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interest in the industrial applications of AI and learning systems have surged anew 
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developed during the past decade, and the number of industrial applications has 
been growing exponentially. This is rapidly changing the way of doing things 
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Chapter 1

AI Overview: Methods and
Structures
Erik Dahlquist, Moksadur Rahman, Jan Skvaril
and Konstantinos Kyprianidis

Abstract

This paper presents an overview of different methods used in what is normally
called AI-methods today. The methods have been there for many years, but now
have built a platform of methods complementing each other and forming a cluster
of tools to be used to build “learning systems”. Physical and statistical models are
used together and complemented with data cleaning and sorting. Models are then
used for many different applications like output prediction, soft sensors, fault
detection, diagnostics, decision support, classifications, process optimization,
model predictive control, maintenance on demand and production planning. In this
chapter we try to give an overview of a number of methods, and how they can be
utilized in process industry applications.

Keywords: process industry, artificial intelligence (AI), learning system,
soft sensors, machine learning

1. Introduction

During the 80th AI was a hot topic both in the academia and industries. Many
researchers were working a lot with development of methods for diagnostics, sim-
ulation and adaptation of models. Artificial Neural Networks (ANN) were being
implemented in real applications such as e.g. soft sensors to predict NOx concen-
tration in exhaust gas from power plants. Still there was quite some “over-selling”
and the enthusiasm for AI in the future was assumed to be useful tomorrow. But it
took much longer to get the systems robust enough to be used and fast enough to be
applicable in on-line applications. After year 2000, systems started to reach a more
mature state and we got IBMs Watson, that could beat the Jeopardy master. Later
the Google tool could beat the “Go-master”, a very complex Chinese game. This has
changed the perception of AI. It is still similar type of tools as were developed
during the 80th, but now they were refined a lot and hardwires has been developed
dramatically. This has given us a much more positive perception of what can be
done, and a lot is now being implemented. Still there is a risk for over-selling, as the
tools are normally not that “intelligent” as we normally think of when we talk about
Intelligence. But we are closing the gap day by day.

Concerning use of AI in process industry, we cannot just take the tools and hope
they will fix everything. It is still important to identify “what is the problem to
solve”? With Jeopardy the goal is to be good at Jeopardy, but what is the goal in
process industry? It should be to increase production, reduce process variations,
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implement maintenance on-demand and give operator support. It also means to
coordinate and optimize production lines as well as complete plants and later on
complete corporations. It also means to adapt to changing customer demands,
support in development of new products with production lines as well as handle
new business models. These different functions demand quite different tools and
thus we will not use only one but several. Often Machine learning is considered
being “the tool”, but often there is not data available to implement ML, especially
not when starting a new production line. To implement new tools, it is also very
important to pre-treat data. You have to sort data in “normal variations” or “anom-
alies”. You may need to filter data with moving windows, but in different time
perspectives. We need to do data reconciliation to handle drifting sensors. And you
need to integrate all levels from orders to production planning down to coordinated
and optimized production. In this chapter we will discuss a number of different
methods as well as discuss integration between the different levels. Over the years
many researchers have investigated different AI techniques for different process
industrial application. A comprehensive review on different AI models applied in
energy systems can be found in [1]. Applications of different AI tools based on
simulation models in pulp and paper industry has been presented by researchers
including Dahlquist [2–5]. Applications in power plants have been presented in many
articles including Karlsson et al. [6–8]. In Karlsson et al. [9] a general discussion is
made on how to make better use of data including pretreatment of data. Adaptation to
degeneration in process models by time is discussed in Karlsson et al. [7]. [10]
conducted an extensive review on different AI based soft sensors in process industries.

1.1 Similarities between AI and how the brain works

The mathematicians developing especially ANN have been looking a lot on how
the brain works. In Figure 1 we see a principal picture of a human.

Running in a forest: The brain stores many different factors locally by “tuning
many soft sensors”. During the night strength of connections are enhanced for the
most important functions, while other less important connections are eliminated.
Some information is used for direct control. Others is stored for use later on.

If it is rainy when you run there is a general feeling that “this was not so nice”.
Everything else happening in the forest then will be “colored” by this in your mem-
ory, aside of concrete thing like if you meet someone, like a friend, during the run.

Figure 1.
How a human handle input from the surrounding.

4
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Short termmemory: Dorsolateral prefrontal cortex controls information stream
from sensors. Skull lobe is for attention. Ventrolateral prefrontal cortex sort infor-
mation into useful or not useful info. Supplementary motor area (SMA) repeat new
memories all over.

Long term memory: Hippocampus and nearby areas in medial temple globe are
essential for long term memory. Facts are stored. Small brain and basial ganglia
contain procedural memory, like how to bike or swim.

A human may have approximately 120 billion nerve cells. Each connect to
hundreds of other cells. Some connections enhance while other decrease signals.
Very complex interactions where connections are established and broken continu-
ously. No exact values or memories exist for control, but diffuse input give diffuse
output, but with different feed-back mechanisms. The Swedish Nobel Prize winner
Arvid Carlsson [11] found out the mechanism of how signals are transferred from
the dendrite of one cell to the axon of the next, where complex feed-back mecha-
nisms enhance a connection and thereby also enforced a memory by changing the
easiness of transferring new signals. He explored how dopamine works as a signal
substance, which we now know is of highest importance in the brain. By back-
propagation in ANN we try to simulate this mechanism (Figure 2).

Input to the brain is sorted in Amygdala and hippocampus. Signals are sent to
different part of the brain Here different signals are enhanced or decreased
depending on previous experiences in many different “soft sensors”, built up with
tuning of Ca-channels working as parameters in a polynom. “= enhancement fac-
tors”. The situation is triggering memory build up. All control is “diffuse” using
many different “diffuse” measurements. Different individuals have different sensi-
tivity and number of different sensors like sense for bitterness, sugar, pain etc. Soft
sensors get input and react with output to other soft sensors. Signals are sent to
direct different biochemical processes like when fear - increase production of
Adrenalin and Cortisone. This in turn is affecting many other hormones and pro-
teins etc. Also, microbiome in the stomach and skin send input to the brain on how
these organs perform. When you run, the body feel good and e.g. endorphins are
produced enhancing performance of stomach, muscles etc. Serotonin levels,

Figure 2.
Signals flow in the brain – Many connections and feed-back enhance learning.
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gibberellins, insulin, cortisone etc. are interacting and tuning each other, but with
influence “from the side” by other sensor inputs. The brain is interacting with all
this. This is also the basic concept to mimic in “deep learning”.

If we try to transfer this picture into a control system, it can look like below in
Figure 3.

We start with sorting out “outliers” in pre-processing. This is what the brain
does with information from the eye etc. The outliers can be used for anomaly
detection. This is principally what is done in Amygdala. We then compare pre-
dictions from simulators and soft- sensors to measurements. We trend differences
developed by time. Refined data are used for model building and adaptation of
models. The models are used for soft sensors, diagnostics, control etc. We also make
conclusions in decision a tree from previous experience and identify optimal action
to take in different time perspectives. In the brain this is done by utilizing previous
experience in a way where we try to “make sense”. This means that we replace
missing data with what is reasonable. In our computer system we do this by data-
reconciliation using e.g. solving an equation system of physical models to get a best
fit. We then take actions by control of many different functions more. In the body,
this means e.g. control of sugar content in the blood, release of adrenalin to meet
threats or melatonin to make you tired and go to sleep. We learn buy tuning soft
sensors and decision trees with the new information just as the brain does, but
where the brain is very much more complex than what we can handle today.

1.2 Market aspects

IndTech’s market, i.e. Products and systems for industrial digitization and auto-
mation in the world are worth around USD 340 billion in 2016/2017 and have an
average growth rate of 7–8 percent. The area can be divided into two parts: IT
(industrial IT) and OT (operational technology). The share that can be categorized
into industrial IT is about USD 110–120 billion. The remaining USD 220 billion is
operational technology for the factory floors and in the field. It, in turn, is tradi-
tionally divided into discrete automation (about 45 percent) and process automa-
tion (about 55%). OT includes various types of industrial control systems (ICS) and
field equipment such as instrumentation, analysis, drive systems, motors, robots
and similar.

For the future of AI, we can see that this comes deeply into all these industrial
market segments, but also far beyond as not only for industrial applications.

Figure 3.
Principal diagram of signal processing in a “learning system”.
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The tools thus will be developed for one application, but then will be used also for
other applications most probable.

2. Different AI methods

There are many different methods developed. Some of them are very similar or
aim to solve the same type of problems. If we look at Machine learning (ML), we
have e.g. Regression. Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Principal Component Analysis (PCA), Partial Least Square regression
(PLS) and etc. They both aim to sort different variables into group that correlate to
different properties or faults.

PLS and ANN, both are very useful to create soft sensors. Deep learning is a
sophisticated version of the ANN, but with the goal to produce models that can do
much more than just be a soft sensor, which predicts one or more qualities. Exam-
ples of soft sensors is to predict strength properties of paper from e.g. NIR data and
process variable values in paper machines, amount of different kind of plastics in
Waste combustion plants or protein content in cereals in agriculture from NIR
spectra. The deep learning on the other hand can be used to teach a robot to pick out
machine components that are scrapped from a conveyor belt for instance. This then
includes image pattern analysis from camera monitoring of the parts passing.

A selection of different tools is listed in Table 1.

2.1 Machine learning methods

Machine learning methods principally use a lot of process data measured pref-
erably on-line, and identify correlation models from the data, which can be used for
different purposes like soft sensors, anomaly detection and others.

There are several different machine learning methods. Some are correlating a
specific property to process data. Reinforcement learning is described in e.g.
Gattami Ather [12]. It is used in problems where actions (decisions) have to be made
and each action (decision) affects future states of the system. Success is measured
by a scalar reward signal and proceed to maximize reward (or minimize cost) where
no system model is available. One example of this technique is deep reinforcement
learning which was used in AlphaGo that defeated theWorld Champion in Go. Here
a Q function is approximated with a deep neural network. Minimizing the loss
function with respect to the neural network weights w is made as given below

l ¼ r s, að Þ þ δsupQ ś, á,w�ð Þ � Q s, a,wð Þð Þ2 (1)

• Gaussian Process Regression (GPR)
• Partial Least Square (PLS) Regression
• Principal Component Analysis (PCA)
• Artificial Neural Networks (ANN)
• Support Vector Machines (SVM)
• Gray box models
• Physical models, MPC – model predictive control
• Bayesian networks (BN)
• Gaussian Mixture Model (GMM)
• Reinforcement Learning
• Google algorithm – search engines

Table 1.
A selection of different common AI-tools.
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If the system is deterministic the model is given by

Skþ1 ¼ f k sk, akð Þ (2)

If the system is stochastic the model is given by

P skþ1jsk, akð Þ (3)

f k sk, akð Þ is a scalar valued reward.
In Werbos Paul: A Menu of Design for reinforcement learning over time [13]

reinforcement methods are described more generally.

2.2 Soft sensors

It is interesting to create soft sensors by creating models correlating process
measurements on-line to quality measurements from samples analyzed at lab. The
soft sensor then can be used to predict the quality property on-line from feeding the
on-line measurements into the soft sensor model. There are several different
methods for the regression, and a number of alternatives are given in Figure 4
below.

In Figure 5 we see how the data flow can look like for data collection, data
pre-processing, model building and model validation. Here NIR measurements are
correlated to properties like lignin content.

Soft sensors also can be built with other methods like using ANN, Artificial
Neural nets. There are advantages and disadvantages with the different methods,
but also commonalities. You need good data for building the models. This means
that data need to be spread out in the value space in a good way. If we only have
“white noise” the models will be unusable. We need to vary all variables in a
systematic way to get useful data for model building.

2.3 Gaussian process regression model

Gaussian Process Regression takes more memory but gives better regression
models than many other methods like (Nonlinear) System Identification, Neural
Networks and Adaptive learning models. Can also be Combine with physics-based
models. The method is presented in e.g. Fredrik et al. [14]. In Figure 6 we see a first
attempt to predict kappa number of pulps after a digester for two different wood

Figure 4.
A number of methods that can be used to develop soft sensor models from process data.
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types, hardwood and soft wood. The training data fits quite well, while the pre-
dictions are less good. By using more data and fine-tune the estimation of residence
time in the reactor the prediction power became significantly better. It went from
R2 = 54 to R2 > 90.

2.4 Artificial neural nets, ANN

Artificial neural nets try to mimic the brain. In a simple way we can use the
equation below to show how it is calculated:

Figure 5.
Data flow for building and verification of soft sensors.

Figure 6.
Example of Gaussian process regression (GPR) for kappa prediction.
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ŷ tjθð Þ ¼ a1 ∗ κ γ1 þ β11φ1 tð Þ þ β21φ2 tð Þð Þ þ α2 ∗ κ γ2 þ β12φ1 tð Þ þ β22φ2 tð Þð Þ (4)

In Figure 7 we see three input variables to the left. Each variable is multiplied
with a weight factor towards the two summa-nodes, where the products are sum-
marized. Next these values can be treated to pass a threshold or only be passed on
and multiplied with a second constant αi. The two products are summarized again,
and we get a prediction of the value of a wanted property. When you build the net,
you look at the difference between the measured and the predicted value and adjust
the weight factors until you get a good fit. When you have been testing one set of
input variables you go to the next and proceed for all data you have and try to get a
fit that is the best for all input variables together. This is a simple net with only one
“hidden layer”, but you can have much more complex versions with many variables
and many layers. If you have many layers the problem though can be that you get a
good fit for the training data but it may also give risk for “over-fitting”, which
means less stable predictions.

An example of a first commercial application of ANN was for prediction of NOx
in power plants. In Figure 8 below we see a regression for the power boiler number
four in Vasteras.

2.5 PLS, partial least square regression and factorial design of experiments

PLS is very popular to use for making prediction models after performing facto-
rial designs of experiments. The basic idea is to start with a linear regression for a
line, y ¼ aþ b ∗ x, and adding non-linearity by þc ∗ x2 and if there are more than
one variable the interaction between variable 1 and 2 by d ∗ x1 ∗ x2. The polynomial
for a property like a strength property of a paper then becomes

y ¼ Aþ B ∗ x1 þ C ∗ x2 þD ∗ x12 þ E ∗ x22 þ F ∗ x1 ∗ x2 (5)

Here A-F are constants you get from fitting the experimental data to the model.
If we use factorial design, it means that we try to expand the prediction space as
much as possible within given borders. This means that we shall have a good
distribution of experimental data in all parts of the space, and not only close to origo
or in one part of the space. This means for example that you shall not make
correlation for one variable at a time but vary all variables in a systematic way. In
Ferreira et al. [15] the Box–Behnken design is described more in detail. In Table 2
below we see an example for three variables:

Figure 7.
A simple artificial neural net, ANN.
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The first 8 experiments give the linear regression while the last four gives the
non-linear components. As we vary all variables independently, we get the interac-
tion between the variables directly. (+) means here a higher amount or

Figure 8.
A plot showing the correlation between prediction with an ANN and measurements of the actual NOx content
in the exhaust gases from a power plant (coal fired boiler 4 at Malarenergi).

Experiment no x1 x2 x3

1 + + +

2 + + —

3 + — +

4 + — —

5 — + +

6 — + —

7 — — +

8 — — —

9 0 0 0

10
ffiffiffi
3

p
0 0

11 0
ffiffiffi
3

p
0

12 0 0 0
ffiffiffi
3

p

Table 2.
Factorial design of experiments with three important variables to predict a certain qualitative variable like
paper property, lignin content, content of different plastics etc.
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concentration of the variable while (�) means a low. (0) is Origo and
ffiffiffi
3

p
is where a

sphere is cutting the axis.
It is important to have an equal distribution in the whole sample volume of

measurements. If a high concentration of samples around origo – the impact of the
“real” samples will be too small. It is better to have a few good samples well distrib-
uted instead of many around origo or some other part of the space. By varying several
variables at simultaneous also catches interactions between the variables. The reason
while sometimes models built from only on-line data in a plant may have very little
prediction power is if we have a number of important variables with controllers, and
only get the white noise due to poor control. By really varying these variables in a
systematic way as proposed by factorial design, we can build robust prediction
models. If the models still are not that good, it may be because we are not varying or
measuring all important variables. Then we should change the variables in the facto-
rial design. If you do not know which variables are the most important you can start
with the factorial design scheme in Table 2 but add more variables and just vary
them around origo and perhaps some other random point. From this first scan we can
decide which variable to focus more experiments on.

The factorial design scheme can also be seen as values at the corners of a cube
and where the axis crosses a sphere around the cube as seen in Figure 9 below:

If it is expensive to run all experiments, you can make a reduced factorial design,
where you principally pick some of the variants randomly and make a PLS model.
You then add one or two experiments and see how much better it becomes and
proceed until you feel satisfied. This can be illustrated as in Figure 10.

Principally the regression is made so that you start with a line through all data in
the space and calculate the square of the distance between the point and the line.
You add all values for all points. Then you change the direction and make a new try.
This then proceeds until you have found a line that has least sum of square errors.
You then make an axis perpendicular to this first line and proceed to find a plane.

One example can be seen in Figure 11.

Strength ¼ Aþ B ∗ concentration of fillerþ C ∗ ration_longfiber_to_shortfiber
þ D ∗ concentration_of_fillerð Þ2þ E ∗ ration_longfiber_to_shortfiberð Þ2
þ F ∗ ration_longfiber_to_shortfiber ∗ concentration_of_fillerð Þð

(6)

Figure 9.
Factorial design with values in all corners of the cube and where axis cross a sphere surrounding the cube.
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In Figure 12 we see what wavelengths have importance and to what degree for
predicting the investigated property. At the top we have regression coefficients for
AIL, Acid Insoluble Lignin, and at the bottom for ASL, Acid Soluble Lignin.

We can see from the regression coefficients in Figure 12 that there is a signifi-
cant difference between the spectra, indicating that the chemistry differs quite a lot.
This as each wavelength corresponds to vibrations of a certain chemical bonding,
like C-H, C-H2, C-O, C=O, etc. This example is taken from Skvaril Jan [16].

Confounding means that some effects cannot be studied independently of each
other. This is very much the case in combustion processes, water treatment, process
industries like pulp and paper etc.! This is why the factorial design of experiments
make so much sense. In some cases, though there is no interaction between differ-
ent variables, and then it might be OK to build linear models, but this is often more
exceptions than the rule. There are a number of PLS methods. One popular version
is PLS Regression which is presented by e.g. Svante et al. [17].

2.6 Fault diagnostics

It is interesting to determine both process and sensor faults. This can be
performed in many different ways. You can listen to noise from an engine that

Figure 10.
Reduced factorial design.

Figure 11.
The plane direction is corresponding to the line, the down wards bending the non-linearity and the cross bending
of the surface shows interaction between the different variables x1, x2 and x3.
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indicates some fault. Or you measure that the temperature has become too high
somewhere. Fault detection can be systemized by using different tools and BN,
Bayesian Networks, is a tool suitable for identifying causality relations and
probability for different type of faults simultaneously.

