L a; b; σð Þ (7)

4.2 Detection of local extrema

Local extrema (maxima/minima) of D a; b; σð Þ is calculated by comparing sample
pixel with eight neighbors in 3 � 3 patch as well as nine neighbors above and below
scaled images. To select sample point as local minima, it should be smaller than all
26 neighbors whereas for local maxima, selected point should be larger than all
neighbors. After keypoint localization, low contrast and poorly localized points are
removed by computing |D a; b; σð Þ∣ and discarding points with lower value to
defined threshold.

4.3 Orientation assignment

Orientation assignment to each keypoint results in rotation invariance. For each
Gaussian smoothened image L a; bð Þ, orientation is assigned by computing gradient
magnitude m a; bð Þ, and gradient direction θ a; bð Þ by its neighbor using Eqs. (8) and
(9) respectively.
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m a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L aþ 1; bð Þ � L a� 1; bð Þð Þ2 þ L a; bþ 1ð Þ � L a; b� 1ð Þð Þ2

q
(8)

θ a; bð Þ ¼ tanh L a; bþ 1ð Þ � L a; b� 1ð Þð Þ=L aþ 1; bð Þ � L a� 1; bð ÞÞ (9)

4.4 Keypoint descriptor representation

Finally, each detected keypoint is represented as 128 dimensional feature vector.
This is obtained by computing magnitude and orientation of gradient at each point
in 16 � 16 sized patch of an image. Each 16 � 16 patch is subdivided into 4 � 4 non-
overlapping regions such that each 4 � 4 region is represented by 8 bins. Hence,
each keypoint descriptor is represented by 4 � 4 � 8 = 128 length vector.

Figure 7 shows an example of assignment of SIFT descriptor for 8 � 8 neigh-
borhood. Length of each arrow corresponds sum of gradient magnitude in a specific
direction for 4 � 4 region.

Processing flow to generate SIFT features for face recognition is shown in
Figure 8. Input original image is first preprocessed and difference of Gaussian

Figure 7.
Example of (a) Image gradients of 2 � 2 patch computed from 8 � 8 neighborhood. (b) Resultant SIFT
keypoint descriptor.

Figure 8.
Processing flow of SIFT for face recognition. (a) Original image. (b) Processed image. (c) Difference of
Gaussian Pyramid. (d) SIFT keypoints.
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pyramid is generated as in Figure 8(c). Final resultant SIFT keypoints are then
represented as feature vector to be fed to classifier for face recognition.

5. Linear phase quantization (LPQ)

Local phase quantization (LPQ) introduced by Ojansivu et al. [18, 19] is blur
tolerant texture based descriptor. LPQ is based on blur invariance property of
frequency domain phase spectrum of an image. LPQ for face recognition is investi-
gated by Ahonen et al. [20] and reported improved results for blurred facial images.

LPQ on an image pixel is applied by using short-term Fourier transform (STFT)
over M�M patch with image as center and four scalar frequencies. Imaginary and
real components are then whitened and binary quantized to generate LPQ code for
respective pixel. Complete process is detailed in Figure 9 where LPQ code is
obtained for an image pixel [21]. Similarly, final LPQ feature vector can be obtained
by shifting M�M patch over the entire image.

Spatial blurring is performed by convolving grayscale input image f a; bð Þ to
point spread function (PSF). Frequency domain analysis can be represented as:

H u; vð Þ ¼ F u; vð Þ :P u; vð Þ (10)

here, F u; vð Þ and P u; vð Þ are DFT of original image and PSF respectively. H u; vð Þ
is DFT of resultant blurred image.

Phase spectrum is obtained as:

⎳H u; vð Þ ¼⎳F u; vð Þ þ⎳P u; vð Þ (11)

Now, if PSF is positive and even, then⎳P u; vð Þmust be either 0 or П, such that
⎳P u; vð Þ ¼ 0 for P u; vð Þ≥0 while, ⎳P u; vð Þ ¼ П for P u; vð Þ,0.

Since, shape of P u; vð Þ generally selected is similar to Gaussian function, low
frequency value of P u; vð Þ is positive. This results⎳P u; vð Þ ¼ 0 and Eq. (11)

Figure 9.
LPQ encoding scheme. (a) Input 5� 5 patch. (b) Frequency domain representation. (c) LPQ code.
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Figure 7.
Example of (a) Image gradients of 2 � 2 patch computed from 8 � 8 neighborhood. (b) Resultant SIFT
keypoint descriptor.

Figure 8.
Processing flow of SIFT for face recognition. (a) Original image. (b) Processed image. (c) Difference of
Gaussian Pyramid. (d) SIFT keypoints.
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pyramid is generated as in Figure 8(c). Final resultant SIFT keypoints are then
represented as feature vector to be fed to classifier for face recognition.

5. Linear phase quantization (LPQ)

Local phase quantization (LPQ) introduced by Ojansivu et al. [18, 19] is blur
tolerant texture based descriptor. LPQ is based on blur invariance property of
frequency domain phase spectrum of an image. LPQ for face recognition is investi-
gated by Ahonen et al. [20] and reported improved results for blurred facial images.

LPQ on an image pixel is applied by using short-term Fourier transform (STFT)
over M�M patch with image as center and four scalar frequencies. Imaginary and
real components are then whitened and binary quantized to generate LPQ code for
respective pixel. Complete process is detailed in Figure 9 where LPQ code is
obtained for an image pixel [21]. Similarly, final LPQ feature vector can be obtained
by shifting M�M patch over the entire image.

Spatial blurring is performed by convolving grayscale input image f a; bð Þ to
point spread function (PSF). Frequency domain analysis can be represented as:

H u; vð Þ ¼ F u; vð Þ :P u; vð Þ (10)

here, F u; vð Þ and P u; vð Þ are DFT of original image and PSF respectively. H u; vð Þ
is DFT of resultant blurred image.

Phase spectrum is obtained as:

⎳H u; vð Þ ¼⎳F u; vð Þ þ⎳P u; vð Þ (11)

Now, if PSF is positive and even, then⎳P u; vð Þmust be either 0 or П, such that
⎳P u; vð Þ ¼ 0 for P u; vð Þ≥0 while, ⎳P u; vð Þ ¼ П for P u; vð Þ,0.

Since, shape of P u; vð Þ generally selected is similar to Gaussian function, low
frequency value of P u; vð Þ is positive. This results⎳P u; vð Þ ¼ 0 and Eq. (11)

Figure 9.
LPQ encoding scheme. (a) Input 5� 5 patch. (b) Frequency domain representation. (c) LPQ code.
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becomes ⎳H u; vð Þ ¼⎳F u; vð Þ: Hence, it can be stated that LPQ possesses blur
invariant property. Detailed mathematical analysis of LPQ can be obtained from [21].

6. Local binary patterns (LBP)

Local Binary Patterns (LBP) is introduced by Ojala et al. [22] as rotation invari-
ant texture based feature descriptor. LBP as feature representation for face recog-
nition is proposed by Ahohen et al. [23]. It stated that texture analysis of a local
facial region represents its local appearance and fusion of all regions can generate an
encoded global geometry of face.

Consider an input image and let f a; bð Þ be its preprocessed version. Basic LBP
operator on 3� 3 neighborhood of f a; bð Þ and generated decimal code for center
pixel is shown in Figure 10. LBP operator replaces each pixel of f a; bð Þ with a
calculated decimal code resulting in LBP encoded image f LBP a; bð Þ. It is done by
thresholding each pixel of 3� 3 neighborhood with its center pixel. Resultant is a
binary code which is then converted into corresponding decimal code. Center pixel
is then replaced by decimal code of generated binary stream. LBP code assigned to
center pixel is given by Eq. (12). Here, ic represents center pixel, cn is gray level of
neighbor pixels, and cp is gray level of center pixel.

LBPP, R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m

s ¼
1 if cn � cp .0

0 otherwise

( (12)

Ahohen et al. [23] proposed that LBP operator can be used with varying neigh-
borhood size M�M and radius R to deal with different image scales. Notation
P;Rð Þ is used to represent P sampling points or neighbor pixels around center pixel
for radius R. Thresholding is then performed by comparing center pixel with P
neighbor pixels. Example of some selected values of P;Rð Þ is shown in Figure 11.

LBP for face recognition processes by building local LBP descriptor to represent
local region and then combined to obtain global representation for entire face.
Encoded image f LBP a; bð Þ is evenly divided into non-overlapping blocks. Histogram
for each block are calculated and final LBP feature vector is built by concatenating
all regional histograms. LBP operator provides essential spatial information that
plays a key role for face recognition. Complete processing flow to generate LBP
feature vector is shown in Figure 12.

Figure 10.
Basic LBP operator on 3� 3 neighborhood forf a; bð Þ. (a) Preprocessed image. (b) 3� 3 Neighborhood.
(c) Corresponding gray levels of each pixel. (d) Result after thresholding. Finally, center pixel is replaced by
code 42.
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Major advantages of LBP over other spatial feature representations are simple cal-
culations, comparatively smaller feature vector size, more powerful towards noises and
illumination balance. In recent years, various variants of LBP are widely implemented
in texture analysis. Local ternary patterns (LTP) proposed by Tan et al. [24] is based on
a ternary threshold operator. LTP is an improved LBP variant by using two LBP vectors
for building one LTP representation. Other variants of LBP are compound local binary
pattern (CLBP) [25], three-patch LBP (TPLBP) [26], four-patch LBP (FPLBP) [26] and
improved local binary pattern (ILBP) [27]. These representations are verified to be
more efficient than LBP against illumination and noise conditions.

7. Local ternary patterns (LTP)

Local ternary patterns (LTP) [24] is a generalization of LBP with reduced sensi-
tivity to noise and illumination variations. LTP generates a 3-valued code by
including a threshold around zero and improves resistance to noise. LTP works well
for noisy images and different lighting conditions.

Figure 11.
Different P and R combinations for LBP operator.

Figure 12.
Processing flow of LBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) LBP Encoded
image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-overlapping
patch. (f) Final LBP feature vector by concatenating histograms of all patches in image.
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becomes ⎳H u; vð Þ ¼⎳F u; vð Þ: Hence, it can be stated that LPQ possesses blur
invariant property. Detailed mathematical analysis of LPQ can be obtained from [21].

6. Local binary patterns (LBP)

Local Binary Patterns (LBP) is introduced by Ojala et al. [22] as rotation invari-
ant texture based feature descriptor. LBP as feature representation for face recog-
nition is proposed by Ahohen et al. [23]. It stated that texture analysis of a local
facial region represents its local appearance and fusion of all regions can generate an
encoded global geometry of face.

Consider an input image and let f a; bð Þ be its preprocessed version. Basic LBP
operator on 3� 3 neighborhood of f a; bð Þ and generated decimal code for center
pixel is shown in Figure 10. LBP operator replaces each pixel of f a; bð Þ with a
calculated decimal code resulting in LBP encoded image f LBP a; bð Þ. It is done by
thresholding each pixel of 3� 3 neighborhood with its center pixel. Resultant is a
binary code which is then converted into corresponding decimal code. Center pixel
is then replaced by decimal code of generated binary stream. LBP code assigned to
center pixel is given by Eq. (12). Here, ic represents center pixel, cn is gray level of
neighbor pixels, and cp is gray level of center pixel.

LBPP, R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m

s ¼
1 if cn � cp .0

0 otherwise

( (12)

Ahohen et al. [23] proposed that LBP operator can be used with varying neigh-
borhood size M�M and radius R to deal with different image scales. Notation
P;Rð Þ is used to represent P sampling points or neighbor pixels around center pixel
for radius R. Thresholding is then performed by comparing center pixel with P
neighbor pixels. Example of some selected values of P;Rð Þ is shown in Figure 11.

LBP for face recognition processes by building local LBP descriptor to represent
local region and then combined to obtain global representation for entire face.
Encoded image f LBP a; bð Þ is evenly divided into non-overlapping blocks. Histogram
for each block are calculated and final LBP feature vector is built by concatenating
all regional histograms. LBP operator provides essential spatial information that
plays a key role for face recognition. Complete processing flow to generate LBP
feature vector is shown in Figure 12.

Figure 10.
Basic LBP operator on 3� 3 neighborhood forf a; bð Þ. (a) Preprocessed image. (b) 3� 3 Neighborhood.
(c) Corresponding gray levels of each pixel. (d) Result after thresholding. Finally, center pixel is replaced by
code 42.
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Major advantages of LBP over other spatial feature representations are simple cal-
culations, comparatively smaller feature vector size, more powerful towards noises and
illumination balance. In recent years, various variants of LBP are widely implemented
in texture analysis. Local ternary patterns (LTP) proposed by Tan et al. [24] is based on
a ternary threshold operator. LTP is an improved LBP variant by using two LBP vectors
for building one LTP representation. Other variants of LBP are compound local binary
pattern (CLBP) [25], three-patch LBP (TPLBP) [26], four-patch LBP (FPLBP) [26] and
improved local binary pattern (ILBP) [27]. These representations are verified to be
more efficient than LBP against illumination and noise conditions.

7. Local ternary patterns (LTP)

Local ternary patterns (LTP) [24] is a generalization of LBP with reduced sensi-
tivity to noise and illumination variations. LTP generates a 3-valued code by
including a threshold around zero and improves resistance to noise. LTP works well
for noisy images and different lighting conditions.

Figure 11.
Different P and R combinations for LBP operator.

Figure 12.
Processing flow of LBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) LBP Encoded
image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-overlapping
patch. (f) Final LBP feature vector by concatenating histograms of all patches in image.
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In LBP, neighbor pixels are compared with center pixel directly. Hence, a small
variation in pixel values due to noise can drastically change LBP code. To overcome
this limitation, LTP introduces a threshold �t around center pixel ic and neighbor
pixels are compared to generate 3-valued ternary code as:

LTPP, R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m (13)

s ¼
1 cp ≥ cn þ t

0 ∣cp � t∣, t

�1 cp ≤ cp � t

8>><
>>:

(14)

Here, cp and cn represent gray levels of center pixel and neighbor pixels respec-
tively. Understanding of LTP encoding scheme to generate ternary LTP code is
shown in Figure 13. Here, threshold t is set to 5, hence with center pixel value 40,
the tolerance range is [35, 45]. Neighbor pixels with gray level values in this range is
replaced by zero, those above are replaced by 1 and below are replaced by �1 as
described in Eq. (14).

Resultant ternary LTP code is split into two sub-LTP codes which are treated as
two separate channels as shown in Figure 14. Lower and upper sub-LTP codes are

Figure 13.
LTP encoding scheme to generate ternary LTP code. (a) Preprocessed image. (b) 3� 3 Neighborhood.
(c) Corresponding gray levels of each pixel. (d) Ternary LTP code after thresholding.

Figure 14.
Splitting of ternary LTP code to generate lower and upper sub-LTP codes. (a) 3 � 3 neighborhood of an image.
(b) Ternary LTP code. (c) Lower sub-LTP code. (d) Upper sub-LTP code. Finally, lower and upper sub-LTP
codes obtained are 7 and 168 respectively.
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generated by replacing ‘-1’ in original ternary code to ‘0’ and ‘1’ respectively. Hence,
LTP represents each original image by two encoded images.

8. Compound local binary pattern (CLBP)

Compound local binary pattern (CLBP) proposed by Ahmed et al. [25] is an
improved variant of LBP using 2P bits code. CLBP overcomes limitation of LBP by
improving performance in case of flat image. LBP results poor for images with
bright spots or dark patches i.e. in case of flat image LBP fails as shown in Figure 15.

Original LBP generates P bits code by taking gray level difference between
center pixel and P neighbor pixels (sampling points). CLPB is an extension to LBP
by generating 2P bits code for P neighbor pixels. Here, extra P bits encode magni-
tude information of difference between center pixel and P pixels. This way, CLBP
increases robustness of texture representation mainly in case of flat images.

To generate 2P bits code, CLBP represents each neighbor pixel with two bits for
sign and magnitude information. The first bit is same as LBP bit and represents sign
of difference between center pixel and respective neighbor pixel. Second bit
encodes magnitude of difference with respect to a calculated threshold Mab. This
threshold is obtained by taking mean of magnitudes of difference between center
pixel and all P pixels.

First bit is set to ‘1’ if gray level of neighbor pixel is greater than or equals to center
pixel and ‘0’ otherwise. Second bit is ‘1’ if absolute magnitude of difference between
neighbor pixel and center pixel is greater than threshold and ‘0’ otherwise. CLBP

CLBPP,R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m (15)

s ¼

00 cn � cp ,0, cn � cp
�� ��≤Mab

01 cn � cp ,0 cn � cp
�� ��.Mab

10 cn � cp ≥0 cn � cp
�� ��≤Mab

11 otherwise

8>>>>>><
>>>>>>:

(16)

CLBP encoding scheme to generate 2P bits code for 3� 3 neighborhood of an
image is shown in Figure 16. A 16-bits CLBP code is generated after thresholding
using Eq. (16). Resultant CLBP code is then split into two 8 bits sub-CLBP codes to
reduce possible binary patterns from 216 to (2� 28Þ: First 8-bits code is

Figure 15.
LBP code for flat image. (a) 3� 3 Neighbouhood of an image. (b) LBP encoded image.
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In LBP, neighbor pixels are compared with center pixel directly. Hence, a small
variation in pixel values due to noise can drastically change LBP code. To overcome
this limitation, LTP introduces a threshold �t around center pixel ic and neighbor
pixels are compared to generate 3-valued ternary code as:

LTPP, R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m (13)

s ¼
1 cp ≥ cn þ t

0 ∣cp � t∣, t

�1 cp ≤ cp � t

8>><
>>:

(14)

Here, cp and cn represent gray levels of center pixel and neighbor pixels respec-
tively. Understanding of LTP encoding scheme to generate ternary LTP code is
shown in Figure 13. Here, threshold t is set to 5, hence with center pixel value 40,
the tolerance range is [35, 45]. Neighbor pixels with gray level values in this range is
replaced by zero, those above are replaced by 1 and below are replaced by �1 as
described in Eq. (14).

Resultant ternary LTP code is split into two sub-LTP codes which are treated as
two separate channels as shown in Figure 14. Lower and upper sub-LTP codes are

Figure 13.
LTP encoding scheme to generate ternary LTP code. (a) Preprocessed image. (b) 3� 3 Neighborhood.
(c) Corresponding gray levels of each pixel. (d) Ternary LTP code after thresholding.

Figure 14.
Splitting of ternary LTP code to generate lower and upper sub-LTP codes. (a) 3 � 3 neighborhood of an image.
(b) Ternary LTP code. (c) Lower sub-LTP code. (d) Upper sub-LTP code. Finally, lower and upper sub-LTP
codes obtained are 7 and 168 respectively.
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generated by replacing ‘-1’ in original ternary code to ‘0’ and ‘1’ respectively. Hence,
LTP represents each original image by two encoded images.

8. Compound local binary pattern (CLBP)

Compound local binary pattern (CLBP) proposed by Ahmed et al. [25] is an
improved variant of LBP using 2P bits code. CLBP overcomes limitation of LBP by
improving performance in case of flat image. LBP results poor for images with
bright spots or dark patches i.e. in case of flat image LBP fails as shown in Figure 15.

Original LBP generates P bits code by taking gray level difference between
center pixel and P neighbor pixels (sampling points). CLPB is an extension to LBP
by generating 2P bits code for P neighbor pixels. Here, extra P bits encode magni-
tude information of difference between center pixel and P pixels. This way, CLBP
increases robustness of texture representation mainly in case of flat images.

To generate 2P bits code, CLBP represents each neighbor pixel with two bits for
sign and magnitude information. The first bit is same as LBP bit and represents sign
of difference between center pixel and respective neighbor pixel. Second bit
encodes magnitude of difference with respect to a calculated threshold Mab. This
threshold is obtained by taking mean of magnitudes of difference between center
pixel and all P pixels.

First bit is set to ‘1’ if gray level of neighbor pixel is greater than or equals to center
pixel and ‘0’ otherwise. Second bit is ‘1’ if absolute magnitude of difference between
neighbor pixel and center pixel is greater than threshold and ‘0’ otherwise. CLBP

CLBPP,R icð Þ ¼ ∑
P�1

m¼0
s cn�cp
� �

2m (15)

s ¼

00 cn � cp ,0, cn � cp
�� ��≤Mab

01 cn � cp ,0 cn � cp
�� ��.Mab

10 cn � cp ≥0 cn � cp
�� ��≤Mab

11 otherwise

8>>>>>><
>>>>>>:

(16)

CLBP encoding scheme to generate 2P bits code for 3� 3 neighborhood of an
image is shown in Figure 16. A 16-bits CLBP code is generated after thresholding
using Eq. (16). Resultant CLBP code is then split into two 8 bits sub-CLBP codes to
reduce possible binary patterns from 216 to (2� 28Þ: First 8-bits code is

Figure 15.
LBP code for flat image. (a) 3� 3 Neighbouhood of an image. (b) LBP encoded image.
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concatenation of bits from pixels marked red in Figure 16(c). Again, second 8-bits
code is obtained by concatenating bit values from left over pixels. Finally, these
sub-CLBP codes are treated as channels for final feature vector representation.

Processing flow to generate histograms of CLBP encoded image for face recog-
nition is shown in Figure 17. It explains how each pixel of original image is
converted into CLBP encoded image. Figure 17(c) shows two sub-CLBP encoded
images. Histogram of each encoded image are obtained as in Figure 17(d). These
histograms can be individually used as separate feature vectors for face recognition
or can be concatenated as a single final vector.

9. Three-patch LBP (TPLBP)

Original LBP and different variants of LBP generate 1-bit value or 2-bit value
(for CLBP) by comparing two pixels, one as center pixel and other as one of the P
neighbor pixels. Wolf et al. [26] proposed two different variants of LBP, namely,
Three-patch LBP (TPLBP and Four-patch LBP (FPLBP) by comparing center pixel
with more than one neighbor pixels.

Figure 16.
CLBP encoding scheme to generate 2P bits code. (a) 3 � 3 neighborhood of an image. (b) 2P bits CLBP code
after thresholding. (c) Separated sub-CLBP codes. (d) Resultant two 8-bit sub-CLBP codes.

Figure 17.
Processing flow of CLBP for face recognition. (a) Original image. (b) Preprocessed image. (c) Separated
sub-CLBP encoded images. (d) Respective histograms of each encoded image. (e) Concatenated histogram.
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TPLBP assigns each neighbor pixel in encoded image with 1-bit value by com-
paring gray level of three patches. For each center pixel ic, M�M patch is consid-
ered and P additional same sized patches with center at distance of radius R is
selected. Center pixel ic is compared with center pixels of two patches at δ distance
apart along the ring of radius R. This way, TPLBP generates P bits code for ic as:

TPLBPP,R,M,δ icð Þ ¼ ∑
P�1

m¼0
f d cm; cp
� �� d cmþδ mod M; cp

� �� �
2m (17)

here, cp, cm and cmþδ mod M are gray level of ic, gray levels of center pixel of mth

and mþ δð Þth patches respectively. d :ð Þ is L2 norm and f is given as:

f að Þ ¼
1, a≥ τ

0, a, τ

8><
>:

(18)

τ is a user-specific threshold selected slightly greater than zero (say τ=.01) to
obtain stability in flat regions. Figure 18 shows a sample example to generate
TPBLP code for selected P ¼ 8, δ ¼ 2,M ¼ 3: TPLBP code generation for given
sample using Eq. (17) is as:

f d c0; cp
� �� d c2; cp

� �� �
20 þ f d c1; cp

� �� d c3; cp
� �� �

21þ
f d c2; cp
� �� d c4; cp

� �� �
22 þ f d c3; cp

� �� d c5; cp
� �� �

23þ
f d c4; cp
� �� d c6; cp

� �� �
24 þ f d c5; cp

� �� d c7; cp
� �� �

25þ
f d c6; cp
� �� d c0; cp

� �� �
26 þ f d c7; cp

� �� d c1; cp
� �� �

27

(19)

Processing flow to obtain TPLBP feature vector for face recognition is shown in
Figure 19. Input facial image of size 64� 64 is first represented as TPLBP encoded
image as in Figure 19(c). TPLBP encoded image is then divided into non-
overlapping patches of same size and histogram for each patch is obtained. These

Figure 18.
TPLBP code generation for selected P ¼ 8, δ ¼ 2,M ¼ 3:

127

Spatial Domain Representation for Face Recognition
DOI: http://dx.doi.org/10.5772/intechopen.85382



concatenation of bits from pixels marked red in Figure 16(c). Again, second 8-bits
code is obtained by concatenating bit values from left over pixels. Finally, these
sub-CLBP codes are treated as channels for final feature vector representation.

Processing flow to generate histograms of CLBP encoded image for face recog-
nition is shown in Figure 17. It explains how each pixel of original image is
converted into CLBP encoded image. Figure 17(c) shows two sub-CLBP encoded
images. Histogram of each encoded image are obtained as in Figure 17(d). These
histograms can be individually used as separate feature vectors for face recognition
or can be concatenated as a single final vector.

9. Three-patch LBP (TPLBP)

Original LBP and different variants of LBP generate 1-bit value or 2-bit value
(for CLBP) by comparing two pixels, one as center pixel and other as one of the P
neighbor pixels. Wolf et al. [26] proposed two different variants of LBP, namely,
Three-patch LBP (TPLBP and Four-patch LBP (FPLBP) by comparing center pixel
with more than one neighbor pixels.

Figure 16.
CLBP encoding scheme to generate 2P bits code. (a) 3 � 3 neighborhood of an image. (b) 2P bits CLBP code
after thresholding. (c) Separated sub-CLBP codes. (d) Resultant two 8-bit sub-CLBP codes.

Figure 17.
Processing flow of CLBP for face recognition. (a) Original image. (b) Preprocessed image. (c) Separated
sub-CLBP encoded images. (d) Respective histograms of each encoded image. (e) Concatenated histogram.
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TPLBP assigns each neighbor pixel in encoded image with 1-bit value by com-
paring gray level of three patches. For each center pixel ic, M�M patch is consid-
ered and P additional same sized patches with center at distance of radius R is
selected. Center pixel ic is compared with center pixels of two patches at δ distance
apart along the ring of radius R. This way, TPLBP generates P bits code for ic as:

TPLBPP,R,M,δ icð Þ ¼ ∑
P�1

m¼0
f d cm; cp
� �� d cmþδ mod M; cp

� �� �
2m (17)

here, cp, cm and cmþδ mod M are gray level of ic, gray levels of center pixel of mth

and mþ δð Þth patches respectively. d :ð Þ is L2 norm and f is given as:

f að Þ ¼
1, a≥ τ

0, a, τ

8><
>:

(18)

τ is a user-specific threshold selected slightly greater than zero (say τ=.01) to
obtain stability in flat regions. Figure 18 shows a sample example to generate
TPBLP code for selected P ¼ 8, δ ¼ 2,M ¼ 3: TPLBP code generation for given
sample using Eq. (17) is as:

f d c0; cp
� �� d c2; cp

� �� �
20 þ f d c1; cp

� �� d c3; cp
� �� �

21þ
f d c2; cp
� �� d c4; cp

� �� �
22 þ f d c3; cp

� �� d c5; cp
� �� �

23þ
f d c4; cp
� �� d c6; cp

� �� �
24 þ f d c5; cp

� �� d c7; cp
� �� �

25þ
f d c6; cp
� �� d c0; cp

� �� �
26 þ f d c7; cp

� �� d c1; cp
� �� �

27

(19)

Processing flow to obtain TPLBP feature vector for face recognition is shown in
Figure 19. Input facial image of size 64� 64 is first represented as TPLBP encoded
image as in Figure 19(c). TPLBP encoded image is then divided into non-
overlapping patches of same size and histogram for each patch is obtained. These

Figure 18.
TPLBP code generation for selected P ¼ 8, δ ¼ 2,M ¼ 3:
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histograms are then normalized and truncated to value 0:2. Finally, TPLBP feature
vector is obtained by concatenating all histograms.

10. Four-patch LBP (FPLBP)

Four-patch LBP (FPLBP) [26] is an extension to TPLBP by comparing center
pixels of four patches to generate 1-bit value. Two different rings with radius R1 and
R2 (R1,R2) and P patches of size M�M for each ring are selected around center
pixel ic. Two patches with center symmetric are selected in inner ring and compared
with corresponding patches in outer ring at distance δ along a circle. This way,
FPLBP generates P=2 bit code for ic by obtaining P=2 pairs as:

Figure 19.
Processing flow of TPLBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) TPLBP
Encoded image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-
overlapping patch. (f) Final TPLBP feature vector by concatenating histograms of all patches in image.

Figure 20.
FPLBP code generation for selected P ¼ 8, δ ¼ 2,M ¼ 3:
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FPLBPP,R1,R2,M,δ icð Þ ¼ ∑
P=2�1

m¼0
f d ci,m; co,mþδ mod Mð Þ � d ci,mþP=2; co,mþP=2þδ mod M

� �� �
2m

(20)

here, ci,m and co,mþδ mod M are gray levels of center pixel of mth patch in inner
ring and mþ δð Þth patch in outer ring respectively. Again, ci,mþP=2 and

co,mþP=2þδ mod M are gray levels of center pixel of center symmetric mþ P=2ð Þth
patch in inner ring and mþ P=2þ δð Þth patch in outer ring respectively. Figure 20
shows a sample example to generate FPBLP code for selected P ¼ 8, δ ¼ 2,M ¼ 3:
Also FPLBP code generation for given sample using Eq. (20) is as:

f d ci0; co1ð Þ � d ci4; co5ð Þð Þ20 þ f d ci1; co2ð Þ � d ci5; co6ð Þð Þ21
f d ci2; co3ð Þ � d ci6; co7ð Þð Þ22 þ f d ci3; co4ð Þ � d ci7; co8ð Þð Þ23 (21)

Processing flow to obtain FPLBP feature vector for a sample facial image similar
to TPLBP is shown in Figure 21.

11. Improved LBP (ILBP)

Improved LBP (ILBP) originally named as CLBP (complete LBP) is proposed by
Guo et al. [27]. It is termed as ILBP to distinguish its abbreviation from compound
LBP (CLBP). In ILBP, neighbor pixels are represented by its center pixel and a local
difference sign-magnitude transform (LDSMT). A complete processing flow to

Figure 21.
Processing flow of FPLBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) FPLBP
Encoded image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-
overlapping patch. (f) Final FPLBP feature vector by concatenating histograms of all patches in image.

Figure 22.
Complete processing flow to generate ILBP code.
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histograms are then normalized and truncated to value 0:2. Finally, TPLBP feature
vector is obtained by concatenating all histograms.

10. Four-patch LBP (FPLBP)

Four-patch LBP (FPLBP) [26] is an extension to TPLBP by comparing center
pixels of four patches to generate 1-bit value. Two different rings with radius R1 and
R2 (R1,R2) and P patches of size M�M for each ring are selected around center
pixel ic. Two patches with center symmetric are selected in inner ring and compared
with corresponding patches in outer ring at distance δ along a circle. This way,
FPLBP generates P=2 bit code for ic by obtaining P=2 pairs as:

Figure 19.
Processing flow of TPLBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) TPLBP
Encoded image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-
overlapping patch. (f) Final TPLBP feature vector by concatenating histograms of all patches in image.

Figure 20.
FPLBP code generation for selected P ¼ 8, δ ¼ 2,M ¼ 3:
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FPLBPP,R1,R2,M,δ icð Þ ¼ ∑
P=2�1

m¼0
f d ci,m; co,mþδ mod Mð Þ � d ci,mþP=2; co,mþP=2þδ mod M

� �� �
2m

(20)

here, ci,m and co,mþδ mod M are gray levels of center pixel of mth patch in inner
ring and mþ δð Þth patch in outer ring respectively. Again, ci,mþP=2 and

co,mþP=2þδ mod M are gray levels of center pixel of center symmetric mþ P=2ð Þth
patch in inner ring and mþ P=2þ δð Þth patch in outer ring respectively. Figure 20
shows a sample example to generate FPBLP code for selected P ¼ 8, δ ¼ 2,M ¼ 3:
Also FPLBP code generation for given sample using Eq. (20) is as:

f d ci0; co1ð Þ � d ci4; co5ð Þð Þ20 þ f d ci1; co2ð Þ � d ci5; co6ð Þð Þ21
f d ci2; co3ð Þ � d ci6; co7ð Þð Þ22 þ f d ci3; co4ð Þ � d ci7; co8ð Þð Þ23 (21)

Processing flow to obtain FPLBP feature vector for a sample facial image similar
to TPLBP is shown in Figure 21.

11. Improved LBP (ILBP)

Improved LBP (ILBP) originally named as CLBP (complete LBP) is proposed by
Guo et al. [27]. It is termed as ILBP to distinguish its abbreviation from compound
LBP (CLBP). In ILBP, neighbor pixels are represented by its center pixel and a local
difference sign-magnitude transform (LDSMT). A complete processing flow to

Figure 21.
Processing flow of FPLBP for face recognition. (a) Original input image. (b) Preprocessed image. (c) FPLBP
Encoded image. (d) Divided non-overlapping patches for encoded image. (e) Histogram of selected non-
overlapping patch. (f) Final FPLBP feature vector by concatenating histograms of all patches in image.

Figure 22.
Complete processing flow to generate ILBP code.
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generate ILBP code is shown in Figure 22. ILPB generates 3P bits code for P
neighbor pixels. An original image is first represented in terms of local threshold
and global threshold. Local threshold is then further decomposed into sign and
magnitude components. Consequently, three representations of P bits are obtained
namely, ILBP_Sign (ILBP_S), ILBP_Magnitude (ILBP_M) and ILBP_Gobal
(ILBP_G) and combined to form 3P bits ILBP code.

Let cp and cn represent gray levels of center pixel ic and P neighbor pixels
respectively. Local threshold is generated by taking difference sp ¼ cn � cp.
Subtracted vector sp is further divided into components, namely, magnitude of
subtraction (mp) and sign of subtraction (qp) as:

sp ¼ qp ∗mp,where
qp ¼ sign sp

� �

mp ¼ spj j

(
(22)

qp ¼
1, sp ≥0

�1, sp ,0

�
(23)

Understanding of ILPB encoding scheme to generate 3P bits ILBP code is shown
in Figure 23. Figure 23(a) shows 3� 3 neighborhood with center pixel value 50.
ILBP encoded image after local thresholding is shown in Figure 23(b) as [�38, �15,
20, 15, 22, �6, �41, 35]. After LDSMT, sign and magnitude vectors are obtained. It
is clearly seen that original LBP uses only sign as LBP encodes �1 as 0 in sign vector
representation. LBP code for above sample block is [0, 0, 1, 1, 1, 0, 0, 1]. Hence,
LBP considers only sign components of subtraction while ILBP combines three
representations, ILBP_S, ILBP_M and ILBP_G. Local region around center pixel is
represented by LDSMT, assigning threshold value w.r.t sign leads ILBP_S and
assigning threshold value w.r.t. magnitude leads ILBP_M. Similarly, image is also
encoded using global threshold is termed as ILBP_G.

A comparative analysis of various spatial domain feature representations is given
in Table 2.

Figure 23.
ILBP encoding scheme. (a) 3 � 3 neighborhood of an image. (b) ILBP encoded image after thresholding. (c)
Sign component. (d) Magnitude component.
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12. Result analysis for face recognition

Face recognition has been explored over last many years, hence there exists a
large number of researches in this domain. In this section, we present existing face
recognition results and analysis based on different spatial domain representations.
Deniz et al. [28] proposed face recognition using HOG features by extracting fea-
tures from varying image patches which resulted in an improved accuracy. Recog-
nition accuracy is evaluated on FERET database with best result of 95.4%. Other
related researches are [29] which used EBGM-HOG and showed robustness to
change in illumination, rotation and small displacements. Some existing works on
face recognition using SIFT features are [30, 31]. These works have also used

Feature Advantages Disadvantages

HOG • Rotation and scale invariant. • Very sensitive to image rotation. Not
good choice for classification of
textures or objects.

SIFT • Rotation and scale invariant. • Mathematically complicated and
computationally heavy.

• It is not effective for low powered
devices.

LBP • High discriminative power.
• Computational simplicity.

• Not invariant to rotations.
• Size of feature vector increases

exponentially with number of
neighbors leading to an increase of
computational complexity in terms of
time and space.

• The structural information captured by
it is limited. Only pixel difference is
used, magnitude information ignored.

• Performance decreases for flat images.

LPQ • Performance is better as compare to
LBP in case of blurred illumination
and facial expression variations
images.

• LPQ vector is about four times longer
than an LBP vector with 8 neighbor
pixels.

CLBP • It gives better performance as
compared to LBP as it uses both
difference sign and magnitude.

• Feature vector is too long so it
increases computational time.

LTP • Resistant to noise. • Not invariant under gray-scale
transform of intensity values as its
encoding is based on a fixed predefined
thresholding.

TPLBP • Rotation invariant for texture
descriptor.

• Capture information for not only
microstructure but also
macrostructure.

• Complexity increases.

FPLBP • Rotation invariant for texture
descriptor.

• Capture information for not only
microstructure but also
macrostructure.

• More complex.

Table 2.
Comparative analysis of spatial domain feature representations.
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12. Result analysis for face recognition

Face recognition has been explored over last many years, hence there exists a
large number of researches in this domain. In this section, we present existing face
recognition results and analysis based on different spatial domain representations.
Deniz et al. [28] proposed face recognition using HOG features by extracting fea-
tures from varying image patches which resulted in an improved accuracy. Recog-
nition accuracy is evaluated on FERET database with best result of 95.4%. Other
related researches are [29] which used EBGM-HOG and showed robustness to
change in illumination, rotation and small displacements. Some existing works on
face recognition using SIFT features are [30, 31]. These works have also used

Feature Advantages Disadvantages

HOG • Rotation and scale invariant. • Very sensitive to image rotation. Not
good choice for classification of
textures or objects.

SIFT • Rotation and scale invariant. • Mathematically complicated and
computationally heavy.

• It is not effective for low powered
devices.

LBP • High discriminative power.
• Computational simplicity.

• Not invariant to rotations.
• Size of feature vector increases

exponentially with number of
neighbors leading to an increase of
computational complexity in terms of
time and space.

• The structural information captured by
it is limited. Only pixel difference is
used, magnitude information ignored.

• Performance decreases for flat images.

LPQ • Performance is better as compare to
LBP in case of blurred illumination
and facial expression variations
images.

• LPQ vector is about four times longer
than an LBP vector with 8 neighbor
pixels.

CLBP • It gives better performance as
compared to LBP as it uses both
difference sign and magnitude.

• Feature vector is too long so it
increases computational time.

LTP • Resistant to noise. • Not invariant under gray-scale
transform of intensity values as its
encoding is based on a fixed predefined
thresholding.

TPLBP • Rotation invariant for texture
descriptor.

• Capture information for not only
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• Complexity increases.

FPLBP • Rotation invariant for texture
descriptor.

• Capture information for not only
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• More complex.
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variants of SIFT such as volume-SIFT (VSIFT), partial-descriptor-SIFT (PDSIFT),
learning SIFT at specific locations to improve verification accuracy.

Face recognition using LPQ feature representation is inspired by [18, 19] which
used LPQ as blur invariant descriptor. Damane et al. [32] presented face recognition
using LPQ under varying conditions of light, blur, and illumination. Experiments
are performed on extended YALE-B, CMU-PIE, and CAS-PEAL-R1 face databases
and results showed that LPQ has more robustness to light and illumination varia-
tion. Chan et al. [33] presented multiscale LPQ for face recognition and evaluated
results on FERET and BANCA face databases. Multiscale LPQ is obtained by apply-
ing varying filter size and combining LPQ images, which are then projected into
LDA space. Best results of 99.2% for FB, 92% for DP1 and 88% for DP2 are achieved
on FERET probe sets.

Face recognition using LBP feature representation is one of the most researched
area [34–38]. Again, Tan et al. [24] evaluated face recognition under varying light-
ing condition using LTP feature representation on Extended Yale-B, and CMU PIE
face databases. They showed that LTP is more discriminant and less sensitive to
noise in uniform regions and improved results in case of flat images. Wolf et al. [26]
proposed TPLBP and FPLBP features for face recognition. Accuracy results are
validated on two well-known databases, labeled faces in the wild (LFW) and multi
PIE. They showed that combining several descriptors from the same LBP boosts
family recognition rate. This paper claimed that best accuracy of 80.75% for TPLBP
and 75.57% for FPLBP are obtained with the combination of ITML with MultiOSS
ID and pose variation. Ahmed et al. [25] proposed CLBP features for facial expres-
sion recognition. It is an extension of LBP features. Results are verified in Cohn-
Kanade (CK) facial expression database. CLBP features are classified with the help
of SVM classifier. They showed that classification rate can be effected by adjusting
the number of regions into which expression images are partitioned. For this, they
considered three cases by dividing images into 3 � 3, 5 � 5, and 7 � 6 patches. Best
accuracy result for CLBP is 94.4% in case of image with 5 � 5 patch size.