2.6.1 Bayesian networks (BN)

Bayes was a priest in Scotland first discussing correlation versus causality. Cor-
relation means that you can see how different variable are connected to each other,
while causality means to take it a step further and also identify true dependence
between a variable and a fault or similar. If we see that there is a correlation
between homeopathic levels of a substance and effect on health, this can be a
correlation but hardly that the homeopathic medicine is causing the good health. A
lot of correlations are just random! With the Bayesian net you try to find the
causality between different variables and a fault or similar and also quantify this. If
we have a lot of experimental data we can use this to tune the BN, but if we do not
have it but know from experience that there is a causality, we can make a reasonable
guess of the importance in relation to other variables and use this for the BN. This
gives an opportunity to make prediction models without “big data” and you can
combine this input with real measurements in the plant.

Applications of BN for condition monitoring, root cause analysis (RCA) and
decision support has been presented in e.g. Weidl G.,Madsen A L, Dahlquist E [18];
[19, 20] and adaptive RCA in Weidl et al. [21]. Weidl and Dahlquist [22] also has
given a number of examples of RCA in pulp and paper industry applications like
digesters and screens. In Weidl and Dahlquist [23] applications more generally for
complex process operations are presented where object-oriented BN are utilized.

Figure 12.
Example of regression between wave lengths and lignin concentration in wood.
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In Widarsson [24] Bayesian Network for Decision Support on Soot Blowing Super-
heaters in a Biomass Fuelled Boiler was presented and in.

If we have a number of BN variables U = {Ai} and parent variables pa(Ai) of Ai we
can use the chain rule for Bayesian networks to give the probability for all variables Ai
as the product of all conditional probability tables (CTP) P(SkIH1,H2,…Hn). Here Sk
is the child node which can be observed status, measured values by some meter, a
trend or similar) and Hi is the parent node (assumed causes or conditions causing a
change in the child node state). The CPT can be trained by real measurements with
conditions and related failures or created by using experience by operators or process
experts. This is of specific interest when you want to include possible faults occurring
very seldom, but severe when actually happening. Data might also be created for
training by running a simulator with physical models and with different faults.

The chain rule for all CTPs is as seen in Eq. 7.

P Uð Þ ¼ P A1; … :;Anð Þ ¼
Y

i
P Ai∣pa Aið Þð Þ (7)

An example of a BN for a Root Cause Analysis function for a screen in e.g. pulp
and paper industry can be seen in Figures 13 and 14.

2.6.2 Anomaly detection

If we have identified that a variable should be within certain limits or we have
made a model using SVM or PCA or similar, we can see if the measured set of
variables is within the boarders for a class or group. Both these types of measures can
be used for anomaly detection. This can be very useful to identify if the process goes
out of normal operations even if you have not passed the limits for a single variable.

2.7 Classification and clustering

2.7.1 Principal component analysis (PCA)

Svante et al. [25] have presented the tool PCA in an article already 1987. PCA is
often in the same software package as PLS but has a different use. In the PCA we

Figure 13.
A Bayesian model for RCA (root cause analysis) of a screen.
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plot all measured data onto different planes to see how the variables distribute in
the plane. From this we can see that variables close to each other are affecting a
certain property in the same way, while those on the opposite side of the diagram
are having also the opposite effect. If the variables are close to Origo, we can believe
they have not much effect at all on the studied property.

The score vector is a column of T. There will be one score vector for each single
PC. Each experiment will have one value in the PC1 and one in the PC2. You plot all
experiments in a coordinate system with PC1 and PC2. If we plot all experiments in
a diagram with PC1 and PC2 we can get as in Figure 15.

In Figure 15 we have plotted the time series of measurements and can see that
there is a development from left to right as time passes by, along PC1. This shows
that something is happening by time. We can also make a loading (p) plot. The
loading plot shows how much each variable contributes to each PC. Each PC can be
seen as the linear combination of the original variables

PCi ¼
X

pjixi (8)

The loadings are the coefficients pji. Each variable can contribute to more than
one PC. If we have more than two PCs, it can contribute to all PCs. In Figure 16 we
see the p-plot for a number of variables:

Figure 14.
A principal drawing of a screen with sensors.
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From Figure 16 we can see that X3 and X6 have small impact while X4 and X8
have stronger impact but reverse to each other. X1 and X2 are following each other
closely.

Figure 15.
Score plot (t). First sample no 1 at t = 0 and following no:s following time steps.

Figure 16.
P-plot for eight variables in the PC1 – PC2 coordinate system.
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In Figure 17 it can be seen that when the set of variables is within the circle the
process is running OK, but when going outside you should take a look and try to get
it inside the circle again. This is a bit towards diffuse control, like in the human
body.

You can use the p-plot also to classify a number of faults. In Figure 18 we see an
example where vibrations, temperatures and electric power consumption was used
to predict different type of faults. The faults were implemented at the lab and the
variables measured. From this we could see that the variables were forming
different patterns.

The PLS is principally partial least squares or projection to latent structures.
Principally you do an interactive PCA for both X and Y matrices.

X ¼
X

T ∗PT þ E (9)

Y ¼
X

U ∗QT þ F (10)

Figure 17.
Using the plot to control the process by keeping within a certain area of the PC1-PC2 space.

Figure 18.
Use of plots to classify different faults.
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This can schematically be seen in Figure 19 below.
U gives starting values for T, and T back to U iteratively. Interdependency.

When the difference between two iterations is below a certain value, we take this as
the result.

There are a number of versions of this. PLS2 general = all Y; PLS1 for each single
Y; PCR also for each single Y, and no interactivity between Y and X (first X, then
Y); PCR is often used by statisticians while PLS by application engineers normally.

The result from the PLS regression will be a ploynom. If only linear: Y1 ¼
Aþ Bx1 þ Cx2 . If also nonlinear: Y1 ¼ Aþ B ∗X1 þ C ∗X2 þD ∗X1

2 þ E ∗X2
2. If

also interaction between variables: Y1 ¼ Aþ BX1 þ CX2 þDX1
2 þ EX2

2 þ FX1X2. If
we have more variables than two, we add X3, X3

2 and interaction between X3 and
the other variables, etc. These are used for prediction of Y1. If you want to study
several quality aspects using the same experiments, you add polynoms for Y2, Y3, Yi

in the same way, but with different constants of course.

2.7.2 Support vector machines (SVM)

In SVM we try to find the balancing point for different clusters and then try to
distribute the different measured values as close as possible to one of these cluster
balancing points. This is giving a similar type of clustering but is usually used for a
big set of data where you want to find out how many clusters there might be. You
can systematically test to have more or less clusters and see how the data fits from a
statistical perspective into more or less clusters.

2.8 Adaptive control

In Narend S. Kumpati [26] Adaptive control using neural networks is presented.
Since then MPC, both “fixed” and adaptive, have come to use in many applications
in process industry. There is even a Journal of Adaptive Control and Signal
Processing. In a recent number, April 2020, Merve et al. [27] discuss Improving
transient performance of discrete-time model reference adaptive control architec-
tures. This area is binding AI, modeling and control together.

Figure 19.
The principles for PLS (partial least square) regression.
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3. Architectural structure

In Figure 20 the structure implemented in the FUDIPO project (www.fudipo.eu)
[28] with respect to different functions is outlined. In the chapter about the data
structure Tieto has addressed different programs. These two are complementary. One
is a set of commercial software linked into the Tieto HMI3 platform. Examples of the
commercial tools are MatLab/Simulink for mathematical calculations and simulation,
Hugin for Bayesian Network configuration and Dymola for Modelica implementation
for simultaneous solver simulation.

In the second structure we have primarily open source programs like Red Node for
configuration of the complete system, linking everything together. MatLab is replaced
byPython and SimulinkwithOpenModelica, Dymola and these are then complemented
by other simpler software for different functions. The idea is that you can test all
functionalities together in the open source environment. If you have a smaller system
you can configure and use this also for “the real case”. If you have a bigger system
demand you probably go for commercial software to also get support for the functions,
and perhaps also make a service contract with someone who can support sustaining the
system, and upgrading on a frequent basis, as the production plant is developing.

From this overview we can see that there are many possibilities with use of AI-
tools, but it also takes some effort to understand which tools are useful to solve
specific problems.

• The solutions must be robust. 100% of operational space must be covered in a
reasonable way.

• Diagnostics must detect real faults, but avoid detect “false faults”

• Autonomous systems may be good, but you have to identify the boarders and
limits and what are important functions to work with.

Figure 20.
Layout of a complete system where different level and functions are connected and integrated.
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• Need to define the problem to solve!

• Optimization and adaptive systems and functions should include all important
functions. To do so you also need to vary the important variables. You cannot
train a system on constant values! Factorial design of “experiments” is then
important.

• Many new tools are being accessible, but you need to understand how they
work! Do not guess.
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Abstract

Due to the intense price-based global competition, rising operating cost, rapidly
changing economic conditions and stringent environmental regulations, modern
process and energy industries are confronting unprecedented challenges to main-
tain profitability. Therefore, improving the product quality and process efficiency
while reducing the production cost and plant downtime are matters of utmost
importance. These objectives are somewhat counteracting, and to satisfy them,
optimal operation and control of the plant components are essential. Use of optimi-
zation not only improves the control and monitoring of assets, but also offers better
coordination among different assets. Thus, it can lead to extensive savings in the
energy and resource consumption, and consequently offer reduction in operational
costs, by offering better control, diagnostics and decision support. This is one of the
main driving forces behind developing new methods, tools and frameworks. In this
chapter, a generic learning system architecture is presented that can be retrofitted
to existing automation platforms of different industrial plants. The architecture
offers flexibility and modularity, so that relevant functionalities can be selected for
a specific plant on an as-needed basis. Various functionalities such as soft-sensors,
outputs prediction, model adaptation, control optimization, anomaly detection,
diagnostics and decision supports are discussed in detail.

Keywords: learning system, soft-sensors, model predictive control, fault detection,
isolation and identification, information fusion

1. Introduction

Despite recent economic growth, industrial plants are facing tremendous local
and global competition. In order to maintain long-term competitiveness, industrial
plants need to optimize their operation continuously for better quality, availability,
flexibility and cost. As a consequence, industrial systems are becoming more and
more complex due to the increasing coupling between highly nonlinear and sto-
chastic subsystems or sub-processes. Often these systems include many control
loops and operate under multiple operational constraints. Hence, the development
of new methods and tools for optimal operation, monitoring and control of complex
industrial systems is a matter of utmost importance. Rapid development of indus-
trial automation, high-performance computing, artificial intelligence, machine
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learning, big data, cyber-physical systems, advance sensors, internet of things and
industry 4.0, stimulated the industry-wide application of advanced methods and
tools needed for optimal operation, monitoring and control. Although many
advanced techniques for optimal operation, monitoring and control are already
available and many more emerging day-by-day, the widespread use of these tech-
niques within the industrial domain has been particularly limited [1–3]. There are
numerous reasons identified to be accountable for the limited industry-wide
application.

Although introduction of advanced automation could ensure better asset utili-
zation, the enterprise must make sure that the newly available capacities are used
effectively. Need for major infrastructure overhaul and resistance to change
towards new systems that requires user’s skill upgrade are two major issues that
hindering the industrial application. The penetration barriers for technology niches
are also quite high due to the fact that the industrial automation sector is occupied
by only few multinational conglomerates. One can also blame the lack of pilot
applications proving the robustness of these emerging techniques. Traditionally,
advanced functionalities i.e. output prediction, optimal control, diagnostics and
decision support, have been developed separately by utilizing different approaches
and often with different model assumptions [4, 5]. Due to this segregated approach,
the integration of different functionalities has been difficult and, consequently
often neglected. However, each of these activities are closely related and cannot
really be conducted individually on a isolated manner. For example, a fault in the
system or a sensor failure can have a significant impact on the output prediction or
control. Therefore, integration among different functionalities are essential. Due to
their longevity, existing automation systems of large industrial plants mostly date
from the past few decades. Often replacing these automation systems completely
may not be economically viable. Hence, there is a need for an architecture that will
allow easy integration of advanced functionalities with both existing and state of the
art automation platforms of complex industrial systems. In order to get a structured
view on industrial automation and how optimal operation, control and monitoring
can leverage the benefit from such systems, a brief overview of the automation
pyramid as presented in Figure 1 can be helpful.

So what exactly is the automation pyramid? It is a graphical representation of the
different technological levels of automation in a industrial plant that allow commu-
nication among different technologies within each level as well as between the
different levels. The framework is defined by International society of automation
(ISA) within ISA-95 that is the international standard for the integration of enter-
prise and control systems [6]. The first level of the pyramid, commonly referred as
field level, consists of devices, sensors and actuators that are used to measure
different process parameters such as flow, temperature, pressure or concentration
and to manipulate different process variables via different mechanical, hydraulic,
pneumatic, electrical or electronic devices. The next level, referred as control level,
comprises distributed control or logical devices such as the programmable logic
controller (PLC), distributed control system (DCS) or proportional–integral–deriv-
ative (PID) controller. The control level uses these control and logical devices to
control or regulate the devices in the field level that actually perform the physical
work. They receive inputs from all field level sensors to make decisions on what
actions need to be taken by the filed level actuators to meet the predefined
set-points.

An example of separation between field and control level is presented in
Figure 2. Suppose the level of a tank need to be controlled to a predefined level in a
industrial plant. A level sensor measures the level of the tank in real time and
transfers this information to a PID controller. The controller adjust the position of a
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flow control valve by means of servo motor. In this scenario, the tank, level sensor,
flow control valve amd servo motor belong to the field level and the PID controller
belong to the control level. The supervisory control and data acquisition (SCADA)
system correspond to the third or supervisory level that is used to access data and
control multiple systems from a single location. The SCADA gathers information
from all the subsystems and sub-processes of a industrial plant, carrying out neces-
sary analysis and supervisory control and displaying the information in a logical and
organized manner (Figure 3). For example, supervisory control algorithms
calculate set-point values for the field level controllers (PIDs and PLCs).

Figure 2.
Example of segregation between field and control level.

Figure 1.
The automation pyramid of a typical industrial plant.
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Human-machine interfaces (HMI) and workstations are also included in this level.
Often this level uses process historians or databases, software programs that store
the historical process data. Hence, it is possible to study the patterns and find
abnormalities in the processes by the experts or automated programs.

The fourth or planning level includes the manufacturing execution system
(MES). MES is used to monitor the entire production process in a industrial plant
from the raw materials to the finished goods. A MES performs many activities
including production scheduling, management of production equipment and labor,
quality control, performance analysis and maintenance management. MES provides
a holistic view on the production process and allow planners to make decisions
based on the available information. At the top or management level, enterprise
resource planning (ERP) systems are placed to establish plant scheduling methods
and material management features. ERP is a integrated software that allows orga-
nizations to monitor day-to-day business activities from manufacturing, to sales, to
procurement, to accounting, to project management, to risk management, and
many more. A complete ERP package typically includes enterprise performance
management tool that is used to plan, budget, predict, and report on an organiza-
tion’s financial results. To be inline with the fourth industrial revolution widely
known as industry 4.0, the structure is becoming more of a pillar than a pyramid;
this enables enhanced communication beyond existing layer boundaries as well as
cloud computing functionality [7]. Irrespective of its structure, advanced methods
and tools can bring benefits to all levels of the automation hierarchy by providing
solutions for process monitoring, coordinated process control, integrated planning
and scheduling of man, machine and materials through better decision support.
However, a pyramid structure is chosen here due to its simplicity and relevance.

Typically, the process components are designed to meet the operational objec-
tives that are essential for the optimal and economic operation of the plant. Never-
theless, in reality, the process variables encounter both arbitrary and sustained
deviation from their targets due to external disturbances, inherent variability and
uncertainties. This is where the control system comes into play, by actively manip-
ulating the process to ensure stable operation of the plant while keeping the product
quality and specification within the target. Due to their simplicity and robustness,

Figure 3.
Relation between supervisory and control level.
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more than 90% of all industrial control loops are based on PID controllers [8]. PIDs
show superior performance as regulatory control of uni-variate problems, i.e. in
regulating flow, temperature, pressure, level, and other variables. In principle, a
PID evaluates the one-and-only process variable, decide if it is acceptable or not,
and takes corrective measures if necessary. This scheme works well for control
problems with only one variable or with several variables that can be manipulated
independently. Despite their widespread usage, PIDs have multiple drawbacks
when it comes to supervisory control of multivariate industrial processes with high
level of non-linearity. Therefore, multivariate control techniques are particularly
essential for supervisory control, whereas PIDs can still be used for uni-variate
regulatory controls under a supervisory control loop. Different model-based and
model-free multivariate process control techniques are widely studied by the
research community. In particular, model-based control is widely used by the
industry and has demonstrated an excellent track record [9]. However, advanced
control concepts that depend on process models to maneuver the plant are prone to
slow deterioration. Hence, model adaptation over time is essential to ensure optimal
control of the plant.

Apart from a robust control scheme, fault diagnostics also have an important
role in ensuring the optimal operation of a plant. In particular, soft faults and slow
deterioration of process components over time reduce the nominal production
capacity of a plant. It is often difficult to detect such faults just by looking at the
process variables, and they frequently remain unnoticed until the problems become
severe or lead to an unwanted plant shutdown due to component breakdown. These
faults and deterioration can also affect the control system negatively and disturb the
process stability.

A fault diagnostics system can be beneficial for a processing and energy plant in
numerous ways. Early detection of process, equipment or component faults or
deterioration can provide decision support for operators, engineers and managers at
different levels, i.e. DCS, computerized maintenance management system
(CMMS), MES and ERP. As a result, the operation of the plant, along with mainte-
nance, production and inventory planning can be improved. For example, an early
indication of a developing fault can provide decision support by initiating one or
more suggested actions that the control system or plant operator can perform to
prevent the fault development. If prevention is not possible, then early detection of
such deterioration can provide an indication of the remaining useful life (RUL) of
the affected component that, in turn, can provide an indication of when mainte-
nance is needed. Once a maintenance action is planned, that can initiate procure-
ment of the required spare parts and adjustment of the production plan based on
necessity.

To achieve such cross-platform functionality, there is a need for an integrated
framework for optimal control, diagnostics and decision support for the complex
industrial systems. The framework needs to be generic enough to accommodate
different systems with different levels of complexity. This is also necessary to cover
the broad range of systems that can utilize such a framework, starting from single
or multiple assets within a plant to a large fleet of assets spread over a large
geographical area.

2. Framework for generic learning system

For better resource utilization, product quality and process efficiency, supervi-
sory system of a modern industrial plant need to perform various activities includ-
ing outputs prediction, model adaptation, control optimization, anomaly detection,
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diagnostics and decision support. In order to enable the supervisory system to
perform all these activities efficiently, we propose a framework for the generic
learning system that can be integrated to the supervisory system of the complex
industrial plants. The architecture is very flexible and modular, so that relevant
functionalities can be selected for a particular case study on a plug and play basis.