13. Conclusion

This chapter presents well-known and some recently explored spatial feature
representations for face recognition. These feature representations are scale, trans-
lation and rotation invariants for 2-D face images. This chapter covers HOG, SIFT
and LBP feature representations and complete processing flow to generate feature
vectors using these representations for face recognition. SIFT and HOG based on
computing image gradients and local extrema are commonly used feature repre-
sentations for face recognition. LBP performs texture based analysis to represent
local facial appearance and an encoded facial image. Other relevant spatial domain
representations, such as, LPQ and variants of LBP are explained and analyzed for
face recognition. LPQ possesses blur invariant property and provides improved
results for blurred facial image. Different variants of LBP, such as, LTP, CLBP,
TPLBP and FPLBP are more robust to noise and lighting conditions. These repre-
sentations characterize facial features more effectively and obtain discriminative
feature vectors for face recognition.
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Abstract

An excellent face recognition for a surveillance camera system requires remark-
able and robust face descriptor. Binary gradient pattern (BGP) descriptor is one of 
the ideal descriptors for facial feature extraction. However, exploiting local features 
merely from smaller region or microstructure does not capture a complete facial 
feature. In this paper, an extended binary gradient pattern (eBGP) is proposed to 
capture both micro- and macrostructure information of a local region to boost up 
the descriptor performance and discriminative power. Two topologies, the patch-
based and circular-based topologies, are incorporated with the eBGP to test its 
robustness against illumination, image quality, and uncontrolled capture conditions 
using the SCface database. Experimental results show that the fusion between 
micro- and macrostructure information significantly boosts up the descriptor 
performance. It also illustrates that the proposed eBGP descriptor outperforms 
the conventional BGP on both the patch-based topology and the circular-based 
topology. Furthermore, a fusion of information from two different image types, 
orientational image gradient magnitude (OIGM) and grayscale image, attained 
better performance than using OIGM image only. The overall results indicate that 
the proposed eBGP descriptor improves the recognition performance with respect 
to the baseline BGP descriptor.

Keywords: surveillance system, face recognition, binary gradient pattern (BGP), 
facial feature extraction, patch-based topology, circular-based topology

1. Introduction

Face recognition is one of the biometric verification methods that offers a wide 
range of applications such as law enforcement, forensics, biometric authentica-
tion, surveillance, and health monitoring [1]. Face recognition has also been used 
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tion, surveillance, and health monitoring [1]. Face recognition has also been used 
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to authenticate payment using mobile wallet, and the social media company like 
Facebook uses face recognition algorithm for the purpose of image tagging [2]. One 
of the advantages of face recognition is being contactless between the subject and 
camera. Given the advantages offered by face recognition and with the advance-
ment in computing power, significant research and methods have been proposed 
over the years in face recognition domain. In fact, a robust facial recognition system 
must be able to work with various real-life situations or unconstrained conditions, 
such as but not limited to pose, lighting, image or camera quality, occlusion, rota-
tion, and translation. The system must also be able to perform extremely well in a 
domain where limited sample is available. In surveillance monitoring applications, 
a typical approach is to sample face appearing in videos and then match them with 
facial models generated from high-quality target face image [3, 4].

Feature extraction is the process of capturing feature of interest from the face 
and represents it in the form of feature vector. The extraction process is usually 
done by a face descriptor. This descriptor must be able to work with multiple 
variations such as illumination, occlusion, face expression, and image quality [4]. 
Indeed, there is a collection of face descriptors proposed over the years such as 
scale-invariant feature transform (SIFT) [5], speeded up robust feature (SURF) 
[6], local binary pattern (LBP) [7], and histogram of oriented gradient (HOG) 
[8]. In terms of facial feature representation, there are two types of representa-
tions that many descriptors have evolved around over the years. They are global 
and local feature representations. Global-based feature extraction like principal 
component analysis [9], linear discriminant analysis [10], and independent com-
ponent analysis [11] preserves the statistical information of the face by turning 
each face image into a high-dimensional feature vector. Meanwhile, local-based 
feature splits input image into smaller patches and extracts the micro textural 
details from each patch before fusing these features back to form the global shape 
information. Local-based feature extraction has shown to be resilient to multiple 
variations by enforcing spatial locality in both pixel and patch levels. For instance, 
local feature descriptor is robust to local deformation in expression and occlusion. 
LBP [7] is an example of feature extraction method that works on this principle 
which achieved reasonably good performance but heuristic in nature. Recently, 
LBP has drawn great intention as a face descriptor due its reputation as a powerful 
texture descriptor [9]. LBP extracts local-based spatial structure of an image by 
thresholding intensity of center pixel with its neighborhood. The product of this 
operation is characterized as local binary pattern, which then the distribution of 
binary pattern over the whole image is used to form the LBP histogram vector or 
feature vector. Neighborhood pixels are sampled on a circle, and any neighbor 
which does not fall exactly on the center of the pixel has an intensity computed 
from interpolation [7]. Due to some shortcomings of LBP, for instance, LBP 
produces long histogram, and therefore it is memory-consuming [12], LBP is very 
sensitive for image rotation and noise [13], and it only captures microstructure 
and ignores macrostructure of the texture resulting in missing extra discrimina-
tive power [14]. Several variants of LBP have been proposed in the literature, 
for example, rotation-invariant LBP [13], median robust extended local binary 
pattern (MRELBP) [15], and binary gradient pattern (BGP) [14]. This paper 
touches on a number of relevant existing LBP-based descriptors. The rest of this 
paper is organized as follows. In Section 2, two state-of-the-art descriptors (the 
LBP [7] and its variant, the BGP [14]) would be briefly reviewed since we would 
embed the proposed extended BGP (eBGP) into these two descriptors. Section 3 
describes the proposed eBGP descriptor. The evaluating results are analyzed and 
discussed in Section 4. Finally, conclusions are drawn in Section 5.
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2. From local binary pattern (LBP) to binary gradient pattern (BGP)

LBP [7] is one of various texture descriptors and is known for being computa-
tionally efficient [16]. It extracts local-based spatial structure of an image by thresh-
olding intensity of center pixel with its neighborhood pixel P within a radius R. The 
product of this operation is characterized as local binary pattern, which then the 
distribution of binary pattern over the whole image is used to form the LBP histo-
gram vector or feature vector. The original LBP works on 3 × 3 square neighborhood 
and only considers the sign information to form the LBP pattern. Neighborhood 
pixels are sampled on a circle, and any neighbor which does not fall exactly on the 
center of the pixel has an intensity computed from interpolation [7]. Figure 1(a) 
illustrates LBP neighborhoods around the center pixel with R = 1. Assuming all the 
pixels hold values as in Figure 1(b), thresholding all eight neighborhood pixels with 
the center pixel using Eq. (1) will produce the result as in Figure 1(c). This binary 
string is then multiplied with weights, and the sum of these values corresponds 
to the LBP label for that particular pixel. The distribution of LBP labels across the 
entire image is represented in a histogram as a feature vector:

   LBP  R,P   (c)  =   ∑ 
i=0

  
P−1

  s ( g  i   −  g  c  )   2   i , s (x)  =  {  1, x ≥ 0  
0, x < 0

    (1)

where   g  i    and   g  c    are the gray values of the center pixel and its neighbors, respec-
tively, P is the number of neighbors, and R is the radius of the neighborhood. LBP 
offers few advantages in terms of low computational complexity, illumination 
invariant, and ease of implementation, but it has significant disadvantages. In LBP 
implementation, the individual operator of particular (P,R) produces different 
histogram length. For instance, in (8,1) neighborhood, LBP generates 2P = 256 
(P = 8) histogram bins, while for (16,2) neighborhood, 216 histogram bins are pro-
duced. This is a significant drawback as LBP produces long histogram and therefore 
memory-consuming. The LBP is also intolerant to image rotation and highly sensi-
tive to noise where noise on the center pixel will dominate local characteristic [12]. 
Furthermore, the LBP only captures microstructure and ignores macrostructure of 
the texture resulting in missing extra discriminative power.

The success of LBP has continued since then. A variety of LBP-based descriptors 
have been proposed recently to overcome all shortcomings toward noise, illumina-
tion, color, and temporal information. Huang and Yin [14] proposed an improved 
version of LBP, called binary gradient pattern (BGP), by introducing structural 
pattern and image gradient orientation (IGO) implementation in multiple direc-
tions rather than on X and Y directions only, as in the conventional manner. The 
implementation of IGO in multiple directions helps to improve discriminative 
power of the proposed descriptor. Figure 2 shows how BGP encodes binary string 

Figure 1. 
LBP neighborhood and thresholding.
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texture descriptor [9]. LBP extracts local-based spatial structure of an image by 
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operation is characterized as local binary pattern, which then the distribution of 
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which does not fall exactly on the center of the pixel has an intensity computed 
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produces long histogram, and therefore it is memory-consuming [12], LBP is very 
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and ignores macrostructure of the texture resulting in missing extra discrimina-
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from a region of interest (ROI). Given a set of grayscale intensity value of 9 pixels as 
in Figure 2(a), BGP computes binary correlations between symmetric neighbors of 
central pixel from multiple k directions. With the number of neighbors always twice 
than the number of directions k, in (8,1) spatial resolution, there are four different 
thresholding directions denoted as G1, G2, G3, and G4 as shown in Figure 2(b). 
Principal binary,   B  i  + ,  is computed from all directions using Eq. (2), and its associ-
ated binary   B  i  −   from Eq. (3), where   G  i  +   and   G  i  −   are intensity values of the pixels. The 
resulting principal binary numbers and its associated are shown in Figure 2(c):

                                                             B  i  +  =  {  
1, if  G  i  +  −  G  i  −  ≥ 0

   
0, if  G  i  +  −  G  i  −  < 0

    (2)

                                           B  i  −  = 1 −  B  i  + , i = 1, 2, … , k  (3)

  L =  ∑ 
i=1

  
k
     2   i−1   B  i  +   (4)

Binary string for the ROI is constructed from four principal binary numbers 
which is equivalent to 0111, and the label L is computed from Eq. (4). Because the 
principal and associated binary numbers are always complementary, only a single 
bit is required to describe the direction, this allowing for more compact representa-
tion of BGP label by only considering principal binary numbers. The total number 
of BGP label NL is determined by the numbers of principal binary only, which is 
also equivalent to the number of directions k. At any spatial resolution, NL equals 
to 2k. Using Figure 2(b) as an example, features extracted from four directions in 
(8,1), spatial resolution will produce 24 or 16 different labels (i.e., from 0000 to 
111/from 0 to 15). Structural pattern is a binary string which has continuous “1”s 
indicating a stable local change in texture and essentially describes the orientation 
of local edge texture. On the other hand, a nonstructural pattern is a binary string 
with a discontinuous “1”s, which contains arbitrary changes of local texture which is 
likely to indicate noise or outliers. From statistical experiment conducted by Huang 
and Yin [14] on 2600 face images, 95% of the patterns in typical BGP face having 
continuous “1”s.

The number of structural labels Nsp at any spatial resolution equals to the num-
ber of neighbors P. With eight neighbors, there will be 16 different labels where 
eight of it made up a structural label and the remaining belong to nonstructural 
label. For example, 0000, 0001, 0011, 0111, 1000, 1100, 1110, and 1111 are struc-
tural patterns in BGP8,1, and each structural pattern location map is illustrated in 
Figure 3. In BGP implementation, nonstructural patterns are discarded and not 
given a label in contrast to nonuniform pattern in LBP implementation. Location 
map of nonstructural patterns in Figure 3 shows that nonstructural patterns 
contain less meaningful information and are often caused by noise and outliers. 

Figure 2. 
Basic BGP operator with eight neighbors.
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To further enhance discriminative power and robustness of BGP, Huang and Yin 
[14] introduced another descriptor by applying BGP on orientational image gradi-
ent magnitude (OIGM) which is abbreviated as BGPM. The use of image gradient 
magnitude (IGM) enhances the strength of edge information which effectively 
allows BGPM to gain greater discriminant ability with only small increment in 
complexity. The overall process of BGPM descriptor is depicted in Figure 4.

Based on a series of results obtained from multiple databases such as Extended 
Yale B [17], AR [18], CMU Multi-PIE [19], FERET [20], and LFW [21] against a 
wide range of descriptors, BGPM is proven to be the best descriptor for each data-
base. The BGPM descriptor has achieved invariance against illumination changes 
and local distortions while reducing the vector dimensionality. BGP compact 
representation makes BGP extremely fast and uses much fewer pattern labels than 
LBP at any spatial resolution. For instance, in a system with spatial resolution of 
(8,1), BGP histogram only needs 9 bins, with 8 bins for structural patterns, and 1 
bin for nonstructural patterns, in contrast to the LBP which requires 59 bins. BGP 
and BGPM have been demonstrated to possess strong spatial locality and orienta-
tion properties which lead to effective discrimination.

Figure 3. 
Face and location maps of eight structural patterns (SP00-SP15) and nonstructural pattern.
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Figure 2. 
Basic BGP operator with eight neighbors.
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To further enhance discriminative power and robustness of BGP, Huang and Yin 
[14] introduced another descriptor by applying BGP on orientational image gradi-
ent magnitude (OIGM) which is abbreviated as BGPM. The use of image gradient 
magnitude (IGM) enhances the strength of edge information which effectively 
allows BGPM to gain greater discriminant ability with only small increment in 
complexity. The overall process of BGPM descriptor is depicted in Figure 4.

Based on a series of results obtained from multiple databases such as Extended 
Yale B [17], AR [18], CMU Multi-PIE [19], FERET [20], and LFW [21] against a 
wide range of descriptors, BGPM is proven to be the best descriptor for each data-
base. The BGPM descriptor has achieved invariance against illumination changes 
and local distortions while reducing the vector dimensionality. BGP compact 
representation makes BGP extremely fast and uses much fewer pattern labels than 
LBP at any spatial resolution. For instance, in a system with spatial resolution of 
(8,1), BGP histogram only needs 9 bins, with 8 bins for structural patterns, and 1 
bin for nonstructural patterns, in contrast to the LBP which requires 59 bins. BGP 
and BGPM have been demonstrated to possess strong spatial locality and orienta-
tion properties which lead to effective discrimination.

Figure 3. 
Face and location maps of eight structural patterns (SP00-SP15) and nonstructural pattern.



Visual Object Tracking with Deep Neural Networks

142

Although BGP has shown to be efficient in processing time and achieving 
outstanding results in several databases, BGP was never being tested with a proper 
surveillance database like [22], which consists of low-resolution non-frontal face 
images taken by different camera quality. Like most of other local-based descrip-
tors, BGP exploits information from microstructure only, however exploiting facial 
feature from macrostructure to complement the microstructure feature resulting in a 
more complete image representation [23–24], especially for surveillance applications 
where noise, occlusion, and head position might impact the descriptor performance. 
In this paper, information from both micro- and macrostructures are captured and 
integrated into the BGP descriptor to boost up its performance for video surveillance 
applications. The new proposed descriptor is termed as an extended BGP (eBGP).

3. Extended binary gradient pattern (eBGP)

An eBGP extends the BGP descriptor by exploiting macrostructure informa-
tion from topology with larger spatial resolution. There are many different types 
of macrostructure topologies that have been proposed for other LBP variants [25]. 
In this paper, the patch-based topology with eight neighborhood patches and the 
circular topology are evolved with the proposed eBGP descriptor. Both topologies 
have been implemented by [24, 26], where each topology has its pros and cons with 
the implementation. Regardless of the topology, the microstructure information is 
always extracted using the same approach as in BGP. Herein, the eBGP is explained 
with the focus on extracting features from macrostructure based on the patch-based 
topology with eight neighborhood patches and the circular-based topology.

3.1 Patch-based topology

Patch-based topology is inspired by multi-scale block local binary pattern 
(MBLBP) [24]. In this topology, macrostructure is made up of nine patches of pixels 
as in Figure 5. All these patches have the same size and width, while the center 
patch represents the ROI microstructure. Thereby, a default BGP operator is applied 

Figure 4. 
Framework of BGPM descriptor [14].
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to the center patch in order to extract the microstructure information, whereas 
the macrostructure information is extracted from the eight neighborhood patches. 
Accordingly, multiple sizes of patches could be selected from this topology, and the 
size of the structure is determined by the spatial resolution of the center patch.

For instance, when exploiting microstructure information from (8,1) spatial resolu-
tion, the size of the center patch will be 3 × 3 pixels as illustrated in Figure 5(b). In this 
implementation, all patches have the same size and do not overlap each other; therefore 
the macrostructure is formed from nine patches of 3 × 3 pixels. Figure 5(a) depicts the 
macrostructure topology formed from 9 patches of 5 × 5 pixels when microstructure 
information is exploited from (16,2) spatial resolution. For comparison purposes, this 
research will evaluate two structures as illustrated in Figure 5(a) and (b), to match 
BGP results exploited from (8,1) and (16,2) spatial resolution. Using Figure 5(a) as an 
example, each neighborhood patch contains 25 pixels with each pixel having its own 
grayscale value. Unlike the center patch, no feature is extracted from the individual 
neighborhood patch. Instead, each neighborhood patch is represented by a single 
intensity value which will be used for thresholding. In this topology, the patch’s mean 
and median will be applied to represent the patch intensity. The patch’s mean (G) of a 
neighborhood patch (P), accounted from 25 pixels in a single 5 × 5 patch, is computed as 
follows:

   G  P   =   1 __ n    ∑ 
i=1

  
n
     x  i    (5)

where x is the intensity value of each pixel and n is the number of pixels in the 
patch P.

On the other hand, the patch median is computed by finding the middle value of 
ordered pixel values. Additional experiments are conducted in this research to find 
the best representation for the patch-based topology. As an example, feature extrac-
tion from macrostructure is illustrated in Figure 6. Figure 6(a) shows the patch-
based topology with the size of 3 × 3 pixels and its intensity value. In each patch, a 
median is calculated from all pixels within the patch, and the median now represents 
the image intensity of the patch as shown in Figure 6(b). The following steps are 
similar to what has been explained in BGP. By thresholding each patch with symmet-
ric neighbors in four directions using Eqs. (2) and (3), four pairs of binary numbers 
are generated as shown in Figure 6(c). Once all the principal bits are computed, the 

Figure 5. 
Topology for macrostructure information extraction. (a) Patch of 5 × 5 pixels for R = 2. (b) Patch of 3 × 3  
pixels for R = 1.
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to the center patch in order to extract the microstructure information, whereas 
the macrostructure information is extracted from the eight neighborhood patches. 
Accordingly, multiple sizes of patches could be selected from this topology, and the 
size of the structure is determined by the spatial resolution of the center patch.

For instance, when exploiting microstructure information from (8,1) spatial resolu-
tion, the size of the center patch will be 3 × 3 pixels as illustrated in Figure 5(b). In this 
implementation, all patches have the same size and do not overlap each other; therefore 
the macrostructure is formed from nine patches of 3 × 3 pixels. Figure 5(a) depicts the 
macrostructure topology formed from 9 patches of 5 × 5 pixels when microstructure 
information is exploited from (16,2) spatial resolution. For comparison purposes, this 
research will evaluate two structures as illustrated in Figure 5(a) and (b), to match 
BGP results exploited from (8,1) and (16,2) spatial resolution. Using Figure 5(a) as an 
example, each neighborhood patch contains 25 pixels with each pixel having its own 
grayscale value. Unlike the center patch, no feature is extracted from the individual 
neighborhood patch. Instead, each neighborhood patch is represented by a single 
intensity value which will be used for thresholding. In this topology, the patch’s mean 
and median will be applied to represent the patch intensity. The patch’s mean (G) of a 
neighborhood patch (P), accounted from 25 pixels in a single 5 × 5 patch, is computed as 
follows:
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where x is the intensity value of each pixel and n is the number of pixels in the 
patch P.

On the other hand, the patch median is computed by finding the middle value of 
ordered pixel values. Additional experiments are conducted in this research to find 
the best representation for the patch-based topology. As an example, feature extrac-
tion from macrostructure is illustrated in Figure 6. Figure 6(a) shows the patch-
based topology with the size of 3 × 3 pixels and its intensity value. In each patch, a 
median is calculated from all pixels within the patch, and the median now represents 
the image intensity of the patch as shown in Figure 6(b). The following steps are 
similar to what has been explained in BGP. By thresholding each patch with symmet-
ric neighbors in four directions using Eqs. (2) and (3), four pairs of binary numbers 
are generated as shown in Figure 6(c). Once all the principal bits are computed, the 
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pixels for R = 1.
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Figure 7. 
Patch-based feature extraction flow. The center patch represented by the orange box and the neighborhood 
patches by the purple boxes.

label can be calculated using Eq. (4). In general, the flow for macrostructure extrac-
tion is like microstructure except for its representative value used during threshold-
ing. Indeed, the microstructure information is extracted from neighborhood pixels, 
while the macrostructure information is extracted from neighborhood patches.

Since there are only eight neighbor patches, regardless of the structures’ size, 
the generated histogram vector which represents the macrostructure information is 
bound to the maximum of 16 bins. Observing only a structural pattern will greatly 
reduce the dimensionality of macrostructure information to eight bins. The total 
length of the histogram vector (Ht) is computed as follows:

   H  t   =  ∑ 
k=1

  
N

      ( P  R   + 8)   k    (6)

where N is the number of blocks and PR is the number of neighborhood pixels 
used for extracting the microstructure information at the center patch and 8 is the 
length of the histogram vector extracted from the macrostructure. Using Figure 6(b) 
as an example, at each kth block, the length of histogram vector is 16, where 8 comes 
from the microstructure and the other 8 from the macrostructure.

Subsequently, information fusion between micro- and macrostructures is con-
ducted through concatenating the feature vectors of both the microstructure and 
the macrostructure, as illustrated in Figure 7. At this point, both feature vectors are 
contributed by the same weight. Figure 8 demonstrates an example of face image 
represented using the patch-based topology. Figure 8 illustrates that eBGP on the 
patch-based topology capable to capture the micro textural details and the macro-
structure provides complementary information to the small details. Moreover, the 
macrostructure information contains less detailed information and may reduce the 
noise or outlier embedded in the image.

Figure 6. 
Feature extraction from the macrostructure using median as the patch intensity.
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3.2 Circular-based topology

Circular-based topology borrows the basic implementation of LBP which identi-
fies a neighborhood as a set of pixels on a circular ring. In this topology, two levels 
of information are extracted from neighborhood at two different spatial resolutions. 
The first level of information is the microstructure information, which is extracted 
from a set of pixels on a circular ring with radius R1. Meanwhile, the macrostruc-
ture information is extracted from neighborhood pixels that lie on a circular ring 
of radius R2. The same BGP operator is used to extract information from the two 
different spatial resolutions with smaller spatial resolution that represents the 
microstructure and larger spatial resolution that represents the macrostructure. 
The visual illustration of circular-based topology implementation is presented in 
Figure 9. Circular rings with R1 and R2 represent the two different spatial resolutions 
(P;R). Assuming R1 is 1, running BGP descriptor on (8,1) neighborhood extracts the 
microstructure information of ROI. In this implementation, R2 is always larger than 
R1, and thus R2 must be set to any number >1.

Figure 10(a) shows a sample of image intensity that falls on circular rings R1 
and R2 with spatial resolution (8,1) and (24,3), respectively. In this example, the 
microstructure information is extracted from 8 pixels, while the macrostructure 
information is extracted from 24 pixels as shown in Figure 10(b). Using the same 
method in BGP, principal and associated bits are calculated using Eqs. (2) and (3) 
by thresholding symmetric neighbors in multiple directions. The computed binary 
pairs are shown in Figure 10(c) with 4 and 12 principal bits generated from 8 and 
24 neighbors, respectively. Finally, label for both micro- and macrostructures is 
computed using Eq. (4).

In BGP scheme, the length of histogram vector is equal to the number of neigh-
bors at any spatial resolution. Similar to the patch-based topology, the generated 
histogram vector which embeds micro- and macrostructure information is concat-
enated to form a final representation of features for each ROI. The total length of 
histogram vector in this scheme can be computed using:

   H  t   =  ∑ 
k=1

  
N

      ( P  1   +  P  2  )   k    (7)

where N is the number of blocks and P1 and P2 are the number of neighborhood 
pixels on the circular rings of radius R1 and R2, respectively. For instance, if R1 = 2 
and R2 = 4, features are exploited from 16 and 32 neighborhood pixels, respectively. 
Thus, the combination of the two spatial resolutions will produce a histogram vec-
tor with a length of 48 at each kth block. Resulting from this observation, R2 is set to 

Figure 8. 
Sample image with 5 × 5 pixel patch-based structure: (a) the original image, (b) the image extracted using the 
microstructure, (c) the image extracted using the macrostructure based on the local median, and (d) the image 
extracted from the macrostructure using the local mean.
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Figure 7. 
Patch-based feature extraction flow. The center patch represented by the orange box and the neighborhood 
patches by the purple boxes.
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the generated histogram vector which represents the macrostructure information is 
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length of the histogram vector (Ht) is computed as follows:
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used for extracting the microstructure information at the center patch and 8 is the 
length of the histogram vector extracted from the macrostructure. Using Figure 6(b) 
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ducted through concatenating the feature vectors of both the microstructure and 
the macrostructure, as illustrated in Figure 7. At this point, both feature vectors are 
contributed by the same weight. Figure 8 demonstrates an example of face image 
represented using the patch-based topology. Figure 8 illustrates that eBGP on the 
patch-based topology capable to capture the micro textural details and the macro-
structure provides complementary information to the small details. Moreover, the 
macrostructure information contains less detailed information and may reduce the 
noise or outlier embedded in the image.
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R1, and thus R2 must be set to any number >1.
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method in BGP, principal and associated bits are calculated using Eqs. (2) and (3) 
by thresholding symmetric neighbors in multiple directions. The computed binary 
pairs are shown in Figure 10(c) with 4 and 12 principal bits generated from 8 and 
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bors at any spatial resolution. Similar to the patch-based topology, the generated 
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tor with a length of 48 at each kth block. Resulting from this observation, R2 is set to 

Figure 8. 
Sample image with 5 × 5 pixel patch-based structure: (a) the original image, (b) the image extracted using the 
microstructure, (c) the image extracted using the macrostructure based on the local median, and (d) the image 
extracted from the macrostructure using the local mean.
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Figure 11. 
Circular-based feature extraction flow with R1 = 1 and R2 = 3.

5 to limit the feature dimensionality of macrostructure to 40 because having larger 
spatial resolution will only increase the feature vector dimensionality. In contrast, 
R1 is limited to 4 because larger spatial resolution will prevent BGP operator from 
capturing micro edge and micro texture features which are mostly exploited from a 
smaller region.

Figure 11 illustrates the general flow of feature extraction in the circular-based 
topology. Overall, this topology employs BGP operator on two different spatial 
resolutions, where the smaller resolution is for the microstructure information 
and the larger resolution is for the macrostructure information. In this research, 
no interpolation has been done to neighboring pixels where the circle does not fall 

Figure 9. 
Circular-based topology.

Figure 10. 
The microstructure information is devised from 8 pixels on the smaller ring, while the macrostructure 
information is devised from 24 pixels on the larger ring without any interpolation.
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exactly on the center of pixels. Figure 12 presents a sample image that is extracted 
from the two spatial resolutions R1 = 2 and R2 = 5.

Similar to the patch-based topology, BGP captures the micro-oriented edges 
from the small structure while capturing less details of information at a much larger 
spatial resolution. But the combination of these two information will complement 
each other in providing a complete face representation.

4. Results, discussion, and analysis

To illustrate a real-world video surveillance system, the effectiveness of the 
proposed eBGP descriptor was evaluated using the Surveillance Camera Face 
(SCface) database [22]. The SCface database consists of low-resolution non-frontal 
face images taken by different camera quality. A series of experiments were planned 
to test all proposed topologies and structures on the SCface database. The perfor-
mance of the proposed eBGP descriptor was evaluated against illumination, image 
quality, single sample per person, and real-world capture condition.

In fact, the SCface database is the most challenging database for face recogni-
tion, where its images were taken in uncontrolled indoor environment. The SCface 
database consists of 4160 images from 130 subjects. All images were taken at three 
distinct distances from the camera, where the cameras are installed at 2.25 m above 
the floor. Images were captured at distance 1 while the subject position is 4.20 m 
away from the camera, whereas for distances 2 and 3, the subject positions were at 
2.60 and 1.00 m, respectively. The outdoor light was only the source of illumina-
tion, which came through a window on one side. The images were captured from 
five different quality commercial surveillance video cameras and two infrared 
night-vision cameras, in uncontrolled lighting so as to mimic the real-world condi-
tions. Furthermore, full frontal mug shot image for each subject was captured using 
a high-quality photo camera with the capture conditions exactly the same as would 
be expected for any law enforcement. The high-quality photo camera for capturing 
visible light mug shots was installed the same way as the infrared camera but in a 
separate room with the standard indoor lighting, and it was equipped with adequate 
flash. In our experiments, the high-quality mug shot image of each person was used 
as a training gallery, while the remaining images from the five surveillance cameras 
and distances were used as test images, as depicted in Figure 13. With the focus 
of this research toward images in visible spectrum and single sample per person, 
especially for real-world surveillance system, the images taken from IR night-vision 
cameras and mug shot rotation were not used in this research. As preprocessing 

Figure 12. 
Sample image with R1 = 2 and R2 = 5 circular-based topology: (a) the original image, (b) the image extracted 
from the microstructure (R1 = 2), and (c) the image extracted from the macrostructure (R2 = 5).
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steps, all images in the SCface database were aligned based on the provided eye 
coordinates, so that the eyes’ line lies on a straight line. The images were then scaled 
and cropped to 64x64 pixel as has been implemented in [22].

The performance of the proposed eBGP descriptor was evaluated using the 
histogram intersection, where the histogram intersection computes the similarity 
between two discretized probability distributions or histogram vectors. Given HT is 
the histogram vector of a training image reference and HP is the histogram vector of 
a probe image, each one containing n bins, the intersection between them is defined 
as follows:

   H   T  ∩  H   P  =  ∑ 
j=1

  
n
   min  ( H  j  T ,  H  j  P )   (8)

where HT and HP are generated from distribution of labels computed from eBGP 
operator and the min function takes as arguments two values and return the small-
est one. Any histogram pair that returns the highest intersection value based on Eq. 
(8) than any other pairs is considered to be matched and assigned to the label. By 
comparing this label against ground truth label, the recognition rate is determined 
by counting the occurrence of the correct label over the number of test images. 
Recognition rate is computed as follows:

  Recognition rate  (%)  =    N  L   ___ N   × 100 % (9)

where NL is the total number of test images which are correctly matched and N 
is the total number of test images.

It is vital to stress that the classifier plays a decisive role in achieving better 
recognition rate. In this research, the experiments were dictated in such a way to 

Figure 13. 
Sample images from the SCface database of distance 3: (a) the high-quality mug shot. (b–f) The images taken 
from five different surveillance cameras. (g and h) The images were taken from IR night-vision cameras.
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focus on recognition rate improvement due to macrostructure information fusion. 
Hence, the recognition rate of the proposed eBGP descriptor and its baseline BGP 
descriptor were computed and compared to verify the recognition rate improve-
ment. For comparative analysis, results of BGP descriptor on the SCface database 
are produced by running the BGP code requested from [14]. This is to ensure 
analysis of the result can be done without any concern on the validity of the results. 
In fact, Huang and Yin [14] do not use the SCface database in their work; thus BGP 
code was altered to work with the SCface database.

4.1 Experiment settings and preprocessing

As a preprocessing step, each image is first transformed into OIGM images using 
the same method used by the BGP descriptor. OIGM images are then divided into N 
numbers of non-overlapped blocks before applying eBGP descriptor, where N is set 
to 16 in this research.

4.2 Results of patch-based topology

For better presentation, several notations are used to describe the experiment 
setup and implementation. BGPM(P;R) is the implementation used in the BGP 
descriptor of spatial resolution (P,R), while eBGPM(P;R) is the implementation 
of the proposed eBGP descriptor with macrostructure information based on the 
patch-based topology. In this experiment, the patch-based topology uses the patch’s 
median as a default scheme for the thresholding between patches.

Table 1 shows the performance of the proposed descriptor on the SCface 
database, where eBGPM(16;2) and eBGPM(8;1) represent the extended BGPM 
(eBGPM) with structures of Figure 5(a) and Figure 5(b), respectively. Results of 
BGPM(16;2) and BGPM(8;1) represent the baseline descriptor. As mentioned before 
in this section, the images of SCface database were captured by five cameras with 
three different distances. Table 1 shows the recognition rate results for each set and 
the average recognition rate over all cameras. The recognition rate for each set was 
calculated based on Eqs. (8) and (9).

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;1) 6.15 4.62 4.62 3.85 5.38 4.92

eBGPM(8;1) 4.62 1.54 4.62 3.85 6.15 4.16

eBGPM(16;1) 3.85 7.69 5.38 5.38 8.46 6.15

2 BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;1) 23.85 13.85 7.69 12.31 13.08 14.16

eBGPM(8;1) 20.77 13.85 10.77 16.92 16.15 15.69

eBGPM(16;1) 23.08 17.69 13.85 16.92 16.15 17.54

3 BGPM(8;1) 15.38 19.23 10.00 16.92 11.54 14.61

BGPM(16;1) 18.46 20.00 16.15 14.62 11.54 16.15

eBGPM(8;1) 19.23 17.69 11.54 17.69 13.08 15.85

eBGPM(16;1) 16.15 16.15 15.38 16.15 17.69 16.30

Table 1. 
Recognition rate (%) of the proposed eBGP descriptor on the SCface dataset using the patch-based topology.
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steps, all images in the SCface database were aligned based on the provided eye 
coordinates, so that the eyes’ line lies on a straight line. The images were then scaled 
and cropped to 64x64 pixel as has been implemented in [22].

The performance of the proposed eBGP descriptor was evaluated using the 
histogram intersection, where the histogram intersection computes the similarity 
between two discretized probability distributions or histogram vectors. Given HT is 
the histogram vector of a training image reference and HP is the histogram vector of 
a probe image, each one containing n bins, the intersection between them is defined 
as follows:

   H   T  ∩  H   P  =  ∑ 
j=1

  
n
   min  ( H  j  T ,  H  j  P )   (8)

where HT and HP are generated from distribution of labels computed from eBGP 
operator and the min function takes as arguments two values and return the small-
est one. Any histogram pair that returns the highest intersection value based on Eq. 
(8) than any other pairs is considered to be matched and assigned to the label. By 
comparing this label against ground truth label, the recognition rate is determined 
by counting the occurrence of the correct label over the number of test images. 
Recognition rate is computed as follows:

  Recognition rate  (%)  =    N  L   ___ N   × 100 % (9)

where NL is the total number of test images which are correctly matched and N 
is the total number of test images.

It is vital to stress that the classifier plays a decisive role in achieving better 
recognition rate. In this research, the experiments were dictated in such a way to 
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Sample images from the SCface database of distance 3: (a) the high-quality mug shot. (b–f) The images taken 
from five different surveillance cameras. (g and h) The images were taken from IR night-vision cameras.
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focus on recognition rate improvement due to macrostructure information fusion. 
Hence, the recognition rate of the proposed eBGP descriptor and its baseline BGP 
descriptor were computed and compared to verify the recognition rate improve-
ment. For comparative analysis, results of BGP descriptor on the SCface database 
are produced by running the BGP code requested from [14]. This is to ensure 
analysis of the result can be done without any concern on the validity of the results. 
In fact, Huang and Yin [14] do not use the SCface database in their work; thus BGP 
code was altered to work with the SCface database.

4.1 Experiment settings and preprocessing

As a preprocessing step, each image is first transformed into OIGM images using 
the same method used by the BGP descriptor. OIGM images are then divided into N 
numbers of non-overlapped blocks before applying eBGP descriptor, where N is set 
to 16 in this research.

4.2 Results of patch-based topology

For better presentation, several notations are used to describe the experiment 
setup and implementation. BGPM(P;R) is the implementation used in the BGP 
descriptor of spatial resolution (P,R), while eBGPM(P;R) is the implementation 
of the proposed eBGP descriptor with macrostructure information based on the 
patch-based topology. In this experiment, the patch-based topology uses the patch’s 
median as a default scheme for the thresholding between patches.

Table 1 shows the performance of the proposed descriptor on the SCface 
database, where eBGPM(16;2) and eBGPM(8;1) represent the extended BGPM 
(eBGPM) with structures of Figure 5(a) and Figure 5(b), respectively. Results of 
BGPM(16;2) and BGPM(8;1) represent the baseline descriptor. As mentioned before 
in this section, the images of SCface database were captured by five cameras with 
three different distances. Table 1 shows the recognition rate results for each set and 
the average recognition rate over all cameras. The recognition rate for each set was 
calculated based on Eqs. (8) and (9).

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;1) 6.15 4.62 4.62 3.85 5.38 4.92

eBGPM(8;1) 4.62 1.54 4.62 3.85 6.15 4.16

eBGPM(16;1) 3.85 7.69 5.38 5.38 8.46 6.15

2 BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;1) 23.85 13.85 7.69 12.31 13.08 14.16

eBGPM(8;1) 20.77 13.85 10.77 16.92 16.15 15.69

eBGPM(16;1) 23.08 17.69 13.85 16.92 16.15 17.54

3 BGPM(8;1) 15.38 19.23 10.00 16.92 11.54 14.61

BGPM(16;1) 18.46 20.00 16.15 14.62 11.54 16.15

eBGPM(8;1) 19.23 17.69 11.54 17.69 13.08 15.85

eBGPM(16;1) 16.15 16.15 15.38 16.15 17.69 16.30

Table 1. 
Recognition rate (%) of the proposed eBGP descriptor on the SCface dataset using the patch-based topology.
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Figure 14. 
Samples of the SCface database: (a) training image mug shot and (b–d) test images captured by camera 2 at 
distances 1, 2, and 3, respectively. The upper row shows the original images, while the lower row shows the 
images after alignment, scaling, and cropping to 64 × 64.

From Table 1, it can be seen that none of the descriptors achieved recognition 
rate higher than 35% over all cameras and distances. Particularly, the images of 
distance 1 recorded the lowest recognition rate with an average of 4.58%, while 
the images of distances 2 and 3 achieved better recognition rates with an aver-
age of 14.89 and 15.73%, respectively. Table 1 also shows that eBGPM(8;1) slightly 
boosted up the performance comparable with BGPM(8;1) for all distances, where 
it attained the highest recognition rate over BGPM(8;1) on the distance 2 with an 
average recognition rate which equals to 3.54%. On the contrary, eBGPM(16;2) has 
a mix result with respect to its baseline BGPM(16;2); the performance drop can be 
observed from camera 1 gallery results, where distance 1, distance 2, and distance 
3 show lower recognition rate comparable with the baseline descriptor. Similar 
to eBGPM(8;1), eBGPM(16;2) presented the highest recognition rate on distance 2 
gallery images compared to those from distance 1 and distance 3. This is because the 
gallery images of distance 1, which have been acquired at 4.20 m distance, are low 
in resolution and small in size. Moreover, the process of scaling and cropping the 
images into 64 × 64 size leads to loss of the quality and some dominant features. On 
the other hand, the images of distance 3 are higher in quality and details. However, 
as the subjects are closer to the camera, which is installed at 2.25 m from the floor, 
in most natural head position, the upper half of the subject face is more dominant 
in the captured images as depicted by Figure 14. Figure 14 demonstrates that the 
images of distance 2 are slightly better in quality than the other two distances, but 
they still suffer from head position. This interprets the superiority of descriptors on 
this distance.

Due to these discouraging results by both the proposed eBGP descriptor and 
its baseline BGP, extra experiments were conducted on the SCface database. Since 
Table 1 illustrated that the recognition rate is improved with increase of the spatial 
resolution, consequently the BGPM descriptor is first extended to larger spatial 
resolution of (24,3). Even though recognition rate increased by including the 
macrostructure in eBGP, the overall recognition rate is still too low for realistic 
applications. It might be because the structural pattern and OIGM image were 
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extracted from low-resolution and deformed images (after scaling and cropping 
have been done). Hence, two additional descriptors were then designed to investi-
gate the effectiveness of structural patterns and OIGM image when exploiting the 
macrostructure information from low-resolution images. These descriptors still 
use BGPM in exploiting information from the microstructure, but they extract the 
macrostructure information in a different way.

The first additional descriptor, denoted as Type IP in Table 2, is equivalent to 
the eBGPM(16;2) descriptor with one exception. The structural pattern concepts are 
ignored, and all labels which are produced by (16,2) spatial resolution are assumed 
to hold some unique features. In this setup, all information from 16 labels are used to 
populate the histogram vector. This descriptor is designed to investigate if there is any 
other feature that may be discarded by the structural patterns when dealing with low-
quality images. The second descriptor, denoted as Type IIP in Table 2, is designed to 
extract information from both OIGM and grayscale intensity images. This descriptor 
extracts the microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. Type IIP descriptor is similar to the other 
proposed descriptor, where the local microstructure information is extracted from 
the central patch of ROI using BGPM(16;2). However, instead of using BGP operator 
to assemble histogram vector from the macrostructure, a standard   LBP  8,1  

u2    operator 
is employed to extract the macrostructure information. The patch median of eight 
neighborhood patches is thresholded with the patch’s median of the center patch, so as 
to produce a string of eight binaries or label.   LBP  8,1  

u2    descriptor generates over 256 labels, 
but only 58 uniform patterns are kept for histogram fusion and the remaining are 
discarded. Histograms from both domains are concatenated and given equal weights.

Results in Table 2 expose that the Type IIP descriptor achieved better recog-
nition rate than the rest of descriptors. The results also illustrate that Type IIP 
achieved better performance on images of distance 2 than those from distances 1 
and 3. Furthermore, it is notable to mention that employing BGPM(24;3) at larger 
spatial resolution did not help much in improving the recognition rate as much as 
Type IIP has achieved.