The framework is developed in a way so that it can be retrofitted to the existing
automation platforms of a complex industrial plant. This provides solution to one of
the major barrier that hindering the widespread use of modern techniques emerging
for optimal operation, control and monitoring of complex industrial plants. Since
the framework allows easy integration of the learning system to the existing auto-
mation platforms, the need for extensive infrastructural modification and skill
development reduces drastically. The overall framework for the learning system is
presented in Figure 4. The learning system is placed in the supervisory level of the
automation pyramid. However, it actively supports decision making in both plan-
ning and management level. The learning system need process data as inputs to
perform systematic computational analysis. The data are gathered from the process
historian or the database. The first step before performing any analysis is data
assurance that includes outlier removal and noise reduction by means of various
data filtering techniques. Subsequently, different advanced analysis are performed
on the data ans the results are written back to the process historian. Firstly, trend
analyses are carried out on the data to identify any patterns in the process parame-
ters. Important process outputs are predicted by using physics-based and data-
driven process models. Advanced control optimisation techniques are applied to
calculate most optimal set-points for the low level regulatory controllers. Different
physics-based and data-driven anomaly detection and diagnostics algorithms are
also applied in order to find process abnormalities and faults. As a final step, results
from all these analysis are used to provide robust decision support with the help of
information fusion techniques. Moreover, the architecture allows integration of
state-of-the-art sensors for measuring feedstock properties, different process
parameters that are needed to better operation and control of complex industrial
processes. Human–machine interface (HMI) are also provided for the visualization
and further analysis. This is a key part of the framework that the users i.e. operators,
engineers and managers will directly interact with. Hence, the HMI need to be
designed such a way that it is user friendly and useful for them. This will determine
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if the learning system will actually be used or not. Hence, the user need to be
involved in the process of designing the HMI.

The different modules of the framework is discussed in the following sections.

2.1 Data assurance

Data assurance refers to different data preprocessing techniques that ensures
accurate, reliable and meaningful analysis. The data preprocessing steps typically
includes data cleaning, smoothing, scaling and grouping or binning [10]. Data
cleaning particularly refers to detection and removal or replacement of outliers and
missing data. Data smoothing on the other hand refers to removing noise from the
data. Here in the data assurance layer, outliers in the data are detected and different
noise reduction techniques are applied to refine the data. So what exactly meant by
outliers in the data? An outlier is a measurement that differs significantly from
other measurements in a dataset. The definition is quite broad in nature, allowing
the analyst to decide on the boundaries that separate measurements to be consid-
ered as outliers from normal. Typically, outliers represent only a small fraction of
the data and they do not follow the inner relationships present among different
process variables. Very simple example of a outlier in a dataset is shown in Figure 5.

There are many readily available techniques that can be used for outlier detec-
tion. As each dataset is different, there are no common methods that can be appli-
cable to every dataset. Rather, an analyst or domain expert, must examine the raw
measurements and decide whether a value is an outlier or not and what methods
can be used to detect it. Typically, statistical methods that are widely used for
detecting outliers corresponding to significantly extreme values are mean and stan-
dard deviation, and median absolute deviation method. According to the mean and
standard deviation method, a measurement is labeled as outlier if it more than three
standard deviation away from the mean value. However, as both the mean and the
standard deviation are sensitive to outliers, this method can be problematic in some
cases. A rule of thumb is that for normally distributed dataset, mean and the
standard deviation is a better choice. However, if dataset is not normal, the median
absolute deviation can be used. In this case, absolute deviation from the median

Figure 5.
Example of a outlier in dataset.
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if the learning system will actually be used or not. Hence, the user need to be
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The different modules of the framework is discussed in the following sections.
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Data assurance refers to different data preprocessing techniques that ensures
accurate, reliable and meaningful analysis. The data preprocessing steps typically
includes data cleaning, smoothing, scaling and grouping or binning [10]. Data
cleaning particularly refers to detection and removal or replacement of outliers and
missing data. Data smoothing on the other hand refers to removing noise from the
data. Here in the data assurance layer, outliers in the data are detected and different
noise reduction techniques are applied to refine the data. So what exactly meant by
outliers in the data? An outlier is a measurement that differs significantly from
other measurements in a dataset. The definition is quite broad in nature, allowing
the analyst to decide on the boundaries that separate measurements to be consid-
ered as outliers from normal. Typically, outliers represent only a small fraction of
the data and they do not follow the inner relationships present among different
process variables. Very simple example of a outlier in a dataset is shown in Figure 5.

There are many readily available techniques that can be used for outlier detec-
tion. As each dataset is different, there are no common methods that can be appli-
cable to every dataset. Rather, an analyst or domain expert, must examine the raw
measurements and decide whether a value is an outlier or not and what methods
can be used to detect it. Typically, statistical methods that are widely used for
detecting outliers corresponding to significantly extreme values are mean and stan-
dard deviation, and median absolute deviation method. According to the mean and
standard deviation method, a measurement is labeled as outlier if it more than three
standard deviation away from the mean value. However, as both the mean and the
standard deviation are sensitive to outliers, this method can be problematic in some
cases. A rule of thumb is that for normally distributed dataset, mean and the
standard deviation is a better choice. However, if dataset is not normal, the median
absolute deviation can be used. In this case, absolute deviation from the median
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value is used instead. Normally, historical data or a window width is used to apply
such techniques for time-series sensor readings.

Process data are subjected to noise. Hence, different noise reduction techniques
are needed before performing different analysis on the data. A typical example of
noisy sensor data and output data after smoothing is presented in Figure 6. How-
ever, one need to be careful when applying different noise reduction techniques.
Too much data smoothing can filter out many useful information in data that can be
important for different data analysis techniques. For noise reduction, time domain
filters i.e. moving average filter, moving median filter, Savitzky–Golay filter, artifi-
cial neural network (ANN) and local regression smoothing, and frequency domain
filters i.e. low pass, high pass and band pass filter are well known data smoothing
techniques. Among these, moving median filter is simple but most powerful data
smoothing technique. It particularly useful for eliminating unwanted noise from the
time-series sensor data. Two of its main advantages are (a) median filtering pre-
serves sharp edges and (b) it is very efficient for smoothing of spiky noise. How-
ever, presence of outlier in the data can effect the outcome of a moving average
filter. Hence, such smoothing techniques need to be used in addition to the outlier
removal step. The mathematical expression for moving average filter is presented in
Eq. (1).

yn ¼ median xn�k, … … , xn, … … , xnþkð Þ, (1)

where, the window width is 2kþ 1ð Þ is one of the major tuning parameter for
this filter. xn and yn are the nth sample of the input and output sequences. The filter
is fast in terms of computational time and not really difficult to implement.

2.2 Trend analysis

Trend analysis, also known as temporal reasoning, is a very important tool for
diagnostics and decision support in complex industrial processes. Typically humans
are very good at detecting patterns and trends in historial data by visual inspection.
This is the backbone of any manual supervision and monitoring strategy of a
industrial plant. However, detecting pattern by a automated algorithm is a difficult

Figure 6.
Example of noise reduction.
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problem. Generally, trends are difficult to quantify due to the non-deterministic
artifacts and background noise that typically presents in measurements. With the
fast evolution advanced data analytics, it is possible to identify meaningful trends in
time-series data that can be used in automated process monitoring, diagnostics and
decision support. Numerous methods exist for performing trend analysis, ranging
from the relatively simple methods such as linear regression to more complex
methods such as Mann-Kendall and Spearman’s rho tests to identify nonlinear
trends in time-series data.

In this work, the aim of trend analysis is to extract useful trends from the
historical process data so that it can be used as a prior knowledge to the decision
support system. Moreover, visualizing automated trend information to the opera-
tors can improve their reaction time to any unwanted process drifts and abnormal-
ities. The trend extraction methods can be either qualitative or quantitative in
nature. Qualitative methods has gained upper hand over quantitative methods on
extracting high-level knowledge from the process data [11]. Hence, Qualitative
methods are better suited as the input needed by the decision support system. As
the name suggest, qualitative trend analysis attempts to provide qualitative patterns
from the historical data by fetching the underlying short and long term trends.

The most common way of representing qualitative trends in data is the use of
seven primitives (Figure 7) with constant signs of first and second derivatives,
originally developed by Janusz and Venkatasubramanian [12]. However,
Charbonnier and Portet [4] proposed a self-adaptive qualitative trend analysis
method by utilizing the first three primitives: steady (A), increasing (B) and
decreasing (C). The method is further developed and applied to many industrial
applications [13, 14]. The method divides online process data into linear segments
to extract underlying trends. Real-time self-adaptation of the tuning parameters are
performed to detect the variations and artifacts presents in the data. An example of
trend fitting by using self-adaptive qualitative trend analysis approach is shown in
Figure 8.

2.3 Process models

Process models, also known as mathematical models or simply models, are
abstractions of real processes or systems that are used to characterize behavior of
the processes or systems, given that the inputs are known [15]. Typically, such
models can be used for prediction, control, fault detection, etc. Depending on the
the modeling approach, models can be widely classified as first-principle, empirical

Figure 7.
Most common primitives.
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value is used instead. Normally, historical data or a window width is used to apply
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is fast in terms of computational time and not really difficult to implement.

2.2 Trend analysis

Trend analysis, also known as temporal reasoning, is a very important tool for
diagnostics and decision support in complex industrial processes. Typically humans
are very good at detecting patterns and trends in historial data by visual inspection.
This is the backbone of any manual supervision and monitoring strategy of a
industrial plant. However, detecting pattern by a automated algorithm is a difficult
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problem. Generally, trends are difficult to quantify due to the non-deterministic
artifacts and background noise that typically presents in measurements. With the
fast evolution advanced data analytics, it is possible to identify meaningful trends in
time-series data that can be used in automated process monitoring, diagnostics and
decision support. Numerous methods exist for performing trend analysis, ranging
from the relatively simple methods such as linear regression to more complex
methods such as Mann-Kendall and Spearman’s rho tests to identify nonlinear
trends in time-series data.

In this work, the aim of trend analysis is to extract useful trends from the
historical process data so that it can be used as a prior knowledge to the decision
support system. Moreover, visualizing automated trend information to the opera-
tors can improve their reaction time to any unwanted process drifts and abnormal-
ities. The trend extraction methods can be either qualitative or quantitative in
nature. Qualitative methods has gained upper hand over quantitative methods on
extracting high-level knowledge from the process data [11]. Hence, Qualitative
methods are better suited as the input needed by the decision support system. As
the name suggest, qualitative trend analysis attempts to provide qualitative patterns
from the historical data by fetching the underlying short and long term trends.

The most common way of representing qualitative trends in data is the use of
seven primitives (Figure 7) with constant signs of first and second derivatives,
originally developed by Janusz and Venkatasubramanian [12]. However,
Charbonnier and Portet [4] proposed a self-adaptive qualitative trend analysis
method by utilizing the first three primitives: steady (A), increasing (B) and
decreasing (C). The method is further developed and applied to many industrial
applications [13, 14]. The method divides online process data into linear segments
to extract underlying trends. Real-time self-adaptation of the tuning parameters are
performed to detect the variations and artifacts presents in the data. An example of
trend fitting by using self-adaptive qualitative trend analysis approach is shown in
Figure 8.

2.3 Process models

Process models, also known as mathematical models or simply models, are
abstractions of real processes or systems that are used to characterize behavior of
the processes or systems, given that the inputs are known [15]. Typically, such
models can be used for prediction, control, fault detection, etc. Depending on the
the modeling approach, models can be widely classified as first-principle, empirical
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and hybrid models. First-principle models, also known as White-box models, are
based on mathematical equations that explain the physical, chemical or other basic
principles. On the other hand, empirical models are based on data or observations
that occurred in the past. These kind of models are also known as black–box models,
as they relate inputs to outputs without revealing any knowledge of the internal
working principles. Hybrid models are obtained by combining both first-principle
and and empirical approaches. Process models can be further categorized into
steady-state and dynamic models. A steady state-model is based on the assumption
that the system is in equilibrium, and is thus time-invariant. This type of model is
useful for system design but not for control applications. On the other hand, a
dynamic model accounts for the time-dependent changes in a system and can
therefore capture the transient behavior of the system. At the end the selection of
the modeling approach and model types entirely depends on the purpose of the
models. In this work, process models are used for output prediction, control and
diagnostics purposes. Both first-principle and and empirical models are
considered in order to take advantage of the benefits and avoid drawbacks
associated with them.

The complexity of process models can vary widely, from simple conceptual
models or linear models to high-fidelity computational fluid dynamics (CFD)
models, depending on the purpose of the modeling work. Added model complexity
almost always comes with a cost of high computational time that may impede the
online application. There is no common modeling approach that fits the needs of all
applications. Rather, the modeling approach for each application needs to be
selected on the basis of the relevant purpose.

Typically, all theoretical process models are based on general conservation
principles i.e. mass, energy and momentum balances, chemical kinetics, physical
phenomenon such as friction, diffusion, compaction, and/or component specifica-
tion. Most of the modeling work start with the assumption that some property is
conserved within the system boundary. The general conservation principle can be
formulated as Eq. (2).

Figure 8.
Trend fitting example by self-adaptive approach.
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Assuming the physical property under consideration is X tð Þ where t is the
independent variable for representing time. If the rate of change in inflows and
outflows are denoted by _xin and _xout; and rate of change in generation and con-
sumption are denoted by _g tð Þ and _c tð Þ within the system boundary shown in
Figure 9, a general balance law can be written in following form as in Eq. (3).

dX tð Þ
dt

¼ _xin þ _g tð Þ � _xout � _c tð Þ, (3)

This general balance law can be adapted for all three fundamental quantities:
mass, energy and momentum, in order to model different industrial processes.

Reaction kinetics modeling another important aspect of process model
development. For simplification let us consider a chemical reaction (Eq. (4)), where
product C is formed by the reaction between reactants A and B.

Aþ B ! C, (4)

Typically, the rate of reaction for a chemical reaction depends on principal
quantities like temperature, pressure, and composition. For the sake of simplicity,
let us assume that the effect of pressure is negligible in this case. Hence the rate of
reaction rc can be expressed as Eq. (5).

rc ¼ k ∗C α
A C β

B , (5)

where CA and CB are the concentration of reactants A and B, and k is the
reaction rate constant. α and β are the exponents of concentration corresponding to
each reactant. The rate constant k and the exponents α and β must be determined
experimentally by monitoring how the rate of a reaction changes as the concentra-
tions of the reactants are changed. The reaction rate constant k is temperature
dependent and generally expressed according to the Arrhenius equation (Eq. (6)),

k ¼ Ai ∗ e�
E
RT, (6)

Figure 9.
An example of a system boundary within which physical properties are considered to be conserved.
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Where, Ai, E, R and T pre-exponential factor, activation energy, universal gas
constant and temperature of the reaction, respectively.

Depending modeling purpose the process models can also include more complex
physical phenomenon such as diffusion, friction, compaction, porosity, velocity etc.
A first-principle model usually consists of the three types of equations i.e. algebraic
equations (AEs), ordinary differential equations (ODEs), and partial differential
equations (PDEs).

Typically, dynamical systems are described by differential equations. Often a set
of AEs are solved to find numerical solution of a set of ODEs. Generally, PDEs are
used to describe processes with distributed parameters [16]. Partial derivatives with
respect to both time and space resulted in models that computationally expensive to
solve. Often lumped approximation is considered by assuming infinitesimally small
continuous stirred tank reactors (CSTRs) in series. By assuming ideal mixing, it is
possible to avoid changes of parameters in space inside a infinitesimal CSTR. Con-
sequently, it is possible to model the process by using differential-algebraic equa-
tions (DAEs). DAEs are commonly solved by using various numerical methods.
Many dynamic system modeling tools use their own solvers for this purpose. For
example, One of the popular solver used by OpenModelica and Dymola is DASSL.
The basic principle of DASSL is not unique, it replaces the derivative part with a
difference approximation and solve the resulting system of equations with a New-
ton method [17]. However, great care in parameter initialization is necessary to
ensure numerical convergence or fast convergence.

2.4 Model predictive control

Model predictive control (MPC) refers to a range of control algorithms for
feedback and feed-forward control based on the receding horizon philosophy,
where a set of optimal control moves are calculated according to the prediction of
future behavior of the plant based on a process model. Using a process model, the
MPC optimizer is able to estimate the consequence of past inputs on future outputs.
As presented in Figure 10, at every control step, the MPC attempts to optimize
future behavior of the plant by evaluating future sequential control moves over the
prediction horizon. The controller then only executes the first step of the previously
evaluated optimal control moves. The entire process is repeated again before the
next control move.

Figure 10.
Schematic representation of model predictive control. MV: Manipulated variable.
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MPC provides superior performance particularly for processes that have multi-
variate interactions between inputs and outputs, which is a common traits of com-
plex industrial systems. We argue that for highly complex processes MPC alone
might not be the solution; particularly for processes where feed-stock properties
varies unpredictably due to natural variation. In such cases, feed-forwarding the
feed-stock variation to MPC will provide tighter control of the process. The scheme
for a feed-forward MPC concept is depicted in Figure 11, where the feed-stock
properties are feed-forwarded along with plant measurement to the MPC. A process
model utilizes these information to make better prediction about the future outputs.
The MPC optimizer computes the optimal control moves by solving a constrained
finite-horizon optimization problem in which the cost functions make use of model
predictions. The operational constraints are incorporated in the optimizer to ensure
compliance. Additionally, the MPC also uses feedback to compensate for inaccura-
cies in the model and ensure convergence.

In reality, the cost function is a mathematical expression that is either minimized
or maximized to find a best solution among all possible feasible solutions. Here, the
cost function is expressed to find a sequence of incremental manipulated variables
(MVs) over a control horizon of c samples, as presented in Eq. (7). The cost
function minimizes a weighted sum of future squared errors of the outputs y kþ ið Þ
and a weighted sum of increments in the sequence of MVs Δu kþ ið Þ, while limits
for Mvs and limits for predicted process variables are considered as a form of
constraints in Eq. (8).

f kð Þ ¼
Xp

i¼1

Γe kþ ið Þk k22 þ
Xc�1

i¼0

∧Δu kþ ið Þk k22, (7)

subject to constraints,

ymin < y kþ ið Þ< ymax ∀i 1, p½ �
umin < u kþ ið Þ< umax ∀i 0, c� 1½ �
Δumin <Δu kþ ið Þ<Δumax ∀i 0, c� 1½ �

(8)

In this minimization, the future errors e kð Þ are calculated over a prediction
horizon of p samples according to Eq. (9),

Figure 11.
Scheme for feed-forward MPC.
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Where, Ai, E, R and T pre-exponential factor, activation energy, universal gas
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evaluated optimal control moves. The entire process is repeated again before the
next control move.

Figure 10.
Schematic representation of model predictive control. MV: Manipulated variable.
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MPC provides superior performance particularly for processes that have multi-
variate interactions between inputs and outputs, which is a common traits of com-
plex industrial systems. We argue that for highly complex processes MPC alone
might not be the solution; particularly for processes where feed-stock properties
varies unpredictably due to natural variation. In such cases, feed-forwarding the
feed-stock variation to MPC will provide tighter control of the process. The scheme
for a feed-forward MPC concept is depicted in Figure 11, where the feed-stock
properties are feed-forwarded along with plant measurement to the MPC. A process
model utilizes these information to make better prediction about the future outputs.
The MPC optimizer computes the optimal control moves by solving a constrained
finite-horizon optimization problem in which the cost functions make use of model
predictions. The operational constraints are incorporated in the optimizer to ensure
compliance. Additionally, the MPC also uses feedback to compensate for inaccura-
cies in the model and ensure convergence.