4.3 Results of circular-based topology

As described in Section 3.2, the macrostructure information are exploited 
from the outer circle which always has larger spatial resolution (P;R2) than 

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(24;3) 5.38 2.31 4.62 4.62 5.38 4.62

Type IP 3.85 6.92 4.62 6.92 3.85 6.00

Type IIP 10.77 6.92 6.92 5.38 10.77 8.31

2 BGPM(24;3) 21.54 16.15 13.08 16.15 15.38 16.46

Type IP 23.85 20.00 13.85 19.23 15.38 18.46

Type IIP 34.62 25.38 20.00 25.38 21.54 25.38

3 BGPM(24;3) 20.00 18.46 14.62 16.15 11.54 16.15

Type IP 16.92 16.92 14.62 16.92 16.15 16.31

Type IIP 22.31 23.08 15.38 23.85 16.92 20.31

Table 2. 
Recognition rate (%) of BGPM(24;3). Type IP and Type IIP descriptors on the SCface database.
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Figure 14. 
Samples of the SCface database: (a) training image mug shot and (b–d) test images captured by camera 2 at 
distances 1, 2, and 3, respectively. The upper row shows the original images, while the lower row shows the 
images after alignment, scaling, and cropping to 64 × 64.

From Table 1, it can be seen that none of the descriptors achieved recognition 
rate higher than 35% over all cameras and distances. Particularly, the images of 
distance 1 recorded the lowest recognition rate with an average of 4.58%, while 
the images of distances 2 and 3 achieved better recognition rates with an aver-
age of 14.89 and 15.73%, respectively. Table 1 also shows that eBGPM(8;1) slightly 
boosted up the performance comparable with BGPM(8;1) for all distances, where 
it attained the highest recognition rate over BGPM(8;1) on the distance 2 with an 
average recognition rate which equals to 3.54%. On the contrary, eBGPM(16;2) has 
a mix result with respect to its baseline BGPM(16;2); the performance drop can be 
observed from camera 1 gallery results, where distance 1, distance 2, and distance 
3 show lower recognition rate comparable with the baseline descriptor. Similar 
to eBGPM(8;1), eBGPM(16;2) presented the highest recognition rate on distance 2 
gallery images compared to those from distance 1 and distance 3. This is because the 
gallery images of distance 1, which have been acquired at 4.20 m distance, are low 
in resolution and small in size. Moreover, the process of scaling and cropping the 
images into 64 × 64 size leads to loss of the quality and some dominant features. On 
the other hand, the images of distance 3 are higher in quality and details. However, 
as the subjects are closer to the camera, which is installed at 2.25 m from the floor, 
in most natural head position, the upper half of the subject face is more dominant 
in the captured images as depicted by Figure 14. Figure 14 demonstrates that the 
images of distance 2 are slightly better in quality than the other two distances, but 
they still suffer from head position. This interprets the superiority of descriptors on 
this distance.

Due to these discouraging results by both the proposed eBGP descriptor and 
its baseline BGP, extra experiments were conducted on the SCface database. Since 
Table 1 illustrated that the recognition rate is improved with increase of the spatial 
resolution, consequently the BGPM descriptor is first extended to larger spatial 
resolution of (24,3). Even though recognition rate increased by including the 
macrostructure in eBGP, the overall recognition rate is still too low for realistic 
applications. It might be because the structural pattern and OIGM image were 
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extracted from low-resolution and deformed images (after scaling and cropping 
have been done). Hence, two additional descriptors were then designed to investi-
gate the effectiveness of structural patterns and OIGM image when exploiting the 
macrostructure information from low-resolution images. These descriptors still 
use BGPM in exploiting information from the microstructure, but they extract the 
macrostructure information in a different way.

The first additional descriptor, denoted as Type IP in Table 2, is equivalent to 
the eBGPM(16;2) descriptor with one exception. The structural pattern concepts are 
ignored, and all labels which are produced by (16,2) spatial resolution are assumed 
to hold some unique features. In this setup, all information from 16 labels are used to 
populate the histogram vector. This descriptor is designed to investigate if there is any 
other feature that may be discarded by the structural patterns when dealing with low-
quality images. The second descriptor, denoted as Type IIP in Table 2, is designed to 
extract information from both OIGM and grayscale intensity images. This descriptor 
extracts the microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. Type IIP descriptor is similar to the other 
proposed descriptor, where the local microstructure information is extracted from 
the central patch of ROI using BGPM(16;2). However, instead of using BGP operator 
to assemble histogram vector from the macrostructure, a standard   LBP  8,1  

u2    operator 
is employed to extract the macrostructure information. The patch median of eight 
neighborhood patches is thresholded with the patch’s median of the center patch, so as 
to produce a string of eight binaries or label.   LBP  8,1  

u2    descriptor generates over 256 labels, 
but only 58 uniform patterns are kept for histogram fusion and the remaining are 
discarded. Histograms from both domains are concatenated and given equal weights.

Results in Table 2 expose that the Type IIP descriptor achieved better recog-
nition rate than the rest of descriptors. The results also illustrate that Type IIP 
achieved better performance on images of distance 2 than those from distances 1 
and 3. Furthermore, it is notable to mention that employing BGPM(24;3) at larger 
spatial resolution did not help much in improving the recognition rate as much as 
Type IIP has achieved.

4.3 Results of circular-based topology

As described in Section 3.2, the macrostructure information are exploited 
from the outer circle which always has larger spatial resolution (P;R2) than 

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(24;3) 5.38 2.31 4.62 4.62 5.38 4.62

Type IP 3.85 6.92 4.62 6.92 3.85 6.00

Type IIP 10.77 6.92 6.92 5.38 10.77 8.31

2 BGPM(24;3) 21.54 16.15 13.08 16.15 15.38 16.46

Type IP 23.85 20.00 13.85 19.23 15.38 18.46

Type IIP 34.62 25.38 20.00 25.38 21.54 25.38

3 BGPM(24;3) 20.00 18.46 14.62 16.15 11.54 16.15

Type IP 16.92 16.92 14.62 16.92 16.15 16.31

Type IIP 22.31 23.08 15.38 23.85 16.92 20.31

Table 2. 
Recognition rate (%) of BGPM(24;3). Type IP and Type IIP descriptors on the SCface database.
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(P;R1). In other words, more points are used for thresholding when extracting the 
macrostructure information. For the presentation purpose,   S   (P,R)   

i    and   S   (P,R)   
o    nota-

tions are used to represent the spatial resolution of inner circle and outer circle, 
respectively. In the circular-based topology, two types of descriptors are designed 
to evaluate the performance of this topology. Type Ic descriptor is similar to what 
has been discussed in Section 3.2. Learning from the results obtained based on 
the patch-based topology, Type IIc descriptor is designed to explore a fusion of 
texture extracted from grayscale image and OIGM image. This descriptor extracts 
the local microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. The histograms generated from these 
two types of images are concatenated and given equal weights. In this topology, 
multiple combinations of spatial resolution of inner and outer circles are tested. 
By limiting R2 to 5, there are 10 combinations of descriptors at different spatial 
resolutions. Overall, there are 20 different combinations of descriptors that were 
put to the test.

Performance of Type Ic and Type IIc descriptors on the SCface dataset at distance 
1, distance 2, and distance 3 is presented in Tables 3, 4, and 5, respectively. Similar 
to the results obtained by the patch-based topology, the average recognition rate 
of the images that belong to distance 1 from all cameras is the lowest compared to 

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 5.38 3.85 3.85 3.08 4.62 4.12

IIc 6.92 6.92 6.92 6.15 7.69 6.92

(24,3) Ic 5.38 4.62 4.62 3.08 5.38 4.62

IIc 7.69 5.38 6.92 7.69 6.92 6.92

(32,4) Ic 5.38 6.15 5.38 6.15 6.15 5.84

IIc 6.92 6.15 6.92 8.46 6.15 6.92

(40,5) Ic 5.38 7.69 4.62 6.15 6.15 6.00

IIc 9.23 7.69 6.92 7.69 6.15 7.54

(16,2) (24,3) Ic 5.38 4.62 6.15 3.85 6.15 5.23

IIc 6.92 6.92 5.38 6.15 7.69 6.61

(32,4) Ic 6.15 6.92 7.69 4.62 6.15 6.31

IIc 10.00 6.92 3.85 7.69 7.69 7.23

(40,5) Ic 5.38 6.92 3.85 6.15 6.15 5.69

IIc 8.46 7.69 6.15 8.46 6.92 7.54

(24,3) (32,4) Ic 5.38 3.85 6.92 3.85 6.15 5.23

IIc 12.31 7.69 7.69 9.23 6.92 8.77

(40,5) Ic 6.15 6.15 5.38 2.31 6.92 5.38

IIc 10.77 8.46 9.23 9.23 4.62 8.46

(32,4) (40,5) Ic 4.62 5.38 6.15 2.31 7.69 5.23

IIc 9.23 7.69 10.00 10.77 5.38 8.61

Baseline BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;2) 6.15 4.62 4.62 3.85 5.38 4.92

Table 3. 
Circular-based topology on the SCface dataset at distance 1.
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those from distance 2 and distance 3 as shown in Table 3. One noteworthy observa-
tion is that most of Type IIc descriptors at any spatial resolution achieved better 
recognition rate than Type Ic descriptors. Taking a closer look at the descriptor’s 
performance in Table 5, Type IIc descriptor with spatial resolution of   S   (16,2)   

i    and   
S   (24,3)   

o    recorded the best results for all cameras on the test gallery of distance 3. On the 
other hand, for distance 2 test gallery, Type IIc descriptor with spatial resolution of   
S   (24,3)   

i    and   S   (32,4)   
o    achieved the best result against other combinations.

For further evaluation, Table 6 demonstrates results of the proposed eBGP 
descriptor compared with state-of-the-art descriptors such as PCA [27], SIFT and 
sparse representation-based classification (SRC) [28], and edge-preserving super-
resolution (SR) [29], on the SCface database at distance 2. All descriptors applied the 
same test conditions, where only one mug shot image per subject is used for train-
ing, while the remaining low-resolution images from all cameras are used as probe 
images. The results show that the proposed descriptors based on eBGP achieved the 
highest recognition rates compared to all other descriptors, especially eBGPM(16;2) 
(Type IIP) which has the best recognition rate over all camera images. Exploiting 
information from the macrostructure raised the BGPM results from the fifth highest 
to first. This indicates the importance of the macrostructure information in shaping 
a complete face representation in single-reference face recognition problem.

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 12.31 10.00 11.54 14.62 13.85

IIc 25.38 19.23 15.38 17.69 14.62 18.46

(24,3) Ic 24.62 15.38 11.54 15.38 16.92 16.77

IIc 25.38 21.54 16.15 19.23 14.62 19.38

(32,4) Ic 26.92 17.69 15.38 17.69 13.85 18.31

IIc 23.85 19.23 16.92 18.46 15.38 18.77

(40,5) Ic 29.23 19.23 13.08 19.23 13.85 18.92

IIc 23.08 19.23 15.38 17.69 16.92 18.46

(16,2) (24,3) Ic 26.15 16.15 11.54 13.08 15.38 16.46

IIc 25.38 22.31 16.15 21.54 19.23 20.92

(32,4) Ic 25.38 18.46 13.85 13.85 13.85 17.08

IIc 24.62 21.54 17.69 21.54 20.00 21.08

(40,5) Ic 25.38 20.00 13.08 20.77 15.38 18.92

IIc 24.62 20.77 16.92 20.00 17.69 20.00

(24,3) (32,4) Ic 20.77 18.46 12.31 13.85 14.62 16.00

IIc 28.46 24.62 16.92 20.77 20.77 22.31

(40,5) Ic 22.31 17.69 14.62 16.15 14.62 17.08

IIc 28.46 23.85 15.38 16.15 16.92 20.15

(32,4) (40,5) Ic 22.31 16.92 13.85 17.69 13.85 16.92

IIc 25.38 25.38 16.92 20.00 16.15 20.77

Baseline BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;2) 23.85 13.85 7.69 12.31 13.08 14.16

Table 4. 
Circular-based topology on the SCface dataset at distance 2.
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(P;R1). In other words, more points are used for thresholding when extracting the 
macrostructure information. For the presentation purpose,   S   (P,R)   

i    and   S   (P,R)   
o    nota-

tions are used to represent the spatial resolution of inner circle and outer circle, 
respectively. In the circular-based topology, two types of descriptors are designed 
to evaluate the performance of this topology. Type Ic descriptor is similar to what 
has been discussed in Section 3.2. Learning from the results obtained based on 
the patch-based topology, Type IIc descriptor is designed to explore a fusion of 
texture extracted from grayscale image and OIGM image. This descriptor extracts 
the local microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. The histograms generated from these 
two types of images are concatenated and given equal weights. In this topology, 
multiple combinations of spatial resolution of inner and outer circles are tested. 
By limiting R2 to 5, there are 10 combinations of descriptors at different spatial 
resolutions. Overall, there are 20 different combinations of descriptors that were 
put to the test.

Performance of Type Ic and Type IIc descriptors on the SCface dataset at distance 
1, distance 2, and distance 3 is presented in Tables 3, 4, and 5, respectively. Similar 
to the results obtained by the patch-based topology, the average recognition rate 
of the images that belong to distance 1 from all cameras is the lowest compared to 

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 5.38 3.85 3.85 3.08 4.62 4.12

IIc 6.92 6.92 6.92 6.15 7.69 6.92

(24,3) Ic 5.38 4.62 4.62 3.08 5.38 4.62

IIc 7.69 5.38 6.92 7.69 6.92 6.92

(32,4) Ic 5.38 6.15 5.38 6.15 6.15 5.84

IIc 6.92 6.15 6.92 8.46 6.15 6.92

(40,5) Ic 5.38 7.69 4.62 6.15 6.15 6.00

IIc 9.23 7.69 6.92 7.69 6.15 7.54

(16,2) (24,3) Ic 5.38 4.62 6.15 3.85 6.15 5.23

IIc 6.92 6.92 5.38 6.15 7.69 6.61

(32,4) Ic 6.15 6.92 7.69 4.62 6.15 6.31

IIc 10.00 6.92 3.85 7.69 7.69 7.23

(40,5) Ic 5.38 6.92 3.85 6.15 6.15 5.69

IIc 8.46 7.69 6.15 8.46 6.92 7.54

(24,3) (32,4) Ic 5.38 3.85 6.92 3.85 6.15 5.23

IIc 12.31 7.69 7.69 9.23 6.92 8.77

(40,5) Ic 6.15 6.15 5.38 2.31 6.92 5.38

IIc 10.77 8.46 9.23 9.23 4.62 8.46

(32,4) (40,5) Ic 4.62 5.38 6.15 2.31 7.69 5.23

IIc 9.23 7.69 10.00 10.77 5.38 8.61

Baseline BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;2) 6.15 4.62 4.62 3.85 5.38 4.92

Table 3. 
Circular-based topology on the SCface dataset at distance 1.
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those from distance 2 and distance 3 as shown in Table 3. One noteworthy observa-
tion is that most of Type IIc descriptors at any spatial resolution achieved better 
recognition rate than Type Ic descriptors. Taking a closer look at the descriptor’s 
performance in Table 5, Type IIc descriptor with spatial resolution of   S   (16,2)   

i    and   
S   (24,3)   

o    recorded the best results for all cameras on the test gallery of distance 3. On the 
other hand, for distance 2 test gallery, Type IIc descriptor with spatial resolution of   
S   (24,3)   

i    and   S   (32,4)   
o    achieved the best result against other combinations.

For further evaluation, Table 6 demonstrates results of the proposed eBGP 
descriptor compared with state-of-the-art descriptors such as PCA [27], SIFT and 
sparse representation-based classification (SRC) [28], and edge-preserving super-
resolution (SR) [29], on the SCface database at distance 2. All descriptors applied the 
same test conditions, where only one mug shot image per subject is used for train-
ing, while the remaining low-resolution images from all cameras are used as probe 
images. The results show that the proposed descriptors based on eBGP achieved the 
highest recognition rates compared to all other descriptors, especially eBGPM(16;2) 
(Type IIP) which has the best recognition rate over all camera images. Exploiting 
information from the macrostructure raised the BGPM results from the fifth highest 
to first. This indicates the importance of the macrostructure information in shaping 
a complete face representation in single-reference face recognition problem.

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 12.31 10.00 11.54 14.62 13.85

IIc 25.38 19.23 15.38 17.69 14.62 18.46

(24,3) Ic 24.62 15.38 11.54 15.38 16.92 16.77

IIc 25.38 21.54 16.15 19.23 14.62 19.38

(32,4) Ic 26.92 17.69 15.38 17.69 13.85 18.31

IIc 23.85 19.23 16.92 18.46 15.38 18.77

(40,5) Ic 29.23 19.23 13.08 19.23 13.85 18.92

IIc 23.08 19.23 15.38 17.69 16.92 18.46

(16,2) (24,3) Ic 26.15 16.15 11.54 13.08 15.38 16.46

IIc 25.38 22.31 16.15 21.54 19.23 20.92

(32,4) Ic 25.38 18.46 13.85 13.85 13.85 17.08

IIc 24.62 21.54 17.69 21.54 20.00 21.08

(40,5) Ic 25.38 20.00 13.08 20.77 15.38 18.92

IIc 24.62 20.77 16.92 20.00 17.69 20.00

(24,3) (32,4) Ic 20.77 18.46 12.31 13.85 14.62 16.00

IIc 28.46 24.62 16.92 20.77 20.77 22.31

(40,5) Ic 22.31 17.69 14.62 16.15 14.62 17.08

IIc 28.46 23.85 15.38 16.15 16.92 20.15

(32,4) (40,5) Ic 22.31 16.92 13.85 17.69 13.85 16.92

IIc 25.38 25.38 16.92 20.00 16.15 20.77

Baseline BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;2) 23.85 13.85 7.69 12.31 13.08 14.16

Table 4. 
Circular-based topology on the SCface dataset at distance 2.
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5. Conclusion

In this paper, an extended BGP (eBGP) descriptor, which incorporates mac-
rostructure information into BGP descriptor, has been proposed to improve the 
overall descriptor performance in single-reference face recognition problem. 

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 21.54 13.85 15.38 13.85 17.08

IIc 25.38 26.15 20.00 23.85 13.85 21.85

(24,3) Ic 23.08 20.77 13.08 20.00 11.54 17.69

IIc 23.08 24.62 20.00 23.85 16.92 21.69

(32,4) Ic 20.00 21.54 14.62 17.69 11.54 17.08

IIc 20.77 24.62 17.69 21.54 14.62 19.85

(40,5) Ic 19.23 17.69 15.38 18.46 10.77 16.31

IIc 23.85 23.85 15.38 20.77 13.85 19.54

(16,2) (24,3) Ic 20.77 20.77 13.08 17.69 13.08 17.08

IIc 26.15 25.38 20.77 24.62 19.23 23.23

(32,4) Ic 20.77 18.46 16.15 19.23 10.00 16.92

IIc 24.62 22.31 16.15 22.31 16.92 20.46

(40,5) Ic 19.23 19.23 15.38 18.46 12.31 16.92

IIc 26.15 21.54 16.15 22.31 11.54 19.54

(24,3) (32,4) Ic 17.69 16.15 13.85 17.69 9.23 14.92

IIc 23.08 20.77 19.23 21.54 15.38 20.00

(40,5) Ic 20.00 16.15 13.85 19.23 10.77 16.00

IIc 23.85 21.54 16.92 18.46 16.15 19.38

(32,4) (40,5) Ic 16.15 15.38 13.08 18.46 10.00 14.61

IIc 20.77 20.77 16.92 21.54 10.77 18.15

Baseline BGPM(8;1) 15.38 19.23 10.00 16.92 11.54 14.61

BGPM(16;2) 18.46 20.00 16.15 14.62 11.54 16.15

Table 5. 
Circular-based topology on the SCface dataset at distance 3.

Descriptor Camera

1 2 3 4 5 Average

PCA [27] 7.70 7.70 3.90 3.90 7.70 6.18

SIFT [28] 13.08 12.31 8.46 15.38 9.23 11.69

BGPM(16;2) 23.85 13.85 7.69 12.31 13.08 14.16

SRC [28] 29.23 16.15 12.31 25.38 13.08 19.23

Edge-preserving SR [29] 26.92 21.54 15.38 24.61 15.38 20.77

eBGPM(24;3)(32;4) (circular) 28.46 24.62 16.92 20.77 20.77 22.31

eBGPM(16;2) (Type IIP) 34.62 25.38 20.00 25.38 21.54 25.38

Table 6. 
Comparison of recognition rate (%) of the proposed eBGP descriptor with state-of-the-art descriptors on the 
SCface database at distance 2.
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Results obtained from a series of experiments on the SCface database showed that 
a fusion of information extracted from micro- and macrostructures is capable 
of boosting up the performance of BGP descriptor. The proposed eBGP descrip-
tor was tested with the patch-based and circular-based topologies; in overall, 
the circular-based topology outperformed the patch-based topology in terms of 
recognition rate. In patch-based topology, 5 × 5 structure recorded better hike 
in recognition rate than 3 × 3 structure, while in circular-based topology, larger 
spatial resolution showed better hike in the recognition performance. Moreover, 
a fusion of micro- and macrostructure information extracted from OIGM and 
grayscale image, respectively, raised the recognition rate higher. In fact, Type IIc 
setup always illustrated a better performance boost than Type Ic. With regard to 
thresholding implementation, it is worth to mention that local mean is on par 
with the local median for the descriptor and does not offer additional boost in the 
patch-based topology.
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5. Conclusion

In this paper, an extended BGP (eBGP) descriptor, which incorporates mac-
rostructure information into BGP descriptor, has been proposed to improve the 
overall descriptor performance in single-reference face recognition problem. 

Circular eBGP Camera

  S   (P,R)   i     S   (P,R)   o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 21.54 13.85 15.38 13.85 17.08
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Descriptor Camera
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eBGPM(24;3)(32;4) (circular) 28.46 24.62 16.92 20.77 20.77 22.31

eBGPM(16;2) (Type IIP) 34.62 25.38 20.00 25.38 21.54 25.38

Table 6. 
Comparison of recognition rate (%) of the proposed eBGP descriptor with state-of-the-art descriptors on the 
SCface database at distance 2.
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Results obtained from a series of experiments on the SCface database showed that 
a fusion of information extracted from micro- and macrostructures is capable 
of boosting up the performance of BGP descriptor. The proposed eBGP descrip-
tor was tested with the patch-based and circular-based topologies; in overall, 
the circular-based topology outperformed the patch-based topology in terms of 
recognition rate. In patch-based topology, 5 × 5 structure recorded better hike 
in recognition rate than 3 × 3 structure, while in circular-based topology, larger 
spatial resolution showed better hike in the recognition performance. Moreover, 
a fusion of micro- and macrostructure information extracted from OIGM and 
grayscale image, respectively, raised the recognition rate higher. In fact, Type IIc 
setup always illustrated a better performance boost than Type Ic. With regard to 
thresholding implementation, it is worth to mention that local mean is on par 
with the local median for the descriptor and does not offer additional boost in the 
patch-based topology.
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Chapter 8

Matrix Factorization on Complex
Domain for Face Recognition
Viet-Hang Duong, Manh-Quan Bui and Jia-Ching Wang

Abstract

Matrix factorization on complex domain is a natural extension of nonnegative
matrix factorization, but it is still a very new trend in face recognition. In this
chapter, we present two complex matrix factorization-based models for face recog-
nition, in which the objective functions are the real-valued functions of complex
variables. Our first model aims to build a learned base, which is embedded within
original space. The second model finds the base whose volume is maximized.
Experimental results on datasets with and without outliers show that our proposed
algorithms are more effective than competitive algorithms.

Keywords: complex matrix factorization, face recognition, nonnegative matrix
factorization, projected gradient descent

1. Introduction

Face recognition is a central issue in computer vision and pattern recognition.
The variations in lighting conditions, pose and viewpoint changes, facial expres-
sions, makeup, aging, and occlusion are challenges that significantly affect recogni-
tion accuracy. Generally, the challenges in face recognition can be classified into
four main categories as follows:

Illumination variations: The face of a person can appear dramatically different
when illumination changes. This occurs because of spectra or source distribution
and intensity changes. In practice, many two-dimensional (2D) methods show that
recognition performance is notably decreased when illumination strongly occurs
[1, 2]. Therefore, the problem of lighting variation is considered as one of the key
challenges for face recognition system designer. Several methods have been pro-
posed to handle variable illuminations such as extraction of illumination invariant
features [3–7]; images with variable illuminations transformed to a canonical rep-
resentation [8, 9]; modeling the illumination variations [10–11]; facial shapes and
albedos are based on 3D face models [12].

Pose/viewpoint changes: Deformed face and self-occluded face usually occur by
pose or viewpoint changes which affect the recognition process [13]. Generally,
viewpoint face recognition approaches are divided into two categories: viewpoint-
transformed and cross-pose based [14]. Viewpoint transformed recognition
methods aim to transform the probe image to match the gallery image in the pose,
whereas cross-pose-based approaches attempt to estimate the light field of the face
[15, 16]. Besides, other approaches integrated 2D and 3D information [17, 18] in
order to cope with pose and illumination variations.
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Facial expression: Face recognition tasks are more challenging when dealing with
emotional states of a person in an image. In addition, hairstyle or facial hair such as
beard and mustache can change facial appearance. To handle with difficulties of
expression, facial expression recognition (FER) systems, including static image FER
[19–21], and dynamic sequence FER [22–24] are designed. In static-based methods,
the spatial information from the current single image is extracted to obtain the
feature representation. In contrary, the dynamic-based methods consider the tem-
poral relation among adjacent frames in the sequence of input facial expression.

Occlusion: Faces may be partially occluded by other objects such as sunglasses,
scarf [62], etc. Other situations of occlusion are some faces may be occluded by
other faces of a group of people [25]. It is very difficult to be observed and recog-
nized because the available part of the face is very small. Therefore, occlusion
problems become harder and need to be solved in face recognition.

In face recognition, image representation (IR) techniques play an important role
in improving the accuracy performance. Commonly, an IR system is to transform
the input signal into a new representation which reduces its dimensionality and
explicates its latent structures. Over the past decades, the subspace methods, such
as principal component analysis (PCA) [26], linear discriminant analysis (LAD)
[27, 28], and nonnegative matrix factorization (NMF) [29, 30] have been success-
fully used in feature extraction. In particularly, PCA is known as a powerful tech-
nique for dimensionality reduction and multivariate analysis. PCA seeks a linear
combination of variables such that the maximum variance is extracted from the
variables by projecting data onto an orthogonal base which is represented in the
directions of largest variance. In image representation, eigenfaces (PCA) result in
dense representations for facial images, which mainly applied the global structure
of the whole facial image. Likewise, LAD finds a linear transformation that maxi-
mizes discrimination between classes.

NMF is known as an unsupervised data-driven approach in which all elements of
the decomposed matrix and the obtained matrix factors are forced to be nonnega-
tive. Furthermore, NMF is able to represent an object as various parts, for instance,
a human face can be decomposed into eyes, lips, and other elements. In order to
make NMF algorithms more efficient, one has proposed some constraints into the
cost function such as sparsity [31, 32], orthogonally [33], discrimination [34], graph
regularization [35, 36], and pixel dispersion penalty [37]. Additionally, proposing
an appropriate distance metric for an NMF model plays an important role in
enhancing the efficacy of the estimated linear subspace of the given data. NMF
techniques commonly apply the squared Frobenius norm (Fr) or the generalized
Kullback–Leibler (KL) divergence for the independent and identically distributed
noise data. But in many cases, they produce an arbitrarily biased subspace when
data is corrupted by outliers [38]. To overcome this drawback, L2 and L1 norms
were proposed by Kong et al. [39] to obtain a robust NMF, in which the noise was
assumed to follow the Laplacian distribution. Similarly, the earth mover’s distance
(EMD) and the Manhattan distance were also suggested in the work of Sandler et al.
[40] and Guan et al. [41], respectively. A family of cost functions parameterized by
a single shape parameter beta, called the beta-divergence [42], is commonly used on
NMF approaches. Although NMFs are able to learn part-based representations and
capture the Euclidean structure of high-dimensional data space, they are still lim-
ited to comprise the nonlinear sub-manifold structure behind the data.

Recently, matrix factorization techniques have been extended to complex
matrix factorizations (CMFs) where the input data are complex matrices. These
models have been obtaining promising results in facial expression recognition and
data representation tasks [43–45]. The main idea of complex methods for face and
facial expression recognition is that the original signal is projected on to the complex
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field by a mapping such that the distances of two data points in the original space
and projection space are equivalent. Particularly, by transforming the real values of
pixel intensive to complex domain, it is shown that the squared Frobenius norm of
corresponding complex vectors and the cosine dissimilarity of real-valued vectors
are equivalent. As a result, the real optimization problem with cosine divergence is
replaced by optimizing a complex function with the Frobenius norm. Most of the
mentioned CMF models were applied to facial expression and object recognition.

In this chapter, we present two complex matrix factorization-based models for
face recognition. In the following sections, we denoteM-dimensional column vector

y ¼ y1;…; yM
� �T ∈RM

þ to be an observed sample. Let Y be a dataset comprising of
N-observations; Y is expressed in the matrix form as Y ¼ y1;…;yN

� �
∈RM�N

þ ,
where Rþ denotes the set of nonnegative real numbers. In the proposed models, the
real data set Y is transformed to the complex domain, and the complex data
matrix Z is factorized under imitating NMF frameworks. The contributions of this
chapter are summarized as follows:

1. The image analysis methods on the complex domain, which are called
structured complex matrix factorization (StCMF) and constrained complex
matrix factorization (CoCMF), are proposed.

2. In complex domain, the updating rule for StCMF and CoCMF is derived based
on gradient descent method.

3.A thorough experimental study on face recognition is conducted, the results
show that the proposed StCMF and CoCMF yield better performance
compared to extensions of the real NMFs.

2. Background

2.1 Nonnegative matrix factorization

Assume that we are given an initial data matrix Y∈RM�N
þ and a positive integer

K≪ min{M, N}. NMF methods aim to find a basis matrix U∈RM�K
þ and a coding

variable matrix V∈RK�N
þ , such that Y≈UV: The standard NMF is usually formu-

lated as an optimization:

min
U,V

D YkUVð Þ s:t:U≥0,V≥0 (1)

where D YkUVð Þ is a divergence function to measure the distance between
Y and UV.

Most NMF techniques estimate the linear subspace of the given data by the
Frobenius norm (F) or the generalized Kullback–Leibler (KL) divergence which
have the following forms:

DF AkBð Þ ¼ A� Bk k2F ¼ ∑
i, j

Aij � Bij
� �2 (2)

DKL AkBð Þ ¼ lim
β!0

Dβ AkBð Þ ¼ ∑
i, j

Aij log
Aij

Bij
�Aij þ Bij (3)

The problem (1) is non-convex; thus, it may result in several local minimal
solutions. To find an optimization solution, the iterative methods are commonly used.
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Generally, there are three classes of algorithms for solving this problem including
multiplicative update, gradient descent, and alternating nonnegative least squares
algorithms. The most popular approach to solve (1) is the multiplicative update rules
proposed by Lee and Seung [30]. For example, the iteratively updating rules of a
Frobenius NMF cost function are given by

V tð Þ
ij  V t�1ð Þ

ij

U t�1ð ÞTY
� �

ij

U t�1ð ÞT
ij U t�1ð ÞV

� �
ij

; (4)

U tð Þ
ij  U t�1ð Þ

ij

YV t�1ð ÞT� �
ij

U t�1ð ÞV
� �

ijV
t�1ð ÞT
ij

; (5)

2.2 The cosine divergence

Given the representations of two images, It and Is are M-dimensional vectors yt,
ys in the lexicographic order, respectively. First, yt, ys ∈RM is normalized to get the
values yt cð Þ,ys cð Þ∈ 0; 1½ �, where c is the element vector index or the vector spatial
location. The correlation between images It and Is through the cosine dissimilarity
between yt and ys, is introduced by

DC yt;ys

� � ¼ ∑
M

c¼1
1‐ cos απyt cð Þ‐απys cð Þ

� �� �
(6)

One of interesting properties of the cosine distance measurement is suppression
outlier which is proved in [46]. The comparison between Frobenius norm and
cosine divergence is showed in Figure 1. Liwiki et al. [46] show that the Frobenius
distance between the original and the same subject is smaller; in contrary, a large
distance between the original image and the image of a different person or occlusion
image results from the cosine-based measure.

2.3 Euler’s formula and a space transformation

Let us consider two mappings:
g : RM ! R2M such that

g yt

� � ¼ 1ffiffiffiffi
N
p cos yt

� �T sin yt
� �Th iT

; ∀yt ∈RN (7)

where cos yt

� � ¼ cos yt 1ð Þ
� �

; cos yt 2ð Þ
� �

;…; cos yt Mð Þ
� �� �T (8)

sin yt

� � ¼ sin yt 1ð Þ
� �

; sin yt 2ð Þ
� �

;…; sin yt Mð Þ
� �� �T (9)

Figure 1.
Sample images for making comparison between dissimilarity measures.
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g yt

� ��� �� ¼ 1 (10)

and h : RM ! CM is defined by

zt ¼ h yt
� � ¼ 1ffiffiffi

2
p e iαπyt ¼ 1ffiffiffi

2
p

eiαπyt 1ð Þ

⋮
eiαπyt Mð Þ

2
64

3
75 (11)

The nonlinear function h is to transform the real-valued features to complex
feature space. In other words, a complex vector space with M-dimensions can be
regarded as a 2 M-dimensional real vector space.

It is proven that the cosine dissimilarity distance of a pair of data in the input
real space equals to the Frobenius distance of the corresponding data in complex
domain [47]. This observation is the first motivation of StCMF and CoCMF by
mapping the samples into the complex space with a nonlinear mapping function
h and performing matrix factorization in this complex feature space.

2.4 Wirtinger calculus

Any function of a complex variable z can be defined as f zð Þjz¼xþiy ¼ F x; yð Þ ¼
U x; yð Þ þ iV x; yð Þ, where i2 = �1 and x, y∈R. Palka et al. [48] defined the complex
differentiability as follows:

Definition 1. Let Α⊂C be an open set. The function f : Α! C is said to
be differentiable at z0 ∈Α if there is a limit limz!z0

f zð Þ�f z0ð Þ
z�z0 which exists

independently on the manner where z! z0.

A necessary condition for f being holomorphic is that the Cauchy-Riemann
equations hold, that is, ∂U

∂x ¼ ∂V
∂y and ∂U

∂y ¼ � ∂V
∂x; otherwise, it is nonholomorphic. In

statistical signal processing, the functions of interest are real-valued and have com-
plex arguments z and hence are not analytic on complex plane. In this case we can
use Wirtinger calculus [49], which writes the expansions in conjugate coordinate
system by considering the function f(z) as a bivariate function f(z, z*) and treating z
and z* as independent arguments.

Definition 2. The pair of partial derivative operators for function f zð Þ ¼ f z; z ∗ð Þ
referred to as the Wirtinger derivative [49] is defined by

∂f
∂z
¼ 1

2
∂f
∂x
� i

∂f
∂y

� �
,
∂f
∂z ∗ ¼

1
2

∂f
∂x
þ i

∂f
∂y

� �
(12)

In case of real-valued function of complex variables, we also have one special
property which is useful for optimization theory described later.

Lemma 1. The differential df of a real-valued functionf : Α! R with complex
valued z∈A⊂C can be expressed as

df ¼ 2Re
∂f zð Þ
∂z ∗ dz

� �
(13)
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property which is useful for optimization theory described later.

Lemma 1. The differential df of a real-valued functionf : Α! R with complex
valued z∈A⊂C can be expressed as

df ¼ 2Re
∂f zð Þ
∂z ∗ dz

� �
(13)
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3. Complex matrix factorization

Let the input data matrix Y = (Y1, Y2,…, YN) contain N data vectors as columns.
As described in previous sections, the elements of real matrix Y are normalized and
transformed into a complex number field to yield the complex data matrix Z. Two
unconstraint and constrained optimization problems in an unordered complex field
is introduced in the following sections, respectively.

3.1 Structured complex matrix factorization (StCMF)

The idea of structured complex matrix factorization (StCMF) is to build a
learned base which is embedded within original space. The basis matrix in StCMF is
constructed by the linear combination of the complex training examples. Given the
complex data matrix Z∈CM�N, StCMF factorizes Z into the encoding matrix
V∈CK�N and the exemplar-embed basis matrix U ¼ ZW where W∈CM�K :
Therefore, the objective function of StCMF problem can be formulated as follows:

min
W,V

f StCMF W;Vð Þ ¼ min
W,V

1
2

Z�ZWVk k2F (14)

where :k kF denotes the Frobenius norm and K≪ min{N, M}

and  Z�ZWVk k2F ¼ Tr Z�ZWVð ÞH Z�ZWVð Þ
¼ Tr ZHZ�VHWHZHZ� ZHZWVþVHWHZHZWV

� �

3.2 Constrained complex matrix factorization (CoCMF)

Considering a dataset of N complex vectors Z = [Z1, Z2,…, ZN], each of Zi

represents a data instance. The proposed CoCMF model decomposes Z into a prod-
uct of two matrices W and V such that each instance Zi is a convex combination of
latent components W. We call V and W the encoding matrix and the basis matrix,
respectively. Geometrically, the data points Zi, i = 1, 2, ..., N all lie in or on the
surface of a simplicial cone SW, whose vertices correspond to the columns ofW and

SW ¼ z : z ¼ ∑
K

i¼1
Wivi;vi ∈Rþ

� �
(15)

Note that SW lies in the positive orthant and the volume of SW (Vol (SW)) is
given by the following formula [48]:

Vol SWð Þ ¼ det Wð Þj j
K � 1ð Þ! (16)

In [51], Zhou et al. illustrated that the small-cone constraint on the bases W will
impose suitable sparseness on V. Inversely, the large-cone penalty will result in
sparseness on the bases of factorization and the reconstruction errors on the train-
ing data, and the test data will be simultaneously decreased [50, 52]. Therefore, all
observed data can be reconstructed by linearly combining the bases of a dictionary.
Combining the goals of enlarging the volume of the simplex base, the constrained
complex matrix factorization (CoCMF) problem is formulated as follows:
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min
W,V

f CoCMF W;Vð Þ ¼ min
W,V

1
2

Z�WVk k2F‐
det Wð Þj j
K � 1ð Þ! (17)

s:tW∈CM�K,V∈RK�N
þ and ∑

K

i¼1
Vij ¼ 1 ∀j

Since 0 < det(WTW) ≤ 1 holds under the assumptions 1TWi = 1. To simply the
model, in this work, the log-determinant function is exploited to modify the volume
penalty, and Eq. (17) can be written as the following form:

min
W,V

f CoCMF W;Vð Þ ¼ min
W,V

1
2

Z�WVk k2F‐ log det WTW
� �� �

(18)

s:tW∈CM�K,V∈RK�N
þ ∑

K

i¼1
Vij ¼ 1, and ∑

K

i¼1
Wij
�� �� ¼ 1∀j

3.3 Complex matrix factorization via projected gradient descent

It can be seen that (12) and (16) are non-convex minimization problems with
respect to both variables W and V, so they are impractical to obtain the optimal
solution. These NP-hard problems can be tackled by applying the block coordinate
descent (BCD) with two matrix blocks [53] to obtain a local solution. The specific
problems (14) and (18) were solved by the following scheme:

Fixing W and solving the following one variable optimization problems

min
V

f StCMF_V Vð Þ ¼ min
V

1
2

Z�ZWVk k2F (19)

min
V

f CoCMF_V Vð Þ ¼ min
V

1
2

Z�WVk k2F (20)

s:t V∈RK�N
þ , ∑

K

i¼1
Vij ¼ 1 ∀j

Then, W is updated based on the Moore-Penrose pseudoinverse [54], which is
dented by † and W = (Z†Z)V† for Eq. (14) and W = ZV† for Eq. (18) with fixed V.

Taking advanced of Wirtinger calculus, the gradient is evaluated in the forms

Algorithm 1: Complex projected gradient (CPG) with Armijo rule

Input: Z, W

Output: v

1. Initialize any feasible V0,0, β, 1,0, σ, 1

2. Iterations, for k = 1, 2, …

Vkþ1 ¼ P Vk � αk∇V ∗ f W;Vkð Þ½ �

where αk ¼ μtk , tk is the first nonnegative integer such that

f W;Vkþ1ð Þ � f W;Vkð Þ≤ 2σRe ∇V ∗ f W;Vkð Þ;Vkþ1 �Vkh if g
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ing data, and the test data will be simultaneously decreased [50, 52]. Therefore, all
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∇V f StCMF_V Vð Þ ¼ �WHZHZþWHZHZWV (21)

∇V f CoCMF_V V
� � ¼WHWV�WHZ (22)

where V ¼ V1

V1k k1
;

V2

V2k k1
;…;

VN

VNk k1

� �
;V≥0 (23)

We summarize the projected gradient method for optimizing (21) and (22) in
Algorithm 1.

4. Experiments

To investigate the recognition performance of the proposed StCMF and CoCMF
methods, we have conducted extensive experiments on the ORL dataset [55] and
the Georgia Tech face dataset [56] in two scenarios for face recognitions including
holistic face and key point occluded face.

First, we give brief description about the data collections and experiment set-
ting. Second, the performance comparisons and corresponding results are shown.

4.1 Datasets and experiment setting

The ORL dataset contains 400 grayscale images corresponding to 40 people’s
face. The images were captured at different times, under different lighting condi-
tions, with different facial expression (open or close eyes, smiling or non-smiling)
and facial details (glasses or no glasses). All the face images are manually aligned
and cropped. For the computational efficiency, each cropped image is resized to
28 � 23 for face recognition without occlusion and 32 � 32 pixels for face recogni-
tion with occlusion. Figure 2 shows some instances of such random face on ORL
dataset.