In reality, the cost function is a mathematical expression that is either minimized
or maximized to find a best solution among all possible feasible solutions. Here, the
cost function is expressed to find a sequence of incremental manipulated variables
(MVs) over a control horizon of c samples, as presented in Eq. (7). The cost
function minimizes a weighted sum of future squared errors of the outputs y kþ ið Þ
and a weighted sum of increments in the sequence of MVs Δu kþ ið Þ, while limits
for Mvs and limits for predicted process variables are considered as a form of
constraints in Eq. (8).

f kð Þ ¼
Xp

i¼1

Γe kþ ið Þk k22 þ
Xc�1

i¼0

∧Δu kþ ið Þk k22, (7)

subject to constraints,

ymin < y kþ ið Þ< ymax ∀i 1, p½ �
umin < u kþ ið Þ< umax ∀i 0, c� 1½ �
Δumin <Δu kþ ið Þ<Δumax ∀i 0, c� 1½ �

(8)

In this minimization, the future errors e kð Þ are calculated over a prediction
horizon of p samples according to Eq. (9),

Figure 11.
Scheme for feed-forward MPC.
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e kð Þ ¼ s kð Þ � y kð Þ, (9)

where, s kð Þ denotes the reference set-point trajectories. For outputs prediction a
dynamic model can be used, or if an observer based formulation is utilized then a
reduced order state-space model identified from the dynamic model, or linearised
model from the step tests of a real plant can also be used.

2.5 Anomaly detection

Anomalies are the unusual, unexpected, abnormal patterns in a signal or a
process variable. The term anomaly comes from the Greek word “anomolia” that
means uneven or irregular. So how anomalies differ from faults? Faults are unex-
pected malfunctions in one or more components of a process that are not a failure or
breakdown. However, faults may result in failures or catastrophic breakdowns if
not resolved in time. On the other hand, anomalies only tell us there might be
something abnormal with the system or a signal but it not necessarily means there is
a fault in the system. Anomalies can occur due to many reasons other than faults.
Maybe it is hard to accept but real systems are continually anomalous in many ways.
Interestingly, anomalies can be positive or negative in nature depending on the
context and interpretation [18]. Due to its nature, anomaly detection creates signif-
icant noise. However, detection of such abnormal conditions in the process can
assists the operators on decision making so that they can react in time to avoid or
correct the situations associated with them. Here, for the decision support system,
anomaly detection is an additional source of information that will assist in robust
decision making. We will also take the opportunity to distinguish between outlier
detection and anomaly detection functions as we use both of these techniques in our
framework. In outlier detection, we detect and remove or replace data that are
either missing or illegitimate (e.g. a negative flow-rate) or very far away from rest
of the data. In anomaly detection, we detect abnormal pattern in data and forward
this information to the decision support system.

According to the general failure mode curve (Figure 12), a new machine runs
with good health condition for some period of time. Then it reaches a point H where

Figure 12.
Equipment failure mode diagram (adapted from [19]).
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degradation starts to occur due to some damage-causing conditions. Point P repre-
sents the time where potential failure is recognized. The degradation progresses and
then reaches a point where it can be detected. In general, the abnormal condition
between P and F falls within the detectable range. The range between P and D refers
to anomaly whereas between D and F refers to a fault [19]. Anomaly can also be a
discrete event causing a rapid shift in measurement changes [20]. The goal of
anomaly detection is, therefore, to detect the potential failure as early as possible.

Anomaly detection is extensively studied within many different application
areas including credit card fraud detection, finance, cyber-intrusion, network
monitoring, and many industrial plant monitoring [21, 22]. The simplest form of
industrial anomaly detection technique can be as simple as logging an alarm if a
sensor reading drifts away from a predefined upper and lower boundary. However,
there are quite many anomaly detection techniques explored by researchers; which
can be broadly categorized in three groups: (a) statistical techniques i.e. principal
component analysis (PCA), histogram, Gaussian mixture models, Gaussian Kernels,
etc., (b) cognitive techniques i.e. expert systems, finite state machine, etc., and (c)
machine learning techniques i.e. clustering, classification, etc.

Anomaly detection is an important step in the process of fault diagnostics, and
can be performed using measurement deviations or residuals as illustrated in
Figure 13. A threshold-based detection or a binary logic can be applied. According
to the threshold-based anomaly detection, the residuals should be very close to zero
or lie within the threshold when the system is running in a normal operating
condition and at least one residual should deviate noticeably from zero when an
anomaly occurs. As a threshold, a Gaussian distribution of the residuals is often
assumed in order to take into account variations due to measurement uncertainties.
In the case of the binary logic, the residual is considered as a signal which is zero
when the system is functioning properly and different to zero when some abnormal
behavior is observed.

There are a variety of methods available for anomaly detection starting from the
conventional model-based or statistical approaches to the more sophisticated machine
learning techniques. Model-based methods rely on system models combining the
theoretical knowledge with the test or actual performance data. When an abnormal
condition (or a discreet fault event) occurs somewhere in the system, it produces
deviations in measurements from their expected reference values. An accurate sys-
temmodeling followed by a robust residual generation and proper threshold selection
is critical. Machine learning techniques usually treat the anomaly detection task as a
pattern recognition problem. The algorithm tries to learn a decision boundary from

Figure 13.
Anomaly detection schematics.
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degradation starts to occur due to some damage-causing conditions. Point P repre-
sents the time where potential failure is recognized. The degradation progresses and
then reaches a point where it can be detected. In general, the abnormal condition
between P and F falls within the detectable range. The range between P and D refers
to anomaly whereas between D and F refers to a fault [19]. Anomaly can also be a
discrete event causing a rapid shift in measurement changes [20]. The goal of
anomaly detection is, therefore, to detect the potential failure as early as possible.

Anomaly detection is extensively studied within many different application
areas including credit card fraud detection, finance, cyber-intrusion, network
monitoring, and many industrial plant monitoring [21, 22]. The simplest form of
industrial anomaly detection technique can be as simple as logging an alarm if a
sensor reading drifts away from a predefined upper and lower boundary. However,
there are quite many anomaly detection techniques explored by researchers; which
can be broadly categorized in three groups: (a) statistical techniques i.e. principal
component analysis (PCA), histogram, Gaussian mixture models, Gaussian Kernels,
etc., (b) cognitive techniques i.e. expert systems, finite state machine, etc., and (c)
machine learning techniques i.e. clustering, classification, etc.

Anomaly detection is an important step in the process of fault diagnostics, and
can be performed using measurement deviations or residuals as illustrated in
Figure 13. A threshold-based detection or a binary logic can be applied. According
to the threshold-based anomaly detection, the residuals should be very close to zero
or lie within the threshold when the system is running in a normal operating
condition and at least one residual should deviate noticeably from zero when an
anomaly occurs. As a threshold, a Gaussian distribution of the residuals is often
assumed in order to take into account variations due to measurement uncertainties.
In the case of the binary logic, the residual is considered as a signal which is zero
when the system is functioning properly and different to zero when some abnormal
behavior is observed.

There are a variety of methods available for anomaly detection starting from the
conventional model-based or statistical approaches to the more sophisticated machine
learning techniques. Model-based methods rely on system models combining the
theoretical knowledge with the test or actual performance data. When an abnormal
condition (or a discreet fault event) occurs somewhere in the system, it produces
deviations in measurements from their expected reference values. An accurate sys-
temmodeling followed by a robust residual generation and proper threshold selection
is critical. Machine learning techniques usually treat the anomaly detection task as a
pattern recognition problem. The algorithm tries to learn a decision boundary from
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the training data (i.e. the normal data). The detection accuracy can be evaluated using
the standard detection decision matrix as presented in Table 1.

In machine learning algorithms anomalies can be detected in a supervised or
unsupervised way. In the former case, labeled data is used for training. The labels
can be binary, e.g. yes/no, one/zero, normal/abnormal, and fault/no-fault. ANN,
support vector machine (SVM), and K nearest neighbor (KNN) are examples of the
widely used supervised classification algorithms. For the unsupervised case, the
normal and abnormal classes are distinguished based on their similarity using dis-
tance or density functions. Hierarchical clustering (HC), self-organizing map
(SOM), K-means and K-medoids are some of the common unsupervised clustering
algorithms.

In ANNs, a fault detection task is considered as pattern recognition. During
training sample patterns of the two classes are feed into the network and the
network tries to recognize the patterns based on their corresponding output labels.
Among ANNs, an autoassociative neural network (AANN) is more suitable for an
anomaly detection [23]. First, the model is trained on a normal data as input and
output (Figure 14). For the normal input data, the difference between the model
output and the target output will be close to zero, while for abnormal input
patterns, at least one of the output residuals will deviate noticeably from zero.

Actual Predicted

Abnormal Normal Total

Abnormal True abnormal False
normal

K1 + K2 Detection rate Missed
detection rate

K1 K2 K1/(K1 + K2) K2/(K1 + K2)

Normal False
abnormal

True
normal

K3 + K4 True normal rate False alarm rate

K3 K4 K4/(k3 + K3) K3/(K3 + K4)

Total K1 + K3 K2 + K4 K1 + K2 + K3 + K4 Detection accuracy

(K1 + K4)/
(K1 + K2 + K3 + K4)

Table 1.
Detection decision matrix.

Figure 14.
Architecture of an AANN for anomaly detection.

40

AI and Learning Systems - Industrial Applications and Future Directions

According to KNN algorithms, anomalies are data points located farthest away
from the normal data points or in low-density regions if weighted distances are
considered (see Figure 15). After estimating all distance values, they need to be
sorted in descending order. Anomalies are data points with the largest distance
values. Then, the test data points that fall in the top n% distance range are consid-
ered as anomalies, where n is user defined value. The Euclidean function is the most
convenient distance function in KNN.

A support vector machine is another type of supervised learning classifier. It is a
binary classifier in its nature that separates two different classes by maximizing the
margin between them. If one of the classes to be distinguished is taken as positive
the rest of the class will be considered as negative. The classifier will, therefore,
learn a boundary to separate the positive and negative classes as illustrated in
Figure 16. The purpose of the support vector machine is to maximize the separation
distance (margin) between the two classes. The type of SVM used for anomaly
detection is called a one-class SVM. In this case, the model is trained only on the
normal data class, and anything deviated from the normal class is considered an
anomaly. The one-class SMV maps training data patterns into a high-dimensional

Figure 15.
Anomaly detection using a KNN.

Figure 16.
The SVM classifier for linearly separable classes.
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feature space using the kernel function and finds the maximum margin that sepa-
rates the training sample and the origin. Figure 17 shows a linear one-class SVM for
data points in a 2-dimensional space.

The function to be minimized in order to maximize the margin between the
origin and the training class is

min
w, ξ, λ

1
2
kwk þ 1

vm

Xm
i

ξi � λ s:t: w,ψ xð Þð Þ≥ λ� ξi, ξi ≥0 and 0< v< 1,

(10)

The decision function is given as

f xð Þ ¼ sgn <w,Φ xð Þ> � λð Þ, (11)

Applying Lagrange multiplication yields the following quadratic programming
to be optimized

min
1
2

X
i, j

γiγ jk Xi:X j
� �

s:t: 0≤ γi ≤
1
vm

and
Xm
i

γi ¼ 1, (12)

where γ is the Lagrange multipliers, k is the kernel function used to project the
input feature into the feature space, λ is an offset parameterizing a hyper-plane in
the feature space, and m is the number of training data points. There are different
types of kernel functions for instance, linear kernel, polynomial kernel, radial basis
function (RBF) kernel, and Sigmoid kernel.

2.6 Fault diagnostics

After detecting an anomalous condition, fault diagnostics, also known as process
diagnostics, aims to determine and provide specific information about the possible
cause. Often this process can be also quite independent from the anomaly detection

Figure 17.
One-class SVM.
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layer. Typically, process diagnostics consists of three steps known as fault detection,
isolation, and identification. Fault detection and isolation (FDI) are often
performed simultaneously by use of physical models or data-driven techniques, as
in the case of anomaly detection. Fault detection is the step to determine if a fault is
present or under development in the process and the time of fault occurrence. Fault
isolation refers to the technique of pinpointing the location of the faulty component(s)
of a process, such as devices, sensors, actuators, controllers etc.

Typically, FDI methods are widely classified in three categories: model-based
methods (typically first-principles, state-space or input–output models), model-
free (also known as data-driven) methods, and knowledge-based (or rule-based)
methods. All these methods have their own advantages and disadvantages. Hence,
in the realm of process diagnostics, there is no silver bullet to address every single
case. For applications where the process is difficult or expensive to model, or
sufficient information is not available to model the effects of all possible anomalies
and faults accurately, data-driven and machine learning methods have been devel-
oped in the years. Similarly to the techniques used for anomaly detection, classifi-
cation techniques such as ANN, KNN and SVM are often used to assign the
measured data points to the cluster indicating the faulty component. However,
simultaneous faults or malfunctioning in more than one component require more
complex methods. All the methods have various degrees of sensitivity to measure-
ment noise.

On the other hand, fault identification refers to the way of estimating the
severity or magnitude of the fault, and providing information on whether the
process can continue to operate as usual or if a corrective action (in extreme case,
shut-down) needs to occur. Typically, the extent of deviation in measured parame-
ters can give an indication on the severity of the fault. However, simultaneous faults
in different components may have opposite effect on measured parameters, hiding
the real problem magnitude and rendering this step quite challenging.

A combination of model-based and data-driven approaches for fault isolation
and identification is often preferred when an accurate numerical model of the
process is available. A common approach is to include health indicator factors, or
state variables, in the model. Health indicator variables can represent e.g. a fouling
coefficient in a heat exchanger or a flow capacity deviation in a pump, compressor,
or turbine. Such variables can be varied when simulating the process until the model
outputs match the observed measurements from the real system. Various optimiza-
tion techniques such as genetic algorithm (GA) have been used for this purpose.
This method can often perform isolation and identification together, when the
health indicator factors are allowed to take multiple values. One drawback com-
monly experienced is the so-called smearing effect, mostly induced by noise and
model uncertainties, where the effect of anomalous measurements tends to be
“spread” over multiple health factors even when only one single component is
actually faulty. To overcome this, preprocessing of the data to reduce noise is
usually necessary; downstream processing of the obtained health indicators through
machine learning techniques is also a solution to improve the isolation and identifi-
cation accuracy.

2.7 Advanced sensors

The learning system is designed to work with the data that is collected in the
database. In order to best utilize this, it is important to understand the inherent
properties and qualities of the data gathered about the process. Data is gathered
from multiple sensors located in different parts of the process. Sensors are devices
that provide output signals based on a certain input that represents a physical
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43

A Framework for Learning System for Complex Industrial Processes
DOI: http://dx.doi.org/10.5772/intechopen.92899



quantity. These devices can be more or less complex, ranging from straightforward
ones that measure pressure and temperature to more complex ones that determine
other physical and chemical properties. The most measured parameters in the
process industry are temperature, followed by pressure and flow rate. However,
this does not mean that these parameters can be measured accurately.

Sensors are based on different principles to provide useful information about the
system. Most physical properties of interest cannot be measured directly but are
rather obtained by utilizing different principles, converting a property that can be
easily measured to the one of interest. Temperature is often measured with a
thermocouple, which utilizes the thermoelectric effect where temperature differ-
ences are converted to electric voltage. Two dissimilar metal wires are connected at
one end in an electric junction. Once the temperature changes at the junction, it
creates a voltage that can be measured with a voltmeter and is a function of
temperature. This is the case for the majority of sensors used in the process indus-
try, requiring some sort of model to convert the measured parameter to useful
output.

Measurements of a process parameter carry with them a certain uncertainty.
This can arise from many sources and will propagate to the final result. The more
the sources of uncertainty and the more complex the process of getting to that
result, the higher the final uncertainty in the measured data. This difference in the
measured value from the actual one can be either random or systematic. Random
differences contribute to random signal noise, whereas systematic differences can
be due to bias or deterioration of the sensor. An unsteady process, where the
values of the parameters fluctuate, will make it even harder to obtain accurate
measurements.

For the development of a learning system, measurement data from the process
can be used to monitor the operation of the different modules. This can provide
information on the performance of the different components. Another very useful
piece of information, particularly for the process industry, is information on the
properties of the feedstock that is coming into the process. This can provide a feed-
forward signal, enable the prediction of the properties of the final product, and
allow the optimal control of the process. This can be done with a more advanced
sensor, which in essence requires a more complex model to convert the measure-
ment to the property of interest. Such sensors are often referred to as soft sensors.
As long as the sensor and the property of interest are in the same location in the
process, the model is part of the sensor, regardless of its complexity. If the property
of interest is in a different part of the process than the one where the sensor is
installed, the model behind the sensor becomes a model of the process rather than a
conversion of the sensor input to useful output. These advanced sensors are subject
to uncertainty and noise in the same way as the simpler ones. However, uncertainty
and noise in the measurement can increase when there are more components and
models in a measurement chain, and this affects how the data can be used.

With regards to the measurement of feedstock properties, a particularly prom-
ising technology is near infrared (NIR) spectroscopy. This technique is based on the
difference in absorbance of light in the near infrared field by different chemical
bonds in the molecules that are illuminated. This can in turn provide detailed
information about the chemical properties of the material that is measured. The
measurement head itself will provide a spectrum of absorbance in a range of wave-
lengths and this information can be calibrated against the desired physical proper-
ties of the material that are of interest for the specific application. This is typically
done at first in a laboratory environment, and the models obtained from the labo-
ratory experiments are then transferred or adapted to the real environment. NIR
has been shown to be very capable of predicting key properties of the incoming feed
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for a range of different processes [24–26] in a much faster way than time consum-
ing lab analyses and as such can form the base of an advanced sensor in the process
industry.

An example of a lab setup for the analysis of fuel samples with a Fourier
transform NIR spectrometer is shown in Figure 18 for refuse-derived fuel (left) and
woodchips (right). NIR spectroscopy can be used for both solid and liquid fuels, and
a spectrum of a hydrocarbon mixture is shown in Figure 19. The spectra obtained
from the NIR instrument are matched to the property of interest for every sample
analyzed and a calibration model is built using a statistical analysis of the data
(typically referred to as chemometrics for spectroscopy applications). This results
in a calibration curve like the one shown in the right hand side of Figure 19 where
the quantity of interest predicted by the model from the spectrum of the sample is
compared to the quantity of interest measured in the lab. The 45∘ line in the figure
represents a perfectly accurate prediction (the predicted value is the same as the
measured one), but small deviations from the measurements always occur and the
accuracy of the model is depicted by the width of the area between the dashed lines.

In order for the NIR-based soft sensor to be used in a real process environment,
the head needs optical access to the feedstock. An example of an installation of a
NIR sensor in a pulp and paper mill is shown graphically in Figure 20. In this case
the optical access is provided through an observation hole. The NIR spectra
obtained by the instrument are converted to the desired property through a model,

Figure 18.
Lab setup for the analysis of fuel samples with a Fourier transform NIR spectrometer for refuse-derived fuel
(left) and woodchips (right).

Figure 19.
NIR spectrum of hydrocarbon mixture (left) and soft sensor model calibration (right).
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with the entire setup of the measurement head, the analyzer and the model behind
it constituting the soft sensor. The information from the sensor can be delivered to
the database of the factory and from there it can be fetched and used as a feed-
forward input signal for the control of the process.

The main advantage of using a NIR sensor is that it can provide fast and non-
intrusive measurements of the properties of the feedstock material, which can then
be used to optimize the operation of the process itself. Variations in the properties
of the feedstock will inherently affect the process and the optimal operating condi-
tions of the downstream components will change depending on these properties.
Real-time information on the variation of the key properties of the feedstock can
therefore be very useful when combined with model predictive control in order to
determine the optimal operating conditions in real-time, with the information from
the sensor used as a feed-forward signal for the control of the process.

2.8 Decision support system

A decision support system (DSS) is a computer-based program that supports
decision-making activities, for example at operation, planning or management
levels. Through the analysis of large amounts of data, a DSS provides decisions for
uncertain, unstructured, or rapidly changing problems, which either complement
or replace human reasoning. The system can be either fully automated, fully
dependent on human actions, or a hybrid. However, the hybrid approach is widely
acceptable where the DSS incorporate a human–computer interaction and the cyber
part usually provides a range of information that operators or managers use to
decide on an action [27]. A DSS can for example have access to a database of
historical events and corresponding decisions, and retrieve cases similar to a current
event to suggest a possible action. If we linked it back to the automation pyramid,
typically a DSS will directly interact with the supervisory level and influence the
decision making in planning and management level. Within the learning system
architecture, the DSS is used to support decision making at all three levels. Based on
the outcome from individual sub-components of the learning system, the DSS will

Figure 20.
Schematic of the NIR soft-sensor location in a pulp digester.
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assists the operators by providing information about the health status of the process
equipment. The system can also suggest possible actions under a particular process
fault. This can also trigger series of actions that will assist decision making at
planning and management level. Due to a fault severity if a equipment requires
maintenance, the DSS will assist the maintenance planner by providing RUL of the
affected equipment. Additionally, if a process equipment becomes unavailable the
production planning need to be adjusted accordingly. This will effect the decision
making in ERP level since both production material and spare-parts inventory need
to be adjusted accordingly.

According to literature, DSS can be model-driven, data-driven, knowledge-
driven, document-driven or communication driven [28]. A model-driven DSS
employs statistical, financial, mathematical, analytical, simulation or optimization
models for decision support. In model-based DSS, possible scenarios are simulated
with the aid of models to take optimal decisions; for example, the optimal mainte-
nance interval can be calculated with the aim of minimizing the total costs. Devel-
oping a model-driven DSS is a complex, time consuming and expensive process that
requires a considerable level of expertise. A data-driven DSS requires access to and
manipulation of time series of internal and external data. It is the most common of
the five types of DSS. The success of a data-driven DSS always depends on the
access to accurate, well-structured and organized data. A typical knowledge-driven
DSS contains a rule-based algorithm such as decision tree or similar [29]. The
knowledge from the expert is stored in form or rules such as “if sensor A is faulty
and control system is functioning, schedule maintenance in XX hours”. Thus, auto-
mated decisions can be taken by analyzing massive amount of data and applying
predefined rules. In this work, we will only focus on knowledge-driven DSS partic-
ularly highlighting an example of probabilistic approach.

More sophisticated algorithms aiming at simulating human reasoning in a prob-
abilistic manner are built from Bayesian belief networks (BBN). Bayesian networks
represent a culmination of Bayesian theory of probability, which can be summa-
rized as in Eq. (6). The equation represents a casual statement of the kind, where X
causes Y and Y takes the role of an observable effect of X. P Yð Þ is called the prior
probability, while P YjXð Þ is called the posterior probability. The factor that relates
the two, P XjYð Þ=P Xð Þ, is called the likelihood ratio.

P
Y
X

� �
¼ P X

Y

� �
P Xð Þ ∗P Xð Þ, (13)

A BBN is a probabilistic graphical model that represents factorization of joint
probability distribution [12]. It provides a comprehensive way to handle uncer-
tainty in mathematical computation, consequently widely used for representing
uncertain knowledge. Bayesian probability differs from classical probability by the
fact that classical probability does not put any weightage to the evidence while
Bayesian probability always comprises of a certain degree of belief in the evidence
[13]. The most beneficial aspect of a BBN is that it can be constructed either by
training with historical data, and with limited data set or even in the absence of data
only by integrating expert knowledge. A BBN has two major parts: a qualitative or
structural part, consisting of nodes and connections, and a quantitative part that is a
set of conditional probability distributions. Typically, each node corresponds to a
unique random variable (e.g. occurrence X), while each edge or connection corre-
sponds to a conditional dependency. This qualitative structure is referred to as
directed acyclic graph (DAG). The term “acyclic” refers to the fact that the direct
connections are static causal probabilistic dependence and cycles are not allowed
(e.g. if X causes Y, Y cannot cause X). Constructing a BBN involves building the
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making in ERP level since both production material and spare-parts inventory need
to be adjusted accordingly.
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employs statistical, financial, mathematical, analytical, simulation or optimization
models for decision support. In model-based DSS, possible scenarios are simulated
with the aid of models to take optimal decisions; for example, the optimal mainte-
nance interval can be calculated with the aim of minimizing the total costs. Devel-
oping a model-driven DSS is a complex, time consuming and expensive process that
requires a considerable level of expertise. A data-driven DSS requires access to and
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the five types of DSS. The success of a data-driven DSS always depends on the
access to accurate, well-structured and organized data. A typical knowledge-driven
DSS contains a rule-based algorithm such as decision tree or similar [29]. The
knowledge from the expert is stored in form or rules such as “if sensor A is faulty
and control system is functioning, schedule maintenance in XX hours”. Thus, auto-
mated decisions can be taken by analyzing massive amount of data and applying
predefined rules. In this work, we will only focus on knowledge-driven DSS partic-
ularly highlighting an example of probabilistic approach.

More sophisticated algorithms aiming at simulating human reasoning in a prob-
abilistic manner are built from Bayesian belief networks (BBN). Bayesian networks
represent a culmination of Bayesian theory of probability, which can be summa-
rized as in Eq. (6). The equation represents a casual statement of the kind, where X
causes Y and Y takes the role of an observable effect of X. P Yð Þ is called the prior
probability, while P YjXð Þ is called the posterior probability. The factor that relates
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only by integrating expert knowledge. A BBN has two major parts: a qualitative or
structural part, consisting of nodes and connections, and a quantitative part that is a
set of conditional probability distributions. Typically, each node corresponds to a
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(e.g. if X causes Y, Y cannot cause X). Constructing a BBN involves building the
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structural part of the BBN or DAG and specifying the conditional probabilities also
known as parameters. A BBN can be constructed completely manually from expert
knowledge, completely automatically from data, or through a combination of a
manual and automatic technique, where partial knowledge about the structure or
the parameters are learnt from the data.

For maintenance planning purposes, the DSS would combine and fuse together
information coming e.g. from different diagnostics approaches, maintenance his-
tory, operator observations, etc.

2.9 Applicability of the framework for fleet level monitoring

The presented framework can be applied both to single large units (ie a complex
industrial plant) and to multiple smaller units, in a fleet management approach. The
requirements for fleet management shape the framework in a multitude of ways.

In order to manage multiple assets at the same time, the level of detail of the
simulation may be reduced. This may result in less complex models and different
requirements of the level of control and management. This can further increase the
modularity of the framework. Different levels of control and management may not
be desired and approaches used may be less complex. In essence, a framework that
focuses on fleet management will not focus on the optimization of a single system
with a multitude of sensors at the first instance. This requires an approach that
allows the removal or deactivation of functions as desired. This is in line with the
development of a framework that can be generic and applicable to different cases,
but further highlights the need for modularity.

The increase of the number of assets being monitored through the framework
requires more models that simulate the operation of the assets. One option is to have
a different model for each system, which can result in thousands of models being
employed in the platform. However, the units of the fleet being managed are
inherently very similar to each other; they are copies of each other with minor
differences which arise from manufacturing uncertainties. The units will be oper-
ating at different conditions, which will affect the degradation of components and
sensors in a unique way for each system. However, the different assets can be
represented by a single model that simulates their performance and a different set
of tuning parameters for each one. This can reduce the load in the framework
platform.

The management of the fleet will result in large amounts of data being collected,
a set of data for each asset in the fleet. Since the different assets belong to the same
family, and their operation is similar, the data from the entire fleet is useful for the
management of all assets independently and collectively. A system that learns from
the operation of different assets can gain more knowledge than one that is focusing
on a single asset. This creates more challenges for data management, but also pro-
vides more knowledge for possible faults, and can allow the prognosis of remaining
useful life and other parameters of interest with greater confidence. From the
framework perspective, this requires more instances for visualization of data from
both the single unit and the fleet, and an analysis of the different trends.

3. Conclusions

Over the last few decades there has been an significant exploration of new
techniques and tools to improve product quality and process efficiency of complex
industrial processes. There is a need for a framework that will allow integration of
different tools for optimal operation, control and diagnostics to enable robust
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decision support. As a stepping stone, a generic learning system architecture has
been developed that allows easy integration with existing supervisory system of
industrial plants. The architecture enables inclusion of different functionalities as
individual modules. The system can therefore be easily adapted according to the
different requirements of different cases. The architecture is flexible enough to be
implemented in a remote server with a web-based interface or run locally in a
isolated server. As a final reflection, utilization of such a learning system in addition
to the existing supervisory systems can only be justified by demonstrating quanti-
fiable economic benefits. Only then will all stakeholders be on board for adoption of
such a system. Another aspect that is often neglected is that the system users, i.e.
plant operators, engineers and managers, need to be involved from the very begin-
ning of the process from development to implementation of such a system.
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X tð Þ Physical property under consideration
t Independent variable for representing time
_xin Rate of change in inflow
_xout Rate of change in outflow
_g tð Þ Rate of change in generation
_c tð Þ Rate of change in consumption
A, B Reactants
C Product
rc Rate of reaction
α, β Exponents of concentration
k Reaction rate constant
Ai Pre-exponential factor
E Activation energy
R Universal gas constant
T Temperature of the reaction
c Control horizon
y kþ ið Þ Future plant output
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Δu kþ ið Þ Increments in manipulated variable
e kð Þ Future errors
p Prediction horizon
s kð Þ Reference set-point trajectory
γ Lagrange multiplier
k Kernel function
λ Offset parameterizing a hyper-plane in the feature space
X Cause of Y
Y Observable effect of X

Abbreviations

ISA International society of automation
PLC Programmable logic controller
DCS Distributed control system
PID Proportional–integral–derivative
SCADA Supervisory control and data acquisition
HMI Human-machine interface
MES Manufacturing Execution System
ERP Enterprise resource planning
CMMS Computerized maintenance management system
RUL Remaining useful life
HMI Human–machine interface
CFD Computational fluid dynamics
AE Algebraic equation
ODE Ordinary differential equation
PDE Partial differential equation
CSTR Continuous stirred tank reactor
MPC Model predictive control
MV Manipulated Variable
PCA Principal component analysis
ANN Artificial neural network
SVM Support vector machine
KNN K nearest neighbor
HC Hierarchical clustering
SOM Self-organizing map
AANN Autoassociative neural network
RBF Radial basis function
FDI Fault detection, isolation and identification
NIR Near infrared
DSS Decision support system
BNN Bayesian belief networks
DAG Directed acyclic graph
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Chapter 3

AI & Digital Platforms: The 
Market [Part 1]
Örjan Larsson

Abstract

This essay aims to describe the dynamics at play in the field of industrial AI, 
where the significant efficiency potential is driving demand. There are rapid 
technological development and increasing use of AI technology within the industry. 
Meanwhile, practical applications rather than technical development itself are cre-
ating value. The primary purpose of the article is to spread knowledge to industry. It 
is also intended to form the basis of the Swedish innovation program PiiAs ongo-
ing work around open calls and targeted strategic innovation projects. The basic 
approach taken is to investigate both industry demand for AI and how the supply of 
technology is developing. AI takes in a broad and dynamic range of concepts, but 
it should also be considered in an even broader context of industrial digitalisation. 
The article has been divided into two sections: The Market, in which we assess the 
development and the consequences on the factory floor; and The Technology, which 
provides a more in-depth understanding of the structures of industrial IT and 
machine-learning technology. The article concludes with four practical examples 
from the industry.

Keywords: AI, artificial, intelligence, PiiA, blue, institute, automation, 
algorithmisation, platform, data, process, industry, IndTech, digitalisation, digital, 
twin, ecosystem

1. Introduction

This article has two primary purposes: the first is to provide the industry 
with an evaluation of the importance of AI development as a force for change 
and the second to create an internal basis for the Swedish Innovation program 
PiiA’s future development efforts, within which AI can be described as the next 
phase of industry’s digitalisation. Both these objectives are naturally compatible 
with the overall ambition of the report: to reach our target group of industry 
leaders and to serve as a source of knowledge for ongoing activities within 
relevant companies.

Technological, industrial development is awash with grand ambitions that have 
turned into mere passing fads and costly dead ends. With this in mind, throughout 
our work in assessing the development of AI, we have endeavoured to take into 
account the magnitude and direction of different vectors of change. On the one 
hand, we have attempted to understand the power of demand for AI by assess-
ing the economic impacts at a macro level. We have focused on productivity and 
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qualitative values at various stages of industry value systems. On the other hand, we 
have attempted to assess the range of available technologies by analysing initiatives 
taken on a global scale and through focused academic research. We have also put 
considerable effort into understanding the major commercial—or applied—forces 
that are crucial to development, both in the short and medium term.

We have also strived to place AI development in the context of current systemic 
developments, as characterised by the ‘platformisation’ of company IT resources. 
By this we mean the transfer of automation and IT support to the cloud—a trend 
that is creating new competitive dynamics. Finally, we have attempted to translate 
this big picture into real impacts on the factory floor and to revisit well-known 
concepts such as organisational development which—with the help of the raw 
power of AI technology—have the potential to make the previously impossible, 
possible.

The project was a collaboration between PiiA and Blue Institute, with valuable 
input from Blue Institute’s network of CEOs and industry leaders on all levels. A big 
thank you is extended to everyone who contributed to this study.

2. The market

The computerisation of global industry began in earnest in the 1980s. The use 
of microprocessors made it possible to automate in new and efficient ways, and the 
process, automotive and electronics industry made significant productivity gains. 
Now, the world is entering a new technological and economic paradigm in the form 
of digitalisation, the first wave of which has already transformed the media and 
communications industries. In a second wave of change, the financial sector and 
trade will be transformed, and, under the third wave, the wider industry will be 
transformed. At the same time, artificial intelligence is emerging as the next—and 
probably most significant—stage of digitalisation.

For the manufacturing industry, this will mean that many companies in subcon-
tracting arrangements will have access to cost-effective technology that allows for 
further automation and productivity increases. The impacts of AI for the process 
industry will not be yet another emptying of factory floors, but rather an opening 
of the way to achieve levels of process development that were previously unob-
tainable. AI is also expected to bring new levels of integration to the entire value 
system, on the way to achieving the ultimate vision of self-organisation. It may 
also change the structure of the industrial landscape; concepts such as ‘ecosystems’ 
and ‘platforms’ are fast becoming commonplace descriptions, even in traditional 
industries.

Our current stage of development could be described as ‘increasing algorithmi-
sation’ (see Figure 1). From a developmental context, it represents a megatrend that 
is both supporting human beings—and enabling us to be replaced by computers. 
The trend began with the mainframes of the 1960s and continued with the micro-
processor revolution of the 1980s and 1990s. Then in the 2000s, came the scalabil-
ity, mobility and cost-effectiveness of digital platforms. Now, with AI and machine 
learning emerging as the next phase, the pace of development is set to increase 
further.

Demand for industrial AI is growing as the understanding of the value that the 
technology can potentially release grows. Various technological developments, 
which have been taken place over the past decade unbeknownst to the general 
public, are now coming to fruition and can directly be viewed within the context of 
analyses of potential economic effects and, increasingly, real-life business cases and 
investments.
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These changes have the potential to produce significant economic impacts for 
the global industry, and they may be particularly marked in the context of societal 
challenges related to population growth, climate and the environment.

The million-dollar question is: Will we see an explosion of AI, and its disruptive 
establishment across the global industry? Or, will this, still somewhat unwieldy, 
technology lead to more sporadic changes in the short term? Either way, our con-
sidered assessment is that AI is here to stay, that AI truly has the potential to change 
the world and industry, and that AI will be looked back on as a real revolution for 
the production economy.

In this section, we will look at the forces underlying supply-and-demand 
development trends for AI within the industry. A functioning market dynamic is a 
crucial prerequisite for ongoing industrial transformation pressure, something that 
we aim to highlight in this study by addressing three issues:

1. What are the expected value-creating effects of AI?

2. Will AI development and the supplier system be able to meet the demand for 
AI technology that is arising from this potential value creation?

3. Is this development sustainable, or are we seeing a ‘hype’ phase which will 
eventually fade, with the actual market breakthrough set to occur several years 
into the future?

In addition to these issues, this report illustrates, from various perspectives, how 
the impacts of AI will benefit the industry at the system/platform and operational 
development levels. The second part of the report will provide an in-depth study of 
the possibilities and challenges of AI technology.

2.1 Demand

We start this section by looking at the demand side of things (see Figure 2), 
as well as discussing the stance companies might take. This includes examining 

Figure 1. 
AI and machine learning effectively add an extra ‘gear’ that will allow for increasingly advanced algorithms 
that increase efficiency and create new customer value within the industry. Source: Blue Institute (2019).
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the world and industry, and that AI will be looked back on as a real revolution for 
the production economy.

In this section, we will look at the forces underlying supply-and-demand 
development trends for AI within the industry. A functioning market dynamic is a 
crucial prerequisite for ongoing industrial transformation pressure, something that 
we aim to highlight in this study by addressing three issues:

1. What are the expected value-creating effects of AI?

2. Will AI development and the supplier system be able to meet the demand for 
AI technology that is arising from this potential value creation?

3. Is this development sustainable, or are we seeing a ‘hype’ phase which will 
eventually fade, with the actual market breakthrough set to occur several years 
into the future?

In addition to these issues, this report illustrates, from various perspectives, how 
the impacts of AI will benefit the industry at the system/platform and operational 
development levels. The second part of the report will provide an in-depth study of 
the possibilities and challenges of AI technology.

2.1 Demand
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Figure 1. 
AI and machine learning effectively add an extra ‘gear’ that will allow for increasingly advanced algorithms 
that increase efficiency and create new customer value within the industry. Source: Blue Institute (2019).
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more significant developments that will lead to a future digital economy based on 
business ecosystems and digital platforms. We also introduce the concept of ‘best 
practice’ and provide an orientation model for individual companies wanting to 
assess their position and preparedness for change.

2.1.1 Substantial value effects within production systems will drive demand for AI

Our fundamental hypothesis is that demand for AI within the industry will 
correlate with the value that can be extracted from production via more effective 
analytical tools. We assume that the expected growth effects within the sector 
will lead to activities at the company level, which in turn will drive demand for AI 
technology.

According to the Vinnova study Artificial Intelligence in Swedish Business and 
Society, there is evidence to suggest that the general growth potential within value 
creation might be realised twice as fast in an economy with extensive AI utilisation, 
compared to one with limited utilisation.

The many dynamic effects of AI development and the changing regulations 
around it, also come into play, and these are expected to produce growth effects 
for the world economy. AI will also contribute to systemic effects, as business 
ecosystems and digital platforms are developed that transform the manufacturing 
industry into an information industry. These virtual value systems are decoupled 
from physical systems and so allow for new organisational models that echo the 
transformation that media, finance and commerce sectors are already undergoing.

Several studies have attempted to estimate the economic effects of AI at the 
macro-level; in this work, we have incorporated insights from three reports by 
Accenture [1], McKinsey Global Institute [2] and PwC [3]. According to consulting 
company PwC, AI’s contribution to the global economy in 2030 will amount to an 
estimated USD 15.7 trillion. This means that in 2030, with the impact of AI, global 
GDP will be 14% higher than it would be without AI or the equivalent of China and 
India’s combined GDPs.

The productivity impact corresponds to USD 6.6 trillion, while USD 9.1 trillion 
is expected to be produced from impacts on the consumer side. PwC’s analysis also 
includes areas such as trade, transport, finance and health care.

Consulting company Accenture believes AI’s global economic impact will be 
equivalent to USD 4.8 trillion in increased profitability during the period up to 
2022, which does not contradict McKinsey’s or PwC’s analyses that have other 
timeframes.

In its report, Notes from the AI frontier: Modelling the impact of AI on the 
world economy, consulting firm McKinsey Global Institute (MGI) calculates that 
the effects of AI in all of the report’s sectors will generate an impact of between USD 

Figure 2. 
The market for AI technical solutions and machine learning is expected to grow by 40% per year, while demand 
within the industry is expected to be driven by the significant potential value gains that can be created using the 
technology.
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3.5–5.8 trillion or when expanded to include all available advanced analysis meth-
ods, on top of machine learning, USD 9.5–15.4 trillion.

When limited to the resource, process and manufacturing industry’s value 
system, it is in the range of USD 1.7–2.3 trillion according to estimates in this study, 
or 3–6% per year of the global industrial sector’s total assets.

Industrial productivity improvements are estimated to amount to 1.2% per year 
until 2030 or in the order of USD 1 trillion. Comparisons can also be made with 
other major technological shifts. During the nineteenth century, the steam engine 
increased labour productivity by an estimated 0.3% per year (although the disrup-
tive effect eventually became quite considerable). The robotisation of the industry 
in the 1990s produced a 0.4% increase, and the consequences of IT development 
during the 2000s are expected to deliver a 0.6% increase. AI has at least twice the 
inherent potential.

‘Added value of between SEK 22 and 45 billion per year could be unlocked for PiiAs 
industries’.

Placed in a Swedish context and related to PiiAs target industries, we estimate 
that added value of between SEK 22 and 45 billion could be unlocked per year. For 
PiiAs sectors this represents an average increase of between SEK 3 billion and SEK 
7 billion per industry, of which approximately half would be productivity-related, 
with value also unlocked at the consumer level, through factors such as quality, time 
savings and better-targeted offerings.

The purpose of the comparisons above is more to illustrate the order of magni-
tude involved than to present precise figures. Even if the cited studies were to be 
greatly exaggerated, the effects would certainly be significant. We conclude that 
the movement that has now been set in motion has few parallels in history in terms 
of change potential. For companies and businesses, it means there will be few, if 
any, players who can afford to pass up the competitive improvements that AI will 
eventually deliver.

And there is a good reason to prepare in advance for the coming changes. 
Looking from a broader perspective, lopsided distribution of AI development is 
likely, with an ever-increasing gap between the performance of various countries, 
companies and workers. In terms of countries, China and the United States are the 
two nations that currently account for the majority of all AI-related activities, and 
they are thus the best positioned. Developed industrial economies such as Germany, 
Japan and Canada and smaller commercial economies such as Sweden and Finland 
are well placed. They should also be motivated by low productivity-development 
gains in recent years.

Economies with more modest foundations, such as India, Italy and countries in 
Southeast Asia, generally have less favourable conditions. Still, they could use their 
particular strengths within specific categories to build specialised AI capabilities. 
However, developing economies with low investment capacity, weak skills and weak 
digital infrastructures run the risk of falling behind.

In this section, we will work out how the concepts of AI, ecosystems, networks 
and platforms are interconnected. And how they contribute to value-creating 
market dynamics.

2.1.2 Systemic effects from digital platforms and business ecosystems

Among the most considerable value-creating effects are expected to come from 
changes at the system level. As previously mentioned, we foresee development 
in a form that can best be described as the transformation of the manufacturing 
industry towards becoming an information industry. This should not be read as a 
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more significant developments that will lead to a future digital economy based on 
business ecosystems and digital platforms. We also introduce the concept of ‘best 
practice’ and provide an orientation model for individual companies wanting to 
assess their position and preparedness for change.
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Our fundamental hypothesis is that demand for AI within the industry will 
correlate with the value that can be extracted from production via more effective 
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compared to one with limited utilisation.

The many dynamic effects of AI development and the changing regulations 
around it, also come into play, and these are expected to produce growth effects 
for the world economy. AI will also contribute to systemic effects, as business 
ecosystems and digital platforms are developed that transform the manufacturing 
industry into an information industry. These virtual value systems are decoupled 
from physical systems and so allow for new organisational models that echo the 
transformation that media, finance and commerce sectors are already undergoing.

Several studies have attempted to estimate the economic effects of AI at the 
macro-level; in this work, we have incorporated insights from three reports by 
Accenture [1], McKinsey Global Institute [2] and PwC [3]. According to consulting 
company PwC, AI’s contribution to the global economy in 2030 will amount to an 
estimated USD 15.7 trillion. This means that in 2030, with the impact of AI, global 
GDP will be 14% higher than it would be without AI or the equivalent of China and 
India’s combined GDPs.

The productivity impact corresponds to USD 6.6 trillion, while USD 9.1 trillion 
is expected to be produced from impacts on the consumer side. PwC’s analysis also 
includes areas such as trade, transport, finance and health care.

Consulting company Accenture believes AI’s global economic impact will be 
equivalent to USD 4.8 trillion in increased profitability during the period up to 
2022, which does not contradict McKinsey’s or PwC’s analyses that have other 
timeframes.

In its report, Notes from the AI frontier: Modelling the impact of AI on the 
world economy, consulting firm McKinsey Global Institute (MGI) calculates that 
the effects of AI in all of the report’s sectors will generate an impact of between USD 
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during the 2000s are expected to deliver a 0.6% increase. AI has at least twice the 
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Placed in a Swedish context and related to PiiAs target industries, we estimate 
that added value of between SEK 22 and 45 billion could be unlocked per year. For 
PiiAs sectors this represents an average increase of between SEK 3 billion and SEK 
7 billion per industry, of which approximately half would be productivity-related, 
with value also unlocked at the consumer level, through factors such as quality, time 
savings and better-targeted offerings.

The purpose of the comparisons above is more to illustrate the order of magni-
tude involved than to present precise figures. Even if the cited studies were to be 
greatly exaggerated, the effects would certainly be significant. We conclude that 
the movement that has now been set in motion has few parallels in history in terms 
of change potential. For companies and businesses, it means there will be few, if 
any, players who can afford to pass up the competitive improvements that AI will 
eventually deliver.

And there is a good reason to prepare in advance for the coming changes. 
Looking from a broader perspective, lopsided distribution of AI development is 
likely, with an ever-increasing gap between the performance of various countries, 
companies and workers. In terms of countries, China and the United States are the 
two nations that currently account for the majority of all AI-related activities, and 
they are thus the best positioned. Developed industrial economies such as Germany, 
Japan and Canada and smaller commercial economies such as Sweden and Finland 
are well placed. They should also be motivated by low productivity-development 
gains in recent years.

Economies with more modest foundations, such as India, Italy and countries in 
Southeast Asia, generally have less favourable conditions. Still, they could use their 
particular strengths within specific categories to build specialised AI capabilities. 
However, developing economies with low investment capacity, weak skills and weak 
digital infrastructures run the risk of falling behind.

In this section, we will work out how the concepts of AI, ecosystems, networks 
and platforms are interconnected. And how they contribute to value-creating 
market dynamics.
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Among the most considerable value-creating effects are expected to come from 
changes at the system level. As previously mentioned, we foresee development 
in a form that can best be described as the transformation of the manufacturing 
industry towards becoming an information industry. This should not be read as a 
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prediction of the demise of the production economy—preferably one that business 
leaders will have to manage two logical frameworks.

This development has also been called the ‘platform economy’. In this section, we 
will work out the differences and connections between the concepts of AI, ecosys-
tems, networks and platforms. We will also outline how they contribute to value 
creation and, as a result, to the demand for AI and market dynamics.

The connections between the concepts of ‘networks’ and ‘platforms’ lend them-
selves to being described with metaphors from biological ecosystems. These ‘eco-
systems’ can be thought of as robust, scalable architectures that can automatically 
solve complex, dynamic problems, including self-organisation, self-governance, 
sustainability and scalability.

In the business ecosystem, there is a network logic between the companies 
involved which, in turn, is supported by a digital ecosystem characterised by a 
distributed peer-to-peer network model. The latter can also be described as a digital 
platform that makes relationships between companies and other organisations 
in the business network possible through transactions and technical support. A 
curated ecosystem reflects the balance between competition and collaboration in an 
open, dynamic and free market.

The term ‘business ecosystem’ was first mentioned in a 1993 article in Harvard 
Business Review [4]. The article presents the idea that companies not only belong to 
industries but are parts of business ecosystems that extend across different indus-
trial and knowledge sectors. The term digital business ecosystem originated when 
the word ‘digital’ was added to the business ecosystem concept as a reference to the 
socio-economic development made possible through information and communica-
tion technology [5].

The classic effects of network logic affect how the number of users in the 
network influences the value development for each user, i.e. the so-called ‘positive-
network effect’. Adverse network effects, on the other hand, occur in poorly man-
aged networks that reduce value development for each user. The positive network 
effect is, of course, the foremost and most sought-after competitive advantage 
within network logic. Consequently, the critical prerequisite for effective networks 
is to use digital platforms and other features to increase in size, thus increasing the 
value generated via network effects.

2.1.3 Platform: a transformative concept

The concept of ‘platform’ is thus a transformative one with the potential to bring 
about significant changes within business logic, economics, and society at large. 
Any company for whom information on factors such as supply-and-demand status, 
customer needs, trends, and willingness to pay is an essential asset is very likely to 
participate in the platform revolution.

The concept of ‘platformisation’, then, is used as a strategy for operating multi-
faceted platforms and connecting buyers, sellers and other stakeholders, without 
necessarily owning the products or services being sold.

In textbooks, traditional linear value systems are likened to value chains or 
pipes [6]. Platforms represent a transformation from linear structures to a matrix 
complex of relationships between connected producers and customers. They col-
laborate through the resources, properties and services provided by the platform’s 
technology.

This development has, in its first wave, affected sectors where the product itself 
is information, such as the media, entertainment and financial sectors. The concept 
of ‘scale without mass’ [7] is vital. Unlike physical products, which have high fixed 
costs plus substantial marginal costs that are reduced per unit should production 
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be scaled up, digital products, for the most part, have near-zero fixed costs and 
marginal costs. With the internet as a distribution network, it is, therefore, possible 
for companies with small fixed assets and a low number of employees to quickly 
scale up to become international businesses.

The empirical evidence suggests that the platform model vastly outperforms 
the linear value system when the right conditions are in place. Examples of such 
successes can be found among today’s major tech companies, including Google, 
Amazon, Microsoft and Apple—all of which are also known as mega-platforms [8].

2.1.4 How digital platforms are changing traditional industry

The uniting factor in both network and platform logics is the need to match 
and facilitate connections between producers and buyers, regardless of the type 
of goods being exchanged (see Figure 3). Industry organisations will change as 
a consequence of the competitive advantages that platforms can provide within 
meeting places.

Platforms make it possible to bring new value for customers with low marginal 
costs to existing physical products—to achieve scale without mass—and we are 
already getting an early indication of how the industry will separate physical produc-
tion logic from virtual data-driven logic. The automotive industry is experiencing 
shrinking margins in vehicle manufacturing and is developing business models that 
address mobility while being based on AI platforms.

The industrial technology suppliers of tomorrow will not just sell hardware but 
will also develop into connected suppliers of efficiency and quality within produc-
tion systems based on analysis, with machine learning delivered in collaboration 
between human and artificial intelligence. The process industry will not just sell 
materials, but also data on these materials based on AI analyses that increase the 
quality and efficiency of the manufacturing industry.

Uncoupling physical assets from the value they create also means that certain 
products can be marketed as services in the market for best possible use through 
greatest value creation, rather than being linked to a specific owner. The result is 
that both efficiency and value can increase—dramatically, in some cases.

Figure 3. 
Physical value chains and the flow of raw materials, materials and products are complemented by equally 
elementary data streams that enable digital twins at different levels, including entire processes and value 
systems. The technology and connectivity that makes physical production, as well as the digital twin, describes 
the digital platform (or ecosystem). Data streams and twins make it possible to create digital business 
ecosystems, i.e. meeting places where markets are created in new ways. Source: Blue Institute, 2019.
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pipes [6]. Platforms represent a transformation from linear structures to a matrix 
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Platforms also have the potential to change the cost structures and pricing in 
physical production. Once someone launches a digital AI platform that allows for 
trade and provides free marginal production capacity on a larger scale, purchasing 
prices for semi-manufactured products will theoretically fall at the same rate at 
which the available capacity is filled. Such a day is probably not too far away. There 
are also estimates that digital platforms that match labour to needs (once again with 
the help of AI) have the potential to increase global GDP by 2% by 2025 and create 
72 million full-time jobs [9]. It is not surprising that a new word is being increas-
ingly used: algorithm economics. In the same way that apps have changed people’s 
communication with machines, AI algorithms will revolutionise the development 
between the machines.

We conclude that while the business economics doctrine will undoubtedly 
continue to exist once the resources, process and manufacturing industry becomes 
an information industry, how it is followed will be revolutionised.

We are in the process of leaving an industrial era in which scalability in supply-
side economics has been the single biggest driver; as more units are efficiently 
produced, the cost per unit diminishes. This has driven corporate mergers, glo-
balised supply chains, oligopolies and monopolies. The largest companies have the 
most massive volumes and cost advantages that are difficult for smaller competitors 
to achieve. In the transformation into a digital and AI-driven platform economy in 
which physical products are paired with digital, scalable services, similar constella-
tions will also be created through large-scale demand economics.

The demand economy is driven by aggregated and visible demand, social 
networks, app-development and other phenomena that make networks bigger and 
more valuable to all users. The impacts will be just as difficult to absorb as within 
the large-scale production economy. Scale within the demand economy is the 
foundation for positive network effects and therefore a future driver of the global 
economy.

The advantages of platforms over linear value systems will lead to the disruption 
and dissolution of many industrial businesses. The continuous improvement of 
physical value chains will be complemented by developments through which data 
streams will become equally important for competitiveness. These data streams 
will pave the way for digital twins to be created of objects, machines, processes and, 
ultimately, the whole value system—all physical production and logistics. Advances 
are being made towards achieving the vision of self-organising value systems, one 
of the core concepts of Industry 4.0. The physical world and the computer world 
will become two sides of the same coin.

One problem that needs to be solved in this context is the ownership of data. 
Who owns the data that companies generate? Today, there is no real regulatory 
framework, and the various industries collecting data are uncertain about how 
much, and what kind of data they should share with other companies. In answer to 
this, initiatives are underway in several computer labs, and we see examples of pub-
lic, open laboratories, in areas such as forestry and traffic data. This is one approach 
to systematising data collection. But better-defined structures and agreed-upon 
standards are needed to define, describe and share data safely.

Ultimately, the transformation for classic industrial companies involves manag-
ing two different logics; the massive scale of the supply economy is not going away, 
and at the same time the ability to create demand with economies of scale is becom-
ing a significant differentiating competitive factor. The skill lies in being able to 
handle both.

The use of the term ‘platform’ as found in ‘digital platform’ can be traced 
right back to the very early days of computerisation and the concept of 
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‘computing platforms’. From the first mainframe computers, via the client-
server model with its personal computers and networks, and into the era of 
digitisation, the word has been used to define hardware platforms and software 
platforms, or, to put it another way, general operating systems. The three 
development paradigms mentioned above are in turn called the first, second and 
third platforms. We are now in the era of the third platform, more complex and 
more intertwined than ever before, and characterised by the fact that computing 
power is found almost everywhere. Ready for use by people and objects, through 
the Internet of Things.

2.1.4.1  Industry case study: Mälarenergi Smart Flows: optimisation of the district 
heating network

Through its Smarta Flöden (Smart Flows) project, Swedish company 
Mälarenergi aims to use AI to optimise the production of district heating based 
on streaming data. Its goal is to avoid overproduction while continuing to provide 
reliable district heating to customers. The project receives funding from PiiA and is 
a collaboration between Mälarenergi, RISE Västerås, Mälardalen University, ABB, 
Sigholm and Evothings Labs. The Smart Flows project combines learning systems 
with Industrial IoT and cloud services to enable fully automatic optimisation of 
industrial process flows. The project is also part of the larger-scale work to create a 
‘City Control Room’.

Mälarenergi AB is a commercial company that supplies electricity, district 
heating, water, district cooling and fast communication solutions, primarily within 
the Mälardals region. The company also sells electricity to private and corporate 
customers throughout Sweden. The Group is owned by the City of Västerås and has 
a turnover of approximately SEK 3 billion.

2.1.4.1.1 The challenge

Measuring, understanding and predicting flows of materials, gases and liquids 
are central to many process industries, and, as a result, these flows are often subject 
to continuous optimisation. Air flows in mine ventilation and distribution flows for 
wastewater are good examples of process flows. Optimising and automating these 
flows has the potential to produce considerable savings in energy and total costs, 
which in turn can create positive environmental effects.

Process flows are rarely in a constant state, and instead are continuously devel-
oping as demand changes, new infrastructure is expanded, or as customers come 
and go. As a result, there is a clear need to make the industrial systems adaptable 
and teachable. District heating systems are an example of a system in which changes 
take time.

“The hope is to eventually be able to create a hybrid solution between the learn-
ing system and the physical model.”

From the time that production is increased at a plant, it can take several hours 
before consumers’ scores of kilometres away can feel the benefits. But by using real-
time data and a connected distribution network, plants will be able to anticipate 
needs and quickly make decisions about increased or decreased production. The 
Smart Flows project uses the Internet of Things and cloud services from Microsoft 
Azure to manage historical and close-to-real-time data dynamically.

The project also has an operational development dimension through which the 
goal is for customers to be able to buy services in the form of comfortable indoor 
temperatures which be individualised.
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Platforms also have the potential to change the cost structures and pricing in 
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this, initiatives are underway in several computer labs, and we see examples of pub-
lic, open laboratories, in areas such as forestry and traffic data. This is one approach 
to systematising data collection. But better-defined structures and agreed-upon 
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The use of the term ‘platform’ as found in ‘digital platform’ can be traced 
right back to the very early days of computerisation and the concept of 

63

AI & Digital Platforms: The Market [Part 1]
DOI: http://dx.doi.org/10.5772/intechopen.93098

‘computing platforms’. From the first mainframe computers, via the client-
server model with its personal computers and networks, and into the era of 
digitisation, the word has been used to define hardware platforms and software 
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2.1.4.1.2 The experience

The system takes in more than 15,000 properties, ranging from private homes 
to commercial properties and industries. During the project’s first year, significant 
time has been spent collecting data. Measurement data from all Mälarenergi’s 
district heating plants over the past three years have been collected. The majority 
of values are hourly, but where possible, 15-minute values have also been sampled. 
Mälarenergi appointed an internal analysis group to analyse the more than one 
billion data points gathered.

Meanwhile, in parallel, a project team has conducted several user studies, creat-
ing profiles for different user categories to understand the operation’s visualisation 
and analysis needs.

The first predictions made with the AI system were based on the factors of 
distribution time, weather, and social behaviour. The most successfully generated 
predictions have been made concerning the heating needs of the building itself. 
Here, the weather is a substantial contributing factor, and as long as there are good 
weather forecasts, predictions can be created that adequately reflect reality. The 
social behaviour of customers is the least reliable factor. If a single customer show-
ers or runs a lot of hot water for a specific period, there will be a massive potential 
impact on district heating. A variety of methods are being tested to improve the 
accuracy of social behaviour modelling.

The project has also tested physical models of the district heating network. 
The results show that the model can predict the dynamic/moving behaviour of the 
district heating system in terms of heat dissipation. The hope is to eventually be able 
to create a hybrid solution between the learning system and the physical model, a 
model with validation capability for the real-time learning system.

One example is where the learning system might want to send a certain amount 
of heat/water. The physical model can then say whether or not it is physically 
possible to do so and calculate whether this would result in the water reaching the 
customers on time. If it proves to be possible according to the laws of physics, then 
the sending of the heat can proceed. If it is not physically possible, then the exercise 
serves as a valuable input to the learning system. The algorithm will learn that this 
exact procedure is not feasible for the next time.

During the period 2019–2021, the goal is to have a complete learning system in 
place covering all Mälarenergi’s district heating customers, and that is compliant 
with industrial standards.

Source: PiiA, Mälarenergi, RISE.

2.1.5 In search of best practice

The old business wisdom to ‘follow the money’ takes on new resonance for 
companies using AI as a transformation tool. In sectors where added value has 
traditionally been created through marketing and sales, it may be prudent to focus 
AI effort in the same areas. If operational excellence is crucial—as is the case within 
the process and manufacturing industry—then there are good reasons to invest 
heavily in AI for the supply chain and production processes, but also to develop new 
products and to add new customer value. And in terms of primary resources and 
materials, there is the potential to increase value for customers who can contribute 
to top-line growth.

Returning to the corporate and economic side of things, it is time to pose the 
question of whether the business case for AI is settled and whether now is the right 
time for significant investment. There may be little question of the way things are 
heading when we look at the bigger picture, but as we all know, the devil is in the 
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details. In general, machine learning is a powerful technology that so far requires 
specialised knowledge and incredibly careful preparations, tests and validations 
before it can deliver.

Against this background, the primary purpose of this paper is to engage and 
contribute to Swedish industry’s practical knowledge and preparedness for action, 
and to seek out best practice. While we are well aware of the current advantages and 
disadvantages of the technology, future developments may progress very quickly.

One model that is widely used within the Blue Institute and PiiA are the S-curve 
(see Figure 4) [10]. In the context of the digitally-driven industrial shift that we 
currently find ourselves in, we are preparing to leave the S-curve’s initial innovation 
phase with its lab experiments and industry pilots, to move into the next stage with 
trailblazers leading the way in seeking a best practice that delivers results; we call 
this the ‘best practice’ phase.

Best practice, in turn, lays the foundation for an accelerated transformation of 
an industry. Experience from previous technological shifts has shown the power 
of good role models. For example, over just a few years in the 1980s, the Swedish 
pulp and paper industry became the world leader in computerised automation. 
One explanation for this is that company leaders were inspired by their Swedish 
colleagues in the sector and shared their experiences. When industry leaders dare 
to take the lead, rewards await in the form of competitive advantages. If you can get 
others to follow, industrial benefits can be created on a large scale.

Examining the development of applied industrial AI and using the empirical 
evidence we have through, among other things, PiiAs project base, we can identify 
three types of companies in different stages of the curve (see Figure 5):

• The majority of companies—an estimated 70%—belong in the ‘aspiring for 
insights’ category. They realise that change is coming, but still lack readiness 
and ability, which must therefore be developed.

• We are now seeing the rise of the ‘innovation pilot’ category to which an 
estimated 20% of businesses belong. They are engaged and have dared to take 
the first steps down the path to applied industrial AI or are receiving help in 
making preparations for applications on a larger scale.

• The ‘accelerator’ category includes a small group of pioneers, estimated to be 
less than 10% of companies, who have found their own best practice solutions 
and are ready to scale up and transform their businesses using AI as a tool.

In this report, we return to three prerequisites for succeeding with applied AI in 
industry, examining them from different perspectives:

Leadership and adaptability involve creating appropriate change teams with 
the skills needed for the task ahead. Still, it also involves taking into account the job 
changes that AI will eventually lead to. This includes having the ability to collaborate 
between humans and machines—collaborative intelligence—and understanding the 
consequences this has on the organisation and working models. To put the ques-
tion of jobs into perspective, an estimated 14% of the global workforce will need to 
change their job duties as a consequence of AI [1].

Also crucial is data, both from an ownership perspective and a quality perspec-
tive. Information is the raw material of AI technology, which is then converted into 
money with the help of algorithms. The final fundamental prerequisite is security 
and risk management. These challenges also feature in Vinnova’s 2018 study [11], 
and we will look more closely into these aspects in the second part of the report: 
The Technology.
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In the race to the top of the S-curve, it’s crucial to address the challenges that crop 
up along the way. This starts with the ‘aspiring for insights’ category, gaining the 
insights they need to understand the opportunities AI presents and to know the con-
ditions within their own companies. Such companies may need to analyse their data 
management, organisational data strategy and the value of their data. It may also 
be a good idea to lay the groundwork for rules and relevant policies for data security 
management within the company. This might include minimising the risk of data 
breaches, as well as security measures for people and assets. It is increasingly com-
mon for policies for managing data in connection with AI applications to address eth-
ics and the risks of skewed, biased data sets when learning specific analysis models.

Those in the ‘innovation pilots’ category, meanwhile, have gained insights and 
probably also received help with organising their data and testing machine learning 
on one or more suitable processes. Within PiiA’s empirical data, we see companies at 
this stage that are trying out different methods and suppliers to gain knowledge and 
decision-making expertise for the next step, which we have referred to as ‘accelera-
tors’ in this model.

Those in the ‘accelerator’ group now need to increase the pace of implementa-
tion and, therefore, transfer the responsibility for transformation to their line 
organisations, along with appropriate expert support. These development steps also 
come with increasing demands on the ability of companies to manage job transfor-
mation, as well as data as a strategic asset, as well as the security and ethical issues 
around data usage.

A study by McKinsey examined 400 AI applications in 19 different sectors. It 
found that in 69% of cases, AI was a means to improve existing, more straightfor-
ward, analytical methods. Entirely new applications accounted for only 16% of 
cases. In comparison, the remaining 15% of cases were unable to benefit from deep 
learning technology for reasons, including a lack of data.

McKinsey Global Institute, Notes from the AI frontier: Applications and value of 
deep learning, 2018.

2.1.6 Organisational development

Applying AI is essentially a matter of organisational development. It’s a skill 
for which different corporate leaders will have different aptitude levels. A driven 

Figure 4. 
Digital development with AI as an essential component leaves the pure innovation phase. After that comes the 
‘Best Practice’ phase in which trailblazers dare to experiment and inspire others. Source: Blue Institute, 2019.
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individual is sure to see AI for the powerful tool that it stands to become and will 
also have the ability to create teams in which creativity, process knowledge, and a 
knowledge of tools, methods and good leadership all make a difference.

Most complex processes in the supply chain stand to benefit from artificial intel-
ligence and machine learning. In simplified terms, the methodology can be divided 
into four parts:

1. Data collection, preparation, and training of the model.

2. Using the trained model for analysis and prediction.

3. Using the analysis for augmentation, i.e. enhancing or increasing human 
abilities.

4. Using the analysis for automation, which can now be developed to new levels. 
It additionally becomes possible to introduce automation into areas where its 
implementation was previously seen as too complicated or expensive.

Figure 5. 
Three typical development steps for implementing AI in an industrial context. From creating insight into 
opportunities and challenges, to the more full-scale transformation of a company’s processes. Source: Blue 
Institute, 2019.
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AI and automation are often used as interchangeable concepts, but the underly-
ing technology differs. Automation describes systems that are programmed to 
perform specific repetitive tasks, such as an industrial robot which repeats the 
same step over and over again or a word-processing program which can repetitively 
perform what previously manual tasks were. AI systems, on the other hand, are 
designed to find patterns, to learn from experiences and to make consistent deci-
sions. AI does not need specifically programmed paths to determine how it should 
behave in different situations (see Figure 6). Together, AI and automation may 
represent the next step in streamlining various processes within industry, whether 
these be in production or administration. Automated machines use data; AI under-
stands data; so, they complement each other.

Augmented reality (AR), for example, has advantages in situations where 
people tend to perform poorly at consistently monitoring processes. AR can provide 
support when such monotonous tasks transition into critical business situations. 
AI-supported AR also helps warehouse workers and truck drivers to keep track 
of goods and products. AR can help process operators carry out routine checks 
on machines and processes, as well as providing support to service personnel, 
and speeding up emergency troubleshooting. The technology makes it possible to 
provide enhanced expert assistance remotely to production facilities far from the 
technology supplier’s nearest expert centre.

2.1.7 The AI flywheel

We conclude this section with a metaphor for the successful application of 
AI—the data or AI flywheel. It is a concept that nods to the fact AI that in a business 
context needs an ‘inertia mass’—a combination of data, knowledge and energy that 
all interact with each other for a project to be successful.

From a business and company perspective, it is essential to create mighty inertia 
masses, within which machine learning innovations (as a part of the company) fuel 
other operations, which in turn can become products or services, which in turn can 
provide leverage effects through additional AI, and so on. Those companies that are 
first to succeed in this area will be the few surprising ‘platform’ companies capable 
of growing with information – scale without mass (see also the section ‘How digital 
platforms are changing traditional industry’).

The AI Flywheel concept is often associated with Amazon Web Services (AWS). 
Amazon likes to use the word flywheel to describe how different parts of its busi-
ness function as a perpetual motion machine, within which more data yields better 
products, more customers, and even more data and so on. The company’s machine 
learning platforms create momentum throughout the organisation. Offering 

Figure 6. 
The streamlining of the industry’s supply chains is enabled using machine learning (ML) which makes 
predictions of process behaviour based on collated data. These predictions can then be used to enhance people’s 
abilities or to automate processes fully. Source: Blue Institute, 2019.
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machine learning to outsiders as a paid service is in itself profitable. The fact that 
such projects also generate data provides even more leverage.

AWS grew by 40% in the first quarter of 2019 with an operating margin of 29%. 
Somehow, Amazon has cracked one of the business world’s riddles; how to create 
small innovative teams within a much larger (bureaucratic) business. Agile teams 
that learn quickly develop competence in many AI-related areas and then spread the 
knowledge to the rest of the organisation in useful, coherent and collaborative ways 
that create value throughout the organisation. It is impressive. But how can tradi-
tional industry adopt the logic of the AI flywheel? In this context, we will content 
ourselves with exploring the concept of the basic organisation—the team—which 
makes more prominent strategies possible.

The most common mistake when companies adopt AI is that they start focused 
on the technology and not the business needs. Hiring data scientists and giv-
ing them access to data to build ‘something interesting’ is very likely to lead to a 
dead end.

As discussed, teams with different competencies are required, of which the four 
basic ones are: product or production managers (who can describe, in detail, which 
problem to solve), systems engineers (who know what data can be used), computer 
scientists (who know how to build useful models), and cross-discipline specialists. 
This latter group can be called DevOps engineers or translators (Development-
Operations is a term borrowed from the IT industry and agile development, while 
translators is a term borrowed from McKinsey). In this context, this invaluable 
category of people (usually made up of engineers) create commitment and knowl-
edge and can move relatively freely between production, process and operational 
development, as well as customer’s needs and preferences.

The members of the team use different tools and work together to solve the 
group’s challenges. But each is ideally a person with the ability to scale up their 
operations and fill the flywheel metaphor with power and torque.

Of course, more or less similar competence combinations have always been used 
to develop products and operations. What is new is machine learning technology 
and a requirement for expertise in this area, at least for the time being. For compa-
nies that are advancing in the AI world, it is necessary to take serious steps to create 
such pilot teams. For companies that are scaling up, the accelerators, such teams 
are still needed but should push up against the boundaries and away from regular 
business operations. In such circumstance, there is a potential to achieve flywheel 
effects at the company level.

Mining Magazine asked 115 mining companies where they saw the most signifi-
cant opportunities for AI. The answers are interesting, and the priorities identified 
would resonate with those in a range of sectors outside mining.

1. Better decision management and error minimisation.

2. Understanding market trends and customer behaviour.

3. Discovering mineral deposits.

4. Autonomous vehicles and drilling units.

5. Automated monitoring of health and safety risks.

6. Increased productivity.

7. Production planning.
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6. Increased productivity.

7. Production planning.
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8. Maintenance planning.

9. Automation and support for regulatory and team compliance.

10. Rescheduling after unforeseen events.

2.2 Supply

We will now move on to analyse the supply side of things by assessing tech-
nology development and the supplier system. We will do this firstly through an 
overview of the area of AI development with a brief conceptual summary, followed 
by describing the structure and strategic challenges of the supplier industry. The 
chapter ends with our conclusions about the effects on the market system.

Behind the applied development of digital technology for the industry lie 
significant investments. In simple terms, they can be described as three develop-
ment hubs, each of which, according to Blue Institute estimates, accounts for about 
one-third of an impressive SEK 1.5 trillion invested globally in R&D each year (see 
Figure 7):

• The driving forces for the first hub—private-public innovation collabora-
tions—consist of national ambitions along with industry insights on the values 
at stake in the fourth industrial revolution. These have generated significant 
investments through which private and public national capital unites in various 
programs around the world. Industrie 4.0 in Germany is among the most 
renowned. In Sweden, the Strategic Innovation Programs have been estab-
lished focusing on selected growth areas. By and large, these private, public 
investments amount to 500 billion annually.

Figure 7. 
The applied development of digital technology for the industry is being driven by historical investments in what 
can schematically be described as three fields of influence or developmental hubs. Each of these accounts for 
about one-third of an impressive 1.5 trillion invested in technology development each year. Source: Blue Institute.
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• The second development hub consists of large tech companies’ annual R&D 
investments in the construction of cloud services and investments in AI. The 
Big Five—Apple, Alphabet, Microsoft, Facebook, Amazon, plus IBM—are 
estimated to invest nearly 500 billion a year.

• The third hub consists of the traditional ICT industry plus automation 
providers.

• A significantly more fragmented industry, but a further estimated 500 billion 
is invested in research and development.

Development projects are now starting to leave the laboratories on all fronts and 
to arrive on the market, first as innovation projects, then as best practice, and then, 
eventually, as robust commercial offerings.

The driving forces behind each hub are essential: a return is required on those large 
investments; standardisation work is about to yield results, and the world’s industrial 
leaders are beginning to understand the vast sums and value at stake with the impend-
ing transformation of the industry. Last but not least, a dynamic is arising as the three 
developmental hubs start to propel each other, as development results are released 
onto the market. This means that the momentum for the whole system increases 
further.

2.2.1 Significant breakthroughs in AI technology

Significant breakthroughs in AI are coming to the public’s attention more and 
more frequently. This is occurring across all application areas. Initiatives within 
foundational research and product development are producing visible results, and 
the development curve is growing steeper.

1. The most mundane and yet revolutionary example is personal assistants such 
as Alexa, Siri, and Google Assistant, which are continually learning more, and 
making themselves known via our phones and calendars.

2. Estonia wants to make its government and judiciary as efficient as possible and 
so is developing an AI model to act as a judge in minor legal cases within where 
the value of the dispute is less than EUR 7000.

3. The OpenAI development institute recently unveiled a pre-developed language 
model (GPT-2) that can generate realistic texts in different kinds of style and 
prose. The text robot is so powerful that the Institute is refraining from releas-
ing the fully trained model due to the risk that it may contribute to the spread 
of so-called ‘fake text’.

4. In March 2019, the Google company DeepMind presented a model capable of 
diagnosing complex eye diseases in real-time. In thirty seconds, Google cloud 
algorithms can provide a detailed prognosis with the same precision as world-
leading eye specialists.

5. In January 2019, a research group at Columbia University announced that they 
had made significant progress by creating a robot that can imagine itself. After 
a day of intensive training, it was able to adapt to different situations, manage 
new tasks and detect and repair injuries in its own body.
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2.2.2 Basic AI concepts

The concept of Artificial Intelligence (AI) lacks established unambiguous 
definitions and demarcations. The nature of the field allows for broad philosophi-
cal, social and mathematical discussions. AI Research in itself is both specialised 
and dispersed across subfields that often lack contact with each other. This makes 
the area in its entirety challenging to comprehend fully. However, for this analysis, 
we have chosen to use the same definition that Vinnova used in its study of arti-
ficial intelligence for the Confederation of Swedish Enterprise and Society, 2018, 
namely:

‘The ability of a machine to mimic intelligent human behaviour. Artificial intel-
ligence is also the designation of the science and technology field that aims to study, 
understand and develop computers and software with intelligent behaviour.’

AI can thus be defined as the ability of machines to perform cognitive func-
tions that we associate with human minds, such as perception, reasoning, learning, 
interacting with the environment, problem-solving and, ultimately, even creativity.

A dominant theory for assessing the characteristics of AI systems is the so-called 
Turing-test [12]: a computer passes the test if a person, after having asked several 
written questions, cannot discern whether the answers have come from a human or 
a machine.

The set of abilities [13] which are considered essential to enable artificial intel-
ligence to be experienced as humanly intelligent include:

• Natural language management (NPL).

• The ability to store knowledge.

• An automated ability to reason.

• Machine learning to make discoveries tailored to given conditions.

• Vision technology to see.

• Robotics for moving or manipulating objects.

Another central figure of thought in AI is the rational, intelligent agent. The 
agent is a piece of software, an algorithm, which is expected to operate autono-
mously and be able to sense its environment, endure for a long time and adapt to 
changing conditions, as well as setting up and reaching goals. All the properties of 
the Turing test are also valid for the rational agent to function.

2.2.3 Narrow and broad AI

AI can be classified in many different ways, but a standard description is 
narrow versus broad or general AI. All the AI that exists today is narrow or rather; 
specialised. Our intelligence, however, is general. If at some point in the future, 
AI becomes general, it will probably change society fundamentally. When, and 
if, this will occur is debated and time spans from ten to several hundred years 
from now—or never—have been suggested. A marginal part of AI and machine 
learning development today touches on general artificial intelligence. The major-
ity of development resources are focused on making narrow/specialised AI more 
effective.
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2.2.4 Machine learning

Machine learning is an area of computer science that explores methods of 
 getting computers to learn from data without having been programmed for the task. 
The area is related to statistics and pattern recognition (see Figure 8).

Machine learning has been the prevailing developmental track for practical 
applications of AI for a few decades. Progress has been made through the applica-
tion of machine learning to increasingly larger sets of data. In a relatively short 
time, different machine learning subtypes have been developed, within which 
algorithms are continually being improved and adapted for various applications.

Those in the sector talk of ‘supervised learning’, which means that an AI algo-
rithm uses sets of data to ‘train’ while receiving feedback from people to learn 
when the relationship between given inputs and outputs meets the requirements. 
Unsupervised learning means that the network works without prior knowledge. 
The computer must teach itself the underlying structures only using the input 
provided and not through any pre-given response.

Deep learning is a type of machine learning that can process a wide range of data 
points, may involve more straightforward data processing, and can provide more 
accurate results than traditional machine learning approaches—although it requires 
a greater amount of data to do so.

Deep learning connects software-based ‘neurons’ in a neural network. The 
network can receive large amounts of input and process it through multiple layers 
that learn more complex functions for each layer. Once the network has learned, for 
example, what an object looks like, it can recognise the same item in a new image.

Reinforcement learning means that the algorithm is rewarded when it is success-
ful, for example, through the accumulation of points in a game using a step-by-step 
approach to reach the maximum score. The algorithm remembers the successful 
features and outcomes and corrects itself for ever better results. It learns by discov-
ering. This method, which is inspired by the brain’s dopamine system, is used when 
there is insufficient training data available, when the ideal, ultimate goal cannot 
be defined explicitly or when the only way to learn about the environment is to get 
started and interact with it.

Reinforcement learning is the latest breakthrough in machine learning and 
received widespread publicity when the AlphaGo computer program from Google-
owned DeepMind in 2015 defeated one of the Chinese champions in the board 
game Go. Since then, the technology has gained several commercial breakthroughs 
and is used, among other things, to streamline the operation of gas turbines, wind 

Figure 8. 
AI and different learning methods put in a development perspective.
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turbines and energy use in computer halls. The method has good potential for 
future industrial applications.

For an in-depth look at machine learning, we refer to Part 2 of the report. In this 
section, we will continue with an analysis of the supplier system.

2.2.5 The availability of AI is dominated by significant platform suppliers

The range of applied AI technology is increasing at a rapid pace: we are see-
ing infrastructures, tools, algorithms, data and pre-trained AI models for various 
purposes, all offered as standard products by all major platform providers (see 
Figure 9). The development of automation suppliers means that industrial control 
systems will also get built-in machine learning capabilities. The telecommunication 
industry is beginning to offer distributed and cloud-integrated edge technology that 
shares IoT concepts. There is also an increase in specialised AI providers for differ-
ent applications.

Technology providers of all categories contribute to the quick commercial dis-
tribution of machine learning technology, and several market studies show strong 
anticipated growth in the coming years. According to the analysis company Markets 
& Markets [14], the market for machine learning, language management and vision 
systems will grow from about USD 22 billion in 2018 to more than USD 190 billion 
in 2025.

This corresponds to a growth rate of almost 40%. IT consultants and system 
integrators are also seeing business opportunities and are gaining knowledge 
around the new tools. According to various studies, AI development within the IT 
consultancy industry is seen as among the most pronounced technological break-
throughs of all time [15].

But it is the big tech companies that are driving the lion’s share of commercial 
AI development. The platform companies Apple, Alphabet, Microsoft, Facebook, 
Amazon and IBM together have an estimated value of over USD 4 trillion. They 
account for 55% of the value of the Nasdaq 100 Index (see Figure 10).

Figure 9. 
Computing power is a prerequisite for the development of artificial intelligence. It took 90 years to reach the 
first million instructions per second (MIPS) per $1000—now 1.2 MIPS/$1000 are added every hour. Source: 
Ray Kurzweil and KurzwelAI.net.
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It is these companies that are behind the commercialisation of AI in the West. 
In Asia, Tencent, Alibaba and Samsung are dominating, while Europe lacks cor-
responding strengths. In comparison, however, Europe has advantages in industrial 
technology companies (IndTech). The European companies ABB and Siemens are 
significantly larger than their US counterparts.

The long-term AI strategies of the platform companies include a large R&D 
component reinforced by acquisitions. For example, Google’s purchase of 
DeepMind for USD 400 million, Twitter’s acquisition of Magic Pony for USD 150 
million and Microsoft’s purchase of Github for USD 7.5 billion. To ensure the avail-
ability of top academics from universities, employees are being offered high sala-
ries, unlimited computer and computing resources and minimal bureaucracy [16].

The concentration of resources, expertise and access to data is therefore cur-
rently focused on a few global commercial players. This is a part of the platform 
war, the battle for market domination over cloud services within which the mighti-
est battle is between Microsoft, Amazon Web Services and IBM.

Underlying this growing market landscape is the quiet market dominance of the 
platform companies. Generic cloud products reach end-users directly or via domain 
providers. Within the industrial context, automation, process and machine suppli-
ers can add industry-specific value.

Automation suppliers operate in this way, serving as targeted market chan-
nels that increase the value of the platform companies’ large-scale production 
of computing power and machine learning (see Figure 11). Two groups of more 
independent initiatives flank these platform alliances and centres. One consists of 
companies that sell predictive analysis solutions and build individual platforms. 
According to a qualitative evaluation by analysis company Forrester [17], this seg-
ment is led by SAS, IBM and SAP, with a long tail of smaller players.

Figure 10. 
Top: Platform companies in the US have a definite lead in the development of AI platforms. Market values 
December 2018. Below: Comparison between the three largest IndTech companies in Europe vs. the USA. 
Source: EC, EU industrial policy after Siemens-Alstom, Blue Institute.
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The second flank is made up of specialised companies that supply systems for 
speech, language, vision and generally applicable machine learning platforms for 
industry and others. There is a similarly long tail of small and medium-sized play-
ers. The sector is immature, heavy with development and likely to undergo further 
consolidation.

2.2.6 Automation, industrial IT and digitalisation lead to IndTech

As demand for digital platforms increases and the boundaries between indus-
trial IT, automation and other domains become blurred, more and more players are 
becoming interested in industrial technology. Cloud service providers Microsoft, 
IBM and Amazon are building alliances and challenging traditional automation 
providers such as ABB, Siemens, Emerson and Rockwell.

A second challenge for automation suppliers comes in the form of ICT compa-
nies. Ericsson, Cisco, Huawei, Nokia, Samsung and other industry operators are 
looking for applications for 5G technology, and they consider the industry’s Internet 
of Things an opportunity. The goal of 5G is to make wireless technology available 
for applications that have significantly higher bandwidth, speed and reliability 
requirements than personal use applications. According to Ericsson, operators 
stand to increase revenues by 34% if the process industry and electricity industry 
increase the use of wireless communication [18]. Ericsson is supporting this devel-
opment through its IoT Accelerator Platform Initiative. This is a one-stop-shop that 
will make it easy and safe to connect IoT modules and that will also assist in trans-
lating the technology into a business setting.

Suppliers of industrial IT and automation now need strategies to deal with 
platform companies as well as IoT infrastructure.

The dominance of the platform suppliers makes it impossible for automation 
companies to avoid dependency on their resources, and the challenge for them will 
be to create relationships that develop the industry’s strengths (industrial, process 
and customer relationships) and increase customer value without becoming mar-
ginalised in the platform war. The platform and ICT companies can, by extension, 
be expected to contribute to making automation solutions more uncomplicated 
and more cost-effective and also to add new value. Intelligent apps in intelligent 

Figure 11. 
For industrially applied AI, three groups of suppliers can be distinguished. In the middle are the large general 
platform providers, which are creating more and more alliances with companies that can serve as value-adding 
specialised channels of the platform suppliers’ large-scale AI offering. These are flanked by general analysis 
players, within which there are several large companies, as well as specialised industrial suppliers of various 
sizes. The dynamics of the industry are expected to give rise to significant consolidation. Source: Blue Institute, 
2019.
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ecosystems are a development trend that has the potential for a significant impact, 
thanks to the fact that platform companies are opening up their APIs.

Platforms provide process and machine suppliers with additional automa-
tion and the potential for advanced in-house analysis. Machine suppliers and the 
automation industry share an ambition to build connected competence centres 
for optimisation and fault remediation in customer facilities. By extension, this 
strategy is also about competition for the valuable data that can be mined from 
industrial manufacturing.

A new image for the industry’s suppliers is emerging, where the ability to create 
real customer value will distinguish winners from losers. If IndTech suppliers 
succeed in this, they will have a much more developed role in future industrial value 
systems as highly specialised vertical suppliers of efficiency and quality. At the same 
time, the process flows will be held together using collaborative logistic systems.

2.2.7  Industrial case study: focus on mining companies: the ENSAF project: energy 
and safety diagnostics.

There is currently a significant interest in the early diagnosis of problems in 
underground mining facilities. There is a trend towards achieving fully automated 
mining, meaning that should hazard arise underground, increasingly there are few 
or no personnel around to address them. This makes it crucial to have a capacity 
for early detection of risks from fires caused by factors such as the overheating of 
vehicles, equipment, cables and so on.

It is possible to detect the risks of overheating early by placing sensors in facili-
ties and on mining vehicles, which then continuously transmit information to a 
central diagnostic system. With this approach comes the need to continually train 
staff in different fire scenarios and in managing different situations.

Project ENSAF (a PiiA funded project) is a collaboration between ABB, RISE, 
Mälardalen University and Epiroc, which owns one-third of Mobilaris. With the 
assistance of the Swedish mining companies, who are involved in helping set project 
requirements and who act as sounding boards for the work, the project is aiming 
to find a solution to the significant challenges that fires pose in mines. The proof of 
concept, which involves the fitting of suitable sensors to one of Epiroc’s vehicles in 
one of Boliden’s mines, is planned to start at the end of 2019. Data collection will 
continue into 2020.

Boliden is a high-tech metals company with its mines and smelters, and it is 
working over the long-term to guarantee society’s access to the base and precious 
metals; from the mining of ores (minerals) to the production and delivery of 
high-quality metals to the industry. Its production capacity is high due to experi-
ence, innovation and advanced technology, developed in collaboration with various 
Nordic technology and engineering companies. Approximately 5800 people work at 
Boliden, and its operations are conducted in Sweden, Finland, Norway and Ireland.

‘In the event of a fire, the smoke, in particular, poses a serious threat to both 
people and appliances. It is, therefore, important to be able to detect if a fire is about 
to start’.

2.2.7.1 The challenge

The destructive impacts of mining fires can be significant, both in terms of 
human suffering and in terms of costs and lost revenues. On an annual basis, about 
one fire per week occurs in a Swedish mine, with the majority started by vehicles 
moving about the mine. Sweden has been spared from major mining fires in modern 
times, but in the global sector, it happens all too often. Take the well-documented 
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It is possible to detect the risks of overheating early by placing sensors in facili-
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people and appliances. It is, therefore, important to be able to detect if a fire is about 
to start’.
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The destructive impacts of mining fires can be significant, both in terms of 
human suffering and in terms of costs and lost revenues. On an annual basis, about 
one fire per week occurs in a Swedish mine, with the majority started by vehicles 
moving about the mine. Sweden has been spared from major mining fires in modern 
times, but in the global sector, it happens all too often. Take the well-documented 



AI and Learning Systems - Industrial Applications and Future Directions

78

case of the Pike River coal mine in New Zealand, wherein 2010 some 29 people died 
following several gas explosions. In addition to all the human suffering, the accident 
put the plant out of service for 45 days due to fire extinguishing and remedia-
tion work. The production loss corresponded to half a billion Swedish Crowns, in 
addition to all the restoration costs and elevated insurance premiums. Additionally, 
large penalties can be imposed if the root cause of a mining accident can be attrib-
uted to safety deficiencies.

In the event of a fire, the smoke, in particular, poses a severe threat to both 
people and appliances. It is, therefore, essential to be able to detect if a fire is about 
to start. Other types of risks that can arise include leaks on hydraulic lines, which 
may cause oil under high pressure to produce intense sprays or fog formations.

2.2.7.2 The experience

The ENSAF project is creating a system that leverages all existing fixed measur-
ing sensors in mines and on vehicles and links various measurements (such as tem-
perature, hydrocarbons, CO2 and CO concentrations, relative humidity and flow) 
to each other via simulation models. The aim is to identify problems at an early stage 
and nail down as precise a location for the problem as possible. The information 
collected is used as input to a decision-tree model to assess the risk of fire and also 
to determine the content of any toxic gases that may be hazardous to humans or 
machinery through corrosion. It will be possible to follow real-time developments in 
the mine and compare the measurement data collected with the simulations.

Development of the system is primarily conducted by Epiroc and Mobilaris, 
ABB and MDH, with Boliden acting as a sounding board and contributing with 
experience on mining conditions. RISE contributes, among other things, with 
knowledge around fire and protection, as well as conducting fire tests in its prem-
ises in Borås. ABB sees the potential, through the conceptualisation of develop-
ment, for a complete solution that could be offered commercially, incorporating its 
automation system. Epiroc provides the measurements from the mining vehicles, 
with the data collected in its Certiq system. It then communicates the safety infor-
mation to Mobilaris.

In terms of sensors, the project has been able to detect, among other things, gas 
formations caused by cables loaded with currents higher than they are rated for. 
Smoke detectors are used, to detect not only the shape of smoke but also oil mist 
that can occur through leakage. Thermal cameras can be used at longer distances to 
detect temperature increases on, for instance, cables.

Today, Certiq collects object data (e.g. hydra-like oil level, engine power, etc.) 
24/7 from several thousand mining vehicles across the world. Since the establish-
ment of ENSAF, the system has gone from communicating and gathering data from 
a few hundred vehicles to some 3000. The sensors tested under ENSAF are now 
implanted in Certiq, which transmits sensor data to Mobilaris. Here, gas values 
from the vehicles in the mine shaft, for example, can be monitored and may trigger 
alarms. In a fire situation caused by a mining vehicle, it is possible to correlate all 
available data and perform root cause analyses, and, with the help of deep learning, 
provide answers to the cause of the fire. In the future, artificial applications could 
anticipate possible fire situations and suggest appropriate maintenance activities to 
avoid fires.

Using measurements and analyses, ventilation can be adapted to suit real needs. 
This can save energy without risking functionality and provide a good working 
environment for both people and machines. Close to 50% of the energy consumed 
in an underground mine goes to ventilation. In the case of a fire hazard, the system 
is set to minimise the risk to underground personnel. The system is based on sensors 
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Abstract

This essay aims to describe the dynamics at play in the field of industrial AI, 
where the significant efficiency potential is driving demand. There are rapid 
technological development and increasing use of AI technology within the indus-
try. Meanwhile, practical applications rather than technical development itself 
are creating value. The primary purpose of the article is to spread knowledge to 
industry. It is also intended to form the basis of the Swedish innovation program 
PiiAs ongoing work around open calls and targeted strategic innovation projects. 
The basic approach taken is to investigate both industry demand for AI and how 
the supply of technology is developing. AI takes in a broad and dynamic range of 
concepts, but it should also be considered in the even broader context of industrial 
digitalisation. It is not just a question of technology development, but equally about 
application knowledge. Realising the full potential of AI requires the ability for 
change within individual companies, but also to handle exchanges and interactions 
in changing ecosystems. The article has been divided into two sections: The Market, 
in which we assess the development and the consequences on the factory floor; and 
The Technology, which provides a more in-depth understanding of the structures 
of industrial IT and machine-learning technology. The article concludes with four 
practical examples from the industry.

Keywords: AI, artificial, intelligence, PiiA, blue, institute, automation, 
algorithmization, platform, data, process, industry, IndTech, digitalization, digital, 
twin, ecosystem

1. Introduction

This article has two primary purposes: the first to provide the industry with an 
evaluation of the importance of AI development as a force for change. Second to 
create an internal basis for the Swedish Innovation program PiiA’s future develop-
ment efforts, within which AI can be described as the next phase of industry’s digi-
talisation. Both these objectives are naturally compatible with the overall ambition 
of the report: to reach our target group of industry leaders and to serve as a source 
of knowledge for ongoing activities within relevant companies.

Technological, industrial development is awash with grand ambitions that have 
turned into mere passing fads and costly dead ends. With this in mind, throughout 
our work in assessing the development of AI, we have endeavoured to take into 
account the magnitude and direction of different vectors of change. On the one 
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turned into mere passing fads and costly dead ends. With this in mind, throughout 
our work in assessing the development of AI, we have endeavoured to take into 
account the magnitude and direction of different vectors of change. On the one 
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hand, we have attempted to understand the power of demand for AI by assess-
ing the economic impacts at a macro level. We have focused on productivity and 
qualitative values at various stages of industry value systems. On the other hand, we 
have attempted to assess the range of available technologies by analysing initiatives 
taken on a global scale and through focused academic research. We have also put 
considerable effort into understanding the major commercial – or applied – forces 
that are crucial to development, both in the short and medium-term.

We have also strived to place AI development in the context of current systemic 
developments, as characterised by the “platformisation” of company IT resources. 
By this we mean the transfer of automation and IT support to the cloud – a trend 
that is creating new competitive dynamics. Finally, we have attempted to translate 
this big picture into real impacts on the factory floor and to revisit well-known 
concepts such as organisational development which – with the help of the raw 
power of AI technology – have the potential to make the previously impossible, 
possible.

The project was a collaboration between PiiA and Blue Institute, with valuable 
input from Blue Institute’s network of CEOs and industry leaders on all levels. A big 
thank you is extended to everyone who contributed to this study.

2. From market to technology

2.1 One platform to rule them all…

“One Ring to rule them all” was the theme of Tolkien’s Lord of the Rings. The 
parallel with the power of algorithms – and thus the importance of platforms – is 
not so far remote from that idea. In the platform war, there is currently a battle for 
dominance of the market, with resource concentration an ongoing feature. At the 
same time, most companies have unique needs for which the general services that 
the big tech companies offer in their public clouds are not enough. Most companies, 
therefore, now have some form of a privately-owned platform (private cloud). One 
trend in the market is for hybridisation between one or more public clouds and a 
company’s private environment.

The issue of cloud complexity is becoming increasingly topical as more and 
more specialised