The Georgia Tech face dataset (GT) contains images of 50 people taken during
1999 and stored in JPEG format. For each individual, there are 15 color images
captured at resolution of 640 � 480 pixels. Most of the images were taken in two
different sessions to take into account the variations in illumination conditions,
facial expression, and appearance. In our experiments, original images are normal-
ized, cropped and scaled into 31 � 23 pixels, and finally converted into gray level
images. Examples of GT dataset are shown in Figure 3.

Figure 2.
Sample facial images from ORL dataset [55].
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We use the nearest neighbor (NN) classifier for all face recognition with/with-
out occlusion experiments. The platform was a 3.0 GHz Pentium V with 1024 MB
RAM running Windows. Code was written in MATLAB.

4.2 Performance and comparison

4.2.1 Face recognition on ORL dataset

For this case, in order to evaluate the performance of the proposed StCMF and
CoCMF, we make the comparisons with seven representative algorithms, namely,
NMF [29], P-NMF [57], P-NMF (Fr) [58], P-NMF (KL) [58], OPNMF (Fr) [59],
OPNMF (KL) [59], NNDSVD-NMF [60], and GPNMF [60]. Different training
numbers ranging from five to nine images were randomly chosen from each indi-
vidual to construct the training set, and the rest images constitute the test set which
was used to estimate the accuracy of face recognition [61]. The learning basic
images in all selected algorithms are K = 40, and the mean recognition rate are
described in Table 1.

Table 1 shows the detailed recognition accuracies of compared algorithms. As
can be seen, our algorithms significantly outperform the other algorithms in all the
cases. Almost algorithms achieve the best accuracy when the number of training
face images per class is eight exceptionally our proposed methods and GPNMF.
Besides, there is the same trend between the number of training images and accu-
racy rate; that is, the lower training numbers lead to a decreasing rate of

Figure 3.
Sample facial images from GT dataset [56].

No.
Trains

StCMF CoCMF GPNMF NMF PNMF P-NMF
(Fr)

P-NMF
(KL)

OPNMF
(Fr)

OPNMF
(KL)

NNDSVD-
NMF

5 90.85 90.30 86.5 84.5 82.4 83.7 85.0 80.0 79.0 43.0

6 91.75 92.25 87.5 84.4 85.81 85 84.4 83.0 82.0 39.3

7 91.17 94.75 87.5 83.3 87.33 85.6 85.9 84.4 80.0 36.8

8 93.75 93.88 88.75 88.75 88.5 88.8 88.0 84.3 83.0 40.8

9 97.50 95.50 92.5 85 90.75 87.25 87.5 84.0 83.0 42.3

Avg. 93.00 93.34 88.55 85.19 86.96 86.07 86.16 83.14 81.4 40.44

Table 1.
Face recognition accuracy on the ORL dataset with different train numbers.
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RAM running Windows. Code was written in MATLAB.
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recognition. StCMF achieves the best performance (97.50%) when the number of
training samples is chosen largest. However, CoCMF achieves higher improvement
in general.

It is observed that the above-selected algorithms employ a different kind of
measurements such as Frobenius (Fr) and Kullback–Leibler (KL) and add more
graph to regularize as well as adjust basic NMF to projective NMF. In a reprocessing
image, centered aligning image technique is applied for other methods to enhance
effective recognition rate that cannot be focused on our StCMF and CoCMF models.
However, the best recognition rate of all obtained by our proposed CoCMF method
which has extra regularizes term.

One of the difficulties in NMF is the estimation of the number of components or
K. The choice of K results in a compromise between data fitting and model com-
plexity; that is, a greater K leads to a better data approximation, but a smaller K
makes a model being easier to estimate and fewer parameters to transmit. In almost
NMFs, K is typically chosen such that it is larger than the estimated number of
sources and follows the constraint N þMð ÞK≪NM. This limit of NMFs illustrated
by the observation that among all results, the lowest rate belongs to NNDSVD-
NMF, one NMF method utilizes SVD to get initialization which results from signif-
icant independency of NNDSVD-NMF on the number of bases K.

4.2.2 Face recognition on GT dataset

Table 2 shows the recognition rates versus feature dimension by the competing
methods on GT dataset. GT dataset exists with many challenging samples that are
harder to recognize. Thus, the performance of all methods is lower than those of
ORL dataset. In this dataset, the implement was done similarly as those in the
previous section in choosing algorithms to compare as well as dividing randomly
into two different sets, each containing a different number of testing and training
images. In our experiments, we set K = 50 and range the number training being five
odd numbers as {5, 7, 9, 11, 13}. The experimental results show that as the number
of training images increases, the efficiency of the recognition system also increases.
We can see that CoCMF method achieves the best performance and StCMF holds
the second place in overall. All the methods obtain their best results when 13
training samples are used (the largest number of training sample in our experi-
ment). In this case, the highest recognition rate belongs to the StCMFmethod again.

4.2.3 Face recognition on occluded ORL images

For a more convincing experimental assessment of the power of our proposed
models in occlusion processing, we test the performance on occluded images of

No.
Trains

StCMF CoCMF GPNMF NMF PNMF P-NMF
(Fr)

P-NMF
(KL)

OPNMF
(Fr)

OPNMF
(KL)

NNDSVD-
NMF

5 39.64 59.40 59.14 54.70 46.84 58.90 57.97 57.89 48.08 23.80

7 54.80 62.25 60.96 59.38 52.50 60.20 60.88 60.44 48.68 23.83

9 75.20 69.67 62.5 62.40 54.93 64.03 63.35 62.48 48.84 24.30

11 69.50 70.50 65.37 65.20 57.25 63.75 63.38 63.17 49.36 27.35

13 77.60 73.00 69.00 67.40 61.60 65.60 64.05 63.50 49.50 30.20

Avg. 63.35 66.96 63.39 61.82 54.63 62.50 61.93 61.50 48.90 25.90

Table 2.
Face recognition accuracy on the GT dataset with different train numbers.
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ORL database. In cropped 112 � 92 dimension test image gallery, occlusion was
simulated by using a sheltering patch with different size ranges in set {10 � 10,
15 � 15, 20 � 20, 25 � 25, 30 � 30} and placed at random locations before resized in
28 � 21. Figure 4 shows examples of occluded ORL images.

In this experiment, we take randomly the training images with the ratio 4:6 for
training/testing and test several times on each sort of percent of randomly occluded
test image. Table 3 shows the detailed recognition accuracy on all selected algo-
rithms and our proposed methods. It can be seen that the recognition rate of all
methods is increased when the size of occlusion batch is decreased. Obviously,
StCMF and CoCMF outperform other tested approaches even if occlusion. This
reveals that StCMF and CoCMF are more robust outlier than the other.

5. Summary and discussion

In this paper, we have proposed a new approach to complex matrix factorization
to face recognition. Preliminary experimental results show that StCMF and CoCMF
achieve promising results for face recognition by utilizing the robustness of cosine-
based dissimilarity and extend the main spirits of NMF from real number field to
complex field which adds flexible constraints for the real-valued function of com-
plex variables. We have also noted how strong is the proficiency of StCMF as well as
CoCMF on face recognition task. Our proposed methods are simple frameworks
which do not need more complicated regularizes like NMFs in the real domain. We
believe that this capability of proposed methods will be stable in other application
tasks. In future work, three aspects of the proposed system will be centered on.
First, we add more regularized rules into objective function to a range of further
application such as speech and sound processing. Second, we employ other classi-
fiers such as complex neural network or complex SVM to treat well the complex-
valued feature. Last, kernel methods will be exploited in both feature extraction and
classification of StCMF and CoCMF constructed paradigm to develop the perfor-
mance of nonlinear contexts.

Figure 4.
Occluded face samples from ORL dataset with patch sizes of 15 � 15, 20 � 20, 25 � 25, 30 � 30, and
35 � 35.

Occluded
Size

StCMF CoCMF GPNMF NMF PNMF P-NMF
(Fr)

P-NMF
(KL)

OPNMF
(Fr)

OPNMF
(KL)

NNDSVD-
NMF

15�15 79.58 80.21 75.16 74.32 72.55 69.16 71.25 74.18 45.16 54.46

20�20 72.08 73.79 64.52 65.45 62.15 67.52 71.23 65.00 41.52 25.62

25�25 70.00 71.17 65.54 55.18 52.38 65.54 62.19 55.00 35.54 19.83

30�30 52.08 61.54 54.53 45.62 43.87 48.53 55.21 45.89 28.53 13.22

35�35 39.17 41.00 43.25 33.63 31.06 43.25 38.79 33.39 23.25 16.13

Avg. 62.58 65.54 60.60 54.84 52.40 58.80 59.73 54.69 34.80 25.85

Table 3.
Face recognition accuracy on the occluded ORL image with different occlusion sizes.
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recognition. StCMF achieves the best performance (97.50%) when the number of
training samples is chosen largest. However, CoCMF achieves higher improvement
in general.
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image, centered aligning image technique is applied for other methods to enhance
effective recognition rate that cannot be focused on our StCMF and CoCMF models.
However, the best recognition rate of all obtained by our proposed CoCMF method
which has extra regularizes term.

One of the difficulties in NMF is the estimation of the number of components or
K. The choice of K results in a compromise between data fitting and model com-
plexity; that is, a greater K leads to a better data approximation, but a smaller K
makes a model being easier to estimate and fewer parameters to transmit. In almost
NMFs, K is typically chosen such that it is larger than the estimated number of
sources and follows the constraint N þMð ÞK≪NM. This limit of NMFs illustrated
by the observation that among all results, the lowest rate belongs to NNDSVD-
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ment). In this case, the highest recognition rate belongs to the StCMFmethod again.

4.2.3 Face recognition on occluded ORL images

For a more convincing experimental assessment of the power of our proposed
models in occlusion processing, we test the performance on occluded images of

No.
Trains

StCMF CoCMF GPNMF NMF PNMF P-NMF
(Fr)

P-NMF
(KL)

OPNMF
(Fr)

OPNMF
(KL)

NNDSVD-
NMF

5 39.64 59.40 59.14 54.70 46.84 58.90 57.97 57.89 48.08 23.80

7 54.80 62.25 60.96 59.38 52.50 60.20 60.88 60.44 48.68 23.83

9 75.20 69.67 62.5 62.40 54.93 64.03 63.35 62.48 48.84 24.30

11 69.50 70.50 65.37 65.20 57.25 63.75 63.38 63.17 49.36 27.35

13 77.60 73.00 69.00 67.40 61.60 65.60 64.05 63.50 49.50 30.20

Avg. 63.35 66.96 63.39 61.82 54.63 62.50 61.93 61.50 48.90 25.90

Table 2.
Face recognition accuracy on the GT dataset with different train numbers.
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ORL database. In cropped 112 � 92 dimension test image gallery, occlusion was
simulated by using a sheltering patch with different size ranges in set {10 � 10,
15 � 15, 20 � 20, 25 � 25, 30 � 30} and placed at random locations before resized in
28 � 21. Figure 4 shows examples of occluded ORL images.

In this experiment, we take randomly the training images with the ratio 4:6 for
training/testing and test several times on each sort of percent of randomly occluded
test image. Table 3 shows the detailed recognition accuracy on all selected algo-
rithms and our proposed methods. It can be seen that the recognition rate of all
methods is increased when the size of occlusion batch is decreased. Obviously,
StCMF and CoCMF outperform other tested approaches even if occlusion. This
reveals that StCMF and CoCMF are more robust outlier than the other.

5. Summary and discussion

In this paper, we have proposed a new approach to complex matrix factorization
to face recognition. Preliminary experimental results show that StCMF and CoCMF
achieve promising results for face recognition by utilizing the robustness of cosine-
based dissimilarity and extend the main spirits of NMF from real number field to
complex field which adds flexible constraints for the real-valued function of com-
plex variables. We have also noted how strong is the proficiency of StCMF as well as
CoCMF on face recognition task. Our proposed methods are simple frameworks
which do not need more complicated regularizes like NMFs in the real domain. We
believe that this capability of proposed methods will be stable in other application
tasks. In future work, three aspects of the proposed system will be centered on.
First, we add more regularized rules into objective function to a range of further
application such as speech and sound processing. Second, we employ other classi-
fiers such as complex neural network or complex SVM to treat well the complex-
valued feature. Last, kernel methods will be exploited in both feature extraction and
classification of StCMF and CoCMF constructed paradigm to develop the perfor-
mance of nonlinear contexts.

Figure 4.
Occluded face samples from ORL dataset with patch sizes of 15 � 15, 20 � 20, 25 � 25, 30 � 30, and
35 � 35.

Occluded
Size

StCMF CoCMF GPNMF NMF PNMF P-NMF
(Fr)

P-NMF
(KL)

OPNMF
(Fr)

OPNMF
(KL)

NNDSVD-
NMF

15�15 79.58 80.21 75.16 74.32 72.55 69.16 71.25 74.18 45.16 54.46

20�20 72.08 73.79 64.52 65.45 62.15 67.52 71.23 65.00 41.52 25.62

25�25 70.00 71.17 65.54 55.18 52.38 65.54 62.19 55.00 35.54 19.83

30�30 52.08 61.54 54.53 45.62 43.87 48.53 55.21 45.89 28.53 13.22

35�35 39.17 41.00 43.25 33.63 31.06 43.25 38.79 33.39 23.25 16.13

Avg. 62.58 65.54 60.60 54.84 52.40 58.80 59.73 54.69 34.80 25.85

Table 3.
Face recognition accuracy on the occluded ORL image with different occlusion sizes.
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Abstract

This chapter presents a new technique called entropy volume-based scale-
invariant feature transform for correct face recognition post cosmetic surgery. The
comparable features taken are the key points and volume of the Difference of
Gaussian (DOG) structure for those points the information rate is confirmed. The
information extracted has a minimum effect on uncertain changes in the face since
the entropy is the higher-order statistical feature. Then the extracted corresponding
entropy volume-based scale-invariant feature transform features are applied and
provided to the support vector machine for classification. The normal scale-
invariant feature transform feature extracts the key points based on dissimilarity
which is also known as the contrast of the image, and the volume-based scale-
invariant feature transform (V-SIFT) feature extracts the key points based on the
volume of the structure. However, the EV-SIFT method provides both the contrast
and volume information. Thus, EV-SIFT provides better performance when com-
pared with principal component analysis (PCA), normal scale-invariant feature
transform (SIFT), and V-SIFT-based feature extraction. Since it is well known that
the artificial neural network (ANN) with Levenberg-Marquardt (LM) is a powerful
computation tool for accurate classification, it is further used in this technique for
better classification results.

Keywords: face recognition, plastic surgery, scale-invariant feature transform,
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1. Introduction

Human faces are multidimensional and complex visual stimuli, which contain
useful information about the uniqueness of a person. Recognizing their faces used
for security and authentication purposes has taken a new turn in the current era of
computer image and vision analysis, for example, in monitoring applications, image
recovery, man-machine interaction, and biometric authentication. Normally, the
facial recognition system does not have the sense of touch or human interaction to
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complete the recognition process. This is one of the benefits of face recognition in
relation to other recognition methods. Facial recognition can designate the verifica-
tion phase [1] or the identification phase [2]. In the verification phase, the corre-
spondence between two faces is resolved. There are many methods available to
achieve facial recognition [3–8]. But the accuracy of recognition is not always high.
This is due to variations in lighting levels, facial expressions, poses, aging, low-
resolution input images, or facial markings [9, 10]. Several investigators have
implemented several methods of face recognition to treat the effects of imposition
[11] of illumination [12], low resolution [13], aging [14], or a combination thereof
[15]. However, these uncertainties could be overcome, and, in the face of plastic
surgery, recognition will intensify with the identification of the person. The fact
that face recognition in plastic surgery is due to the lack or variation of facial
components, the texture of the skin, the general appearance of the face, and the
geometric relationship between facial features or variation of the facial components
[16–18]. Plastic surgery, both economic and sophisticated, has attracted people
from all over the world. However, only a few contributions or research methodolo-
gies have been reported in the literature to address the problem of face recognition
of plastic surgery. Few of them include recognition by local region analysis [19], a
local form of cascade texture function (SLBT) with periocular features [20]. A
review was also carried out in [21] to illustrate the use of multimodal features in the
recognition of plastic surgery on the basis of contributions.

1.1 Related works

De Marsico et al. [22] have made perfect recognition of the face, undergone
cosmetic surgery, with region-based approach on a multimodal supervised archi-
tecture, also named as Split Face Architecture (SFA). Author proved dominance of
their method by the application of supervised SFA to conventional PCA as well
as FDA, toward LBP in the multiscale, rotation-invariant version with uniform
patterns, face analysis for commercial entities (FACE), as well as face recognition
against occlusions and expression variations (FARO).

Kohli et al. [23] enclose layout of multiple projective dictionary learning frame-
work (MPDL) that never needs to figure norms to recognize usual faces, which
have undergone modification via cosmetic surgery. Several projective dictionaries
as well as compact binary face descriptors have been used to understand local and
global plastic surgery face representations, in order to facilitate the distinction
between plastic surgery faces and their original faces. The tests performed on the
plastic surgery database resulted in an accuracy of about 97.96%.

Chude-Olisah et al. [24] has overcome the degradation of facial recognition per-
formance; they have found that the approach had gone beyond the facial recognition
approaches of cosmetic surgery before accessible, regardless of changes in lighting,
facial expressions, and other changes resulting from cosmetic surgery. Ouanan [25]
has introduced HOG feature-based facial recognition approach, which uses HOG as a
substitute of DOG in the scale-invariant feature transform. Ouloul [26] introduces a
perfect recognition approach for face using SIFT feature in RGBD images which
depend on RGBD images produced by Kinect; this kind of cameras are low price, as
well as it can be utilized in every setting and in several situations. Bhatt et al. [27]
have proposed a multi-objective granular evolutionary method, which provides the
pairing of images taken before and after in cosmetic surgery. Primarily, the algorithm
generates superimposed face granules in three levels of granularity. Facial recognition
in plastic surgery has undergone several developments in recent years. Contributions
to the research were reported in the literature, either in the feature extraction phase,
in the classification phase, or in both phases.
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2. Granular approach for recognizing surgically altered face images
using EV-SIFT and LM trained NN

The surgical face recognition is developed, which is based on the granular
approach and Laplacian sharpening since it is identified that the sharpening of
images will automatically enhance the cornerness and contrast of the image gran-
ules. Further, the key point elimination is done in this technique with entropy
threshold, because entropy is the effective selection criterion that is used to elimi-
nate the unreliable interest points. Since it is well known that the artificial neural
network (ANN) with Levenberg-Marquardt (LM) is a powerful computation tool
for accurate classification, it is further used in this technique for better classification
results. The architecture diagram of the proposed face recognition technique is
diagrammatically illustrated in Figure 1.

The testing image IT is initially preprocessed, in such a way that the image IT

gets cropped, resized, and formulated granularly. Then the local extrema of the
preprocessed image ITp is detected using DOG scale space. Moreover, in this pro-
posed recognition technique, EV-SIFT descriptor is used to extract the features. The
NN classifier with LM is also adopted for better classification.

3. Preprocessing: granular and Laplacian sharpening

This is the initial process with the input image IT, where the image gets resized,
cropped, and formulated. Two types of preprocessing are carried out, namely,
Laplacian sharpening and granular processing.

Figure 1.
Block diagram of the proposed granular approach for recognizing plastic surgery faces.
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3.1 Preprocessing-I

The image IT from database is cropped and resized to 150 � 150.
Laplacian operator: This operator is also called derivative operator that is used

to identify the edges in an image. The foremost difference among Laplacian and
other operators such as Sobel, Prewitt, Kirsch, and Robinson is that all the men-
tioned operators are first-order derivative masks, whereas the Laplacian is the
second-order derivative mask. Further, two classifications are there in this mask:

• Positive Laplacian operator

• Negative Laplacian operator

Moreover, one of the differences among the operators is that Laplacian will not
use any corresponding direction. However, it uses edges in two classifications:

• Inward edges

• Outward edges

Positive Laplacian operator: This category has the standard mask, the center
element of the mask is the negative element, and the elements that present in the
corner of the mask must be zero, which is utilized to take the outward edges in the
image, which is illustrated in Figure 2.

Negative Laplacian operator: This operator also has a standard mask, in which
the center element must be positive; all the elements that exist in the corner must be
zero, and the remaining mask elements must be �1. This operator is utilized to take
the inward edges in the image, which is illustrated in Figure 2.

Working strategy of Laplacian: This operator deemphasizes the region in
image by using gray-level discontinuities, and it is happened by slowly varying gray
levels. The operation results in the image that has grayish edge line with dark
background, which grants both the inward and outward edges in image. The filter
application basically emphasizes two major strategies: it is impossible to apply both
the operators (positive and negative); rather only one operator can be applied. If the
positive operator is applied to the image, then the resultant image is subtracted
from the original image to get the sharpened image. Same as this, if the negative

Figure 2.
Standard mask of (a) positive Laplacian operator and (b) negative Laplacian operator.
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Laplacian operator is applied to the image, then the resultant image is added to the
original image for the sharpened image.

3.2 Preprocessing II

This is the foremost process of the developed model. Consider I as the nomi-
nated plastic surgery face image of n�m size. The face granules are formed with
the consideration of three levels of granularity. The initial level outputs the infor-
mation, namely, global information at multiple determinations. The inner and outer
information from the face are resulted from the second level of granularity. Nor-
mally, features termed “local facial features” play a leading role in the recognition of
face and therefore in the third-level extracts of the local facial features. The brief
explanation of the three granularities is explained below:

First level of granularity: In this level, the face granules are generated by apply-
ing the Gaussian and Laplacian operators. In accordance with this, Gaussian operator
gives the series of low-pass filtered image along 2D Gaussian kernel, whereas the
Laplacian operator gives the sequence of band-pass images. Consider IGg as the gran-
ules that are resultant from Gaussian as well as Laplacian operators, where g denotes
the granule number. If the face image is of size 196� 224, the output image might be
in the pyramid view with six granules IGg1 to IGg6, and it may be either higher or lower
determination. From the generated six granules, the facial features are separated at
varied determination for providing blurriness, smoothness, edge information, and
noise, which presents in I. Hence, the variations are compensated in this level with
the alteration of face textures like skin resurfacing, dermabrasion, and facelift.

Second level of granularity: In this level, the face image I is divided into varied
regions to get the horizontal granules IGg7 to IGg15 and the vertical granules IGg16 to IGg24.
The size of the first three granules is n�m=3. From the size of the next three
granules, the size of IGg10 and IGg12 is n� m=3� ∈ð Þ, and the size of IGg11 is

n� m=3þ 2∈ð Þ. Further, n� m=3þ ∈ð Þ is the size of IGg13 and IGg15, and

n� m=3� 2∈ð Þ is the size of IGg16. In the same manner, it generates the vertical
granules. In this way, the second level grants the variations in both the inner and the
outer facial regions. The variations that are present in the chin, cheek, ears, and
forehead are denoted with the aid of relations among vertical and horizontal granules.

Third level of granularity: In general, humans classify individuals by identifying
their local face regions like the eyes, mouth, and nose. This property is accomplished
in this level, which extracts the local facial regions and is used as the granules. In eye
coordinate, with the use of golden ratio face template, it is probable to extract 16 local
facial regions. Every region is determined as the local information, in which it denotes
the deviations due to the plastic surgery. This granularity preprocessing grants flexi-
bility to deviations in both the inner and outer facial sections. It uses the relation
among horizontal and vertical granules to view the deviations in the cheeks, chins,
forehead, and ears that changed due to plastic surgery processes.

4. EV-SIFT, local binary pattern (LBP), and center-symmetric local
binary pattern (CSLBP)

4.1 EV-SIFT

Consider the face image Fj and database IDi , where i ¼ 1, 2:……ND, which must
satisfy the condition Fj ⊂ IDi and j ¼ 1, 2::…NS, and the database size is given as
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M�Nð Þ. The preprocessing phase initiates with resizing of image. The resizing
model of the image is defined in Eq. (1), where SM and SN denote the scaled number
of columns and rows:

I x; yð Þ ¼ Ii mr; nrð Þ ¼ 1
SM ∗ SN

∑
mrSM

u¼ mr�1ð ÞSM
∑
nrSN

v¼ nr�1ð ÞSN
Ii u; vð Þ (1)

In Eq. (1), u∈ 1;M½ � and v∈ 1;N½ �, 0≤mr ≤Mr � 1 and 0≤ nr ≤Nr � 1,
Mr �Nrð Þ is the size of the resized image, and �½ � denotes the round-off function of
the nearest integer:

SM ¼ M
Mr

� �
(2)

SN ¼ N
Nr

� �
(3)

4.1.1 Acquisition of the EV-SIFT key points

Choosing the key points in the variation of the Gaussian function is the vital role
to be considered. The parameters of the key point are purely depending on distri-
bution property of the gradient operation of the image. Thus, the formulation of
both the orientation and gradient modules is done, which registers the invariance
toward the rotation of the image. The computation of orientation and gradient
module is defined in Eqs. (4) and (5), where θ x; yð Þ denotes the orientation of key
points and the gradient magnitude and L x; yð Þ refers to the image sample:

θ x; yð Þ ¼ tan �1
L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2
L xþ 1; yð Þ � L x� 1; yð Þð Þ2

 !
(4)

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þð Þ2
þ L x; yþ 1ð Þ � L x� 1; y� 1ð Þð Þ2

vuut
0
@

1
A (5)

The scales used by L are the respective scale for each key point. Further, an
orientation histogram is achieved as a result of gradient operation of sample points.

4.1.2 Entropy-based feature descriptor

The Changeable information is measured using entropy. It basically defines the
statistical measure of randomness, which determines the texture of the input image.
Only the least effect remains in the higher-order statistical feature due to the
entropy on uncertain deviations in the face. The following steps show the entropy-
based feature descriptor:

Step 1: The volume of the image is evaluated with the aid of V-SIFT formulation,
which is determined in the matrix form as defined in Eq. (6):

V i; jð Þ ¼

v i1; j1
� �

v i1; j2
� �

: v i1; jn
� �

v i2; j1
� �

v i2; j2
� �

: v i2; jn
� �

: : : :

v im; j1
� �

v im; j2
� �

: v im; jn
� �

2
6664

3
7775 (6)
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Step 2: The information basis is both memory less and static. The volume of the
structure in EV-SIFT analysis is defined in Eq. (7), which is the probability function:

Vp i; jð Þ ¼ V i; jð Þ
∑i ∑j V i; jð Þ (7)

Step 3: The computation of entropy is done from the volume of the structure.
The entropy calculation for EV-SIFT process is determined in Eq. (8), which states
that if E Vð Þ is high entropy, then the volume is from the unvarying direction, and if
it is low entropy, then it means that the volume is a varied distribution. Thus, FD

i
describes the entire database that achieved the final EV-SIFT descriptor:

E Vð Þ ¼ �Vp i; jð Þ logVp i; jð Þ (8)

The level of Gaussian blur of the image is selected by orientation and gradient
magnitude with entropy, and also the volume of the image is also sampled in terms
of scale of key points at particular key point location. The sample is an 8 � 8
neighbor window, which is centered on the key point and splits the neighbor into
4� 4 child window. Hence, the formulation of gradient orientation histogram is done
along with eight bins with the aid of each child window. In such a way that within
each key point, each descriptor intends the 4 � 4 array of histograms that comprises
eight bins. The feature vector attained is the size of 4 � 4 � 8 = 128 dimension.

4.2 Local binary pattern (LBP)

LBP [1] operator is designed for texture description. It encodes the pixel-wise
data in texture images, in such a way that a label is assigned to every pixel of the
image. This is done by thresholding the 3 � 3 neighborhood of all pixel value with
the center pixel, and the result must be a binary number. The basic LBP
thresholding function f T :; :ð Þ is defined as given in Eq. (9), where Yi, i ¼ 1, :::8 is
the eight neighborhood point around Y0, which is shown in Figure 3. LBP in other
words is termed as the concatenation of binary gradient direction, which is also
known as “micro pattern”:

f T IT Y0ð Þ; IT Yið Þ
� � ¼ 0, if IT Yið Þ � IT Y0ð Þ≤ threshold

1, if IT Yið Þ � IT Y0ð Þ. threshold
, i ¼ 1, 2, 3::……, 8

(
(9)

Figure 3.
Example of eight neighborhoods around Y0.
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M�Nð Þ. The preprocessing phase initiates with resizing of image. The resizing
model of the image is defined in Eq. (1), where SM and SN denote the scaled number
of columns and rows:
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SM ∗ SN

∑
mrSM
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∑
nrSN

v¼ nr�1ð ÞSN
Ii u; vð Þ (1)
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� �
(2)

SN ¼ N
Nr

� �
(3)

4.1.1 Acquisition of the EV-SIFT key points
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 !
(4)

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þð Þ2
þ L x; yþ 1ð Þ � L x� 1; y� 1ð Þð Þ2

vuut
0
@

1
A (5)

The scales used by L are the respective scale for each key point. Further, an
orientation histogram is achieved as a result of gradient operation of sample points.

4.1.2 Entropy-based feature descriptor
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V i; jð Þ ¼

v i1; j1
� �

v i1; j2
� �

: v i1; jn
� �

v i2; j1
� �

v i2; j2
� �

: v i2; jn
� �

: : : :

v im; j1
� �

v im; j2
� �

: v im; jn
� �

2
6664

3
7775 (6)
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Step 2: The information basis is both memory less and static. The volume of the
structure in EV-SIFT analysis is defined in Eq. (7), which is the probability function:

Vp i; jð Þ ¼ V i; jð Þ
∑i ∑j V i; jð Þ (7)

Step 3: The computation of entropy is done from the volume of the structure.
The entropy calculation for EV-SIFT process is determined in Eq. (8), which states
that if E Vð Þ is high entropy, then the volume is from the unvarying direction, and if
it is low entropy, then it means that the volume is a varied distribution. Thus, FD
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describes the entire database that achieved the final EV-SIFT descriptor:
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The level of Gaussian blur of the image is selected by orientation and gradient
magnitude with entropy, and also the volume of the image is also sampled in terms
of scale of key points at particular key point location. The sample is an 8 � 8
neighbor window, which is centered on the key point and splits the neighbor into
4� 4 child window. Hence, the formulation of gradient orientation histogram is done
along with eight bins with the aid of each child window. In such a way that within
each key point, each descriptor intends the 4 � 4 array of histograms that comprises
eight bins. The feature vector attained is the size of 4 � 4 � 8 = 128 dimension.

4.2 Local binary pattern (LBP)

LBP [1] operator is designed for texture description. It encodes the pixel-wise
data in texture images, in such a way that a label is assigned to every pixel of the
image. This is done by thresholding the 3 � 3 neighborhood of all pixel value with
the center pixel, and the result must be a binary number. The basic LBP
thresholding function f T :; :ð Þ is defined as given in Eq. (9), where Yi, i ¼ 1, :::8 is
the eight neighborhood point around Y0, which is shown in Figure 3. LBP in other
words is termed as the concatenation of binary gradient direction, which is also
known as “micro pattern”:

f T IT Y0ð Þ; IT Yið Þ
� � ¼ 0, if IT Yið Þ � IT Y0ð Þ≤ threshold
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Figure 3.
Example of eight neighborhoods around Y0.
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Figure 4 illustrates the sample of attaining an LBP micro pattern when the
threshold is set to 0. Further, the resultant histogram of the micro pattern presents
the data related to the distribution of edges, spots, and more local features that
present in the image. It is observed that the LBP is a great tool for face recognition.
Despite a number of static learning approaches that tune with more parameters,
LBP is more effective since it has an “easy-to-formulate” feature extraction process,
and also the matching strategy is also very simple.

4.3 Center-symmetric local binary pattern (CSLBP)

CSLBP [1] is established for interest region description. It purposes for least LBP
labels to generate smaller histograms, which are well suited to utilize in region
descriptors. Moreover, it is designed for better stability, especially in regions that
include the face image. Here, the comparison of pixel values are not done between
the pixels and center pixels; rather the opposing pixels are symmetrically compared
in correspondence to the center pixel, which is defined in Eq. (10):

CSLBPS,T u; vð Þ ¼ ∑
S=2ð Þ�1

i¼0
t si � siþ S=2ð Þ
� �

, t uð Þ ¼ 1, u.T
0, otherwise

�
(10)

where si and siþ S=2ð Þ refer to the gray values of center-symmetric pairs of S
similarly space out pixels.

In this work, the value of T threshold is 1% of pixel value. T is set to 0.01 since the
data lies among 0 and 1. The size of the neighborhood is eight as illustrated in Figure 5.
From the CSLBP formulation, it is evident that CSLBP is related to gradient operator,
and also it considers the gray level G differences among pairs of contrary pixels in
neighborhood. Thus, the CSLBP features show the advantage of both the LBP param-
eters and gradient features. CSLBP generates 16 varied binary patterns. Feature vector
of every key point is generated by concatenating 128-dimensional descriptor as well as
LBP [256-dimensional descriptor]/CSLBP [16-dimensional descriptor]. The feature
vectors’ dimensions are diminished to 25 dimensions by evaluating the covariance
matrix for PCA, from which the highest 25 eigenvectors are chosen for description.

5. Recognition system: Levenberg-Marquardt-based neural network
classifier (LM-NN)

In this work, LM-NN classifier is used for recognition purpose. The NN model is

represented in Eqs. (11)–(13), where n denotes the hidden neurons, w hð Þ
bnð Þ refers to

Figure 4.
An example for LBP micro pattern for a given region.
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the bias weight to nth hidden neurons, and w hð Þ
jn represents the hidden neuron’s

weight. The input is the dimensional reduced features from PCA, which is denoted
as f , A hð Þ is the output of the hidden layer that is defined in Eq. (11), and the
nonlinear function is represented as F •ð Þ:

A hð Þ ¼ F w hð Þ
bnð Þ þ ∑

N Ið Þ

j¼1
w hð Þ

jn f

 !
(11)

where N Ið Þ denotes the count of input neurons. B̂ is the output of the network

model that is defined in Eq. (12), where w oð Þ
bk is the weight of the output bias to kth

layer, w oð Þ
ik is the output weight from ith hidden neuron to kth layer, and N hð Þ is the

count of hidden neurons. The weight w ∗ is optimally chosen by reducing the
objective function, which is defined in Eq. (13), where B denotes the actual output
and N oð Þ is the number of output neurons:

B̂ ¼ F w oð Þ
bk þ ∑

N hð Þ

i¼1
w oð Þ

ik A
hð Þ
i

 !
(12)

w ∗ ¼ arg min

w hð Þ
bið Þ;w

hð Þ
ji ;w oð Þ

bk ;w
o
ik

h i ∑
N oð Þ

k¼1
kB� B̂k (13)

Here, the LM algorithm is used for training the NN model. The error
functionEF wð Þ to be reduced is represented as the sum of squared errors among the
target output BT and the network model output B̂, which is defined in Eq. (14):

EF Wð Þ ¼ vTv (14)

whereW ¼W1,W2,………WN,whichpresents all theweights of the network and v
is the error vector which includes the error of all the training samples.While training
with LMmodel, the growth ofweightΔW is obtained, and it is defined in Eq. (15):

Figure 5.
CSLBP establishment.
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ΔW ¼ MTMþ η
� ��‘1

MTv (15)

whereM is the Jacobian matrix and the learning rate to be updated is represented
as η. The updation of η is done using α, which depends to the outcome. Particularly, η
is multiplied by α, 0, α, 1ð Þ decay rate when EF Wð Þ minimizes, whereas when
EF Wð Þ increases, η is divided by α. The given pseudo-code shows the training process
of LM.

Step 1 Initializing the weights W and parameter η (η=.01 (approx.))
Step 2 Sum of the squared errors is formulated on the entire EF Wð Þ inputs.
Step 3 Increment of weights ΔW is computed using Eq. (14)
Step 4 Recomputing EF Wð Þ

Step 5 Use W + ΔW as the trail Wand evaluate
If trail EF Wð Þ,EF Wð Þin step 2 then

W = W + ΔW
η = η � α α ¼ 0:01ð Þ
Back to step 2

else
η ¼ η

α

Back to step 4
End if

6. Results and discussion

6.1 Experimental setup

The cosmetic surgery face recognition experimentation is conducted in
MATLAB 2015a. The database including presurgery faces and postsurgery faces are
downloaded from http://www.locateadoc.com/pictures/. The experimentation is
performed for different plastic surgery faces. The total number of plastic surgery
faces in the database is 460, where it comprises 68 images from blepharoplasty
(eyelid surgery), 51 images from brow lift (forehead surgery), 51 images from
liposhaving (facial sculpturing), 17 images from malar augmentation (cheek
implant), 18 images from mentoplasty (chin surgery), 54 images from otoplasty
(ear surgery), 75 images from rhinoplasty (nose surgery), 74 images from
rhytidectomy (facelift), and 52 images from skin peeling (skin resurfacing).

Figure 6.
Computation of granular images 1, 2, and 3. (a) Horizontal granules and (b) vertical granules.
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6.2 Granularity preprocessing

By dividing the face image into varied regions, we get the vertical as well as
horizontal face granules as illustrated in Figure 6. The horizontal granules are
represented as R1, R2, and R3, and the size is 150 � 150/3. Similarly, the vertical
granules are denoted as R4, R5, and R6, which is of 150/3 � 150 size.

6.3 Analysis on EV-SIFT

In this work, EV-SIFT descriptor is used for the feature extraction. Figure 7
illustrates the original images. For each original image, the corresponding vertical
edge and horizontal edge of the image were evaluated, and it is illustrated in
Figures 8 and 9. The gradient magnitude of the images is also shown in Figure 10.
Similarly, the theta images of the given input images are illustrated in Figure 11.

Figure 7.
Original images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 8.
Vertical edge of the given images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 9.
Horizontal edge of the given images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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One of the important processes is the evaluation of image orientation of the eight
angles such as 0, 45, 90, 135, 180, 225, 270, and 315° in each image, which is shown in
Figures 12–16. The resultant EV-SIFT contour of the input images is illustrated in
Figure 17.

6.4 Learning performance of LM-NN

The performance of the LM-NN classifier is illustrated in Figure 18. It is
observed that the best performance of the classifier is attained at the epoch 7, where
the training performance is 0.00022204, gradient is 7.0363e-08, Mu is 1e-10, and
the validation fail is 0 since there is no validation attained.

6.5 Comparative performance analysis of best-performing methods of
proposed approaches

While analyzing the first research technique, in the evaluation on LM-NN, it is
observed that the EV-SIFT proposed technique attained better results in all the
measures like accuracy, sensitivity, specificity, precision, false-positive rate (FPR),
false-negative rate (FNR), net present value (NPV), false discovery rate (FDR), and
F1score (also F-score or F-measure) which is a measure of a test’s accuracy and
Matthews correlation coefficient (MCC), respectively. The evaluation is summa-
rized in Tables 1–3.

It is observed that the proposed V-SIFT with LM-NN has achieved more over the
conventional methods for various plastic surgeries, which is summarized in

Figure 10.
Gradient magnitude of the images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 11.
Theta representation of the images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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Figure 13.
Image orientation of eight angles (image 2): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 12.
Image orientation of eight angles (image 1): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Figure 13.
Image orientation of eight angles (image 2): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Image orientation of eight angles (image 1): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Figure 14.
Image orientation of eight angles (image 3): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 15.
Image orientation of eight angles (image 4): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Figure 16.
Image orientation of eight angles (image 5): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 17.
EV-SIFT contour of images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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(h) 315°.
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Figure 16.
Image orientation of eight angles (image 5): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 17.
EV-SIFT contour of images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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Figure 18.
Performance of LM-NN classifier in correspondence with (a) validation performance and (b) gradient, Mu,
and validation fails.

LM-NN

Accuracy Rhinoplasty 0.92

Sensitivity Malar augmentation 0.24

Specificity Rhinoplasty 0.97

Precision Skin peeling 0.04

FPR Rhinoplasty 0.03

FNR Malar augmentation 0.76

NPV Rhinoplasty 0.97

FDR Skin peeling 0.96

F1score Skin peeling 0.06

MCC Skin peeling 0.04

Table 1.
Proposed SIFT with LM-NN of different plastic surgery faces.
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Table 2. It is observed that for all the measures, the method has attained better
results, which also leads to the other types of plastic surgery.

From the second technique, it is observed that the proposed EV-SIFT with LM-
NN are achieved more over the conventional methods for various plastic surgeries,
which is summarized in Table 3. It is observed that for all the measures, the method
has attained better results.

7. Conclusions

This chapter gives the detailed description of the second research technique. The
feature descriptor EV-SIFT that is used for feature extraction is well explained.
Further, the LM-based NN classifier is defined in this chapter, and the performance
of both the EV-SIFT and LM-NN classifiers is shown in the Result section. The
better work of EV-SIFT is effectively demonstrated in this section, which shows

LM-NN

Measures Surgery Attained result

Accuracy Rhytidectomy 0.93

Sensitivity Mentoplasty 0.19

Specificity Rhytidectomy 0.97

Precision Skin peeling 0.03

FPR Rhytidectomy 0.03

FNR Mentoplasty 0.81

NPV Rhytidectomy 0.97

FDR Skin peeling 0.97

F1score Skin peeling 0.05

MCC Skin peeling 0.03

Table 2.
Proposed V-SIFT with LM-NN of different plastic surgery faces.

LM-NN

Accuracy Rhinoplasty 0.984

Sensitivity Brow lift 0.17

Specificity Rhinoplasty 0.97

Precision Skin peeling 0.04

FPR Rhinoplasty 0.03

FNR Malar augmentation 0.83

NPV Rhinoplasty 0.97

FDR Skin peeling 0.96

F1score Skin peeling 0.06

MCC Skin peeling 0.04

Table 3.
Proposed EV-SIFT with LM-NN of different plastic surgery faces.
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how the images are distinguished between them. The analysis of the LM-NN classi-
fier is also more satisfactory with better performance.
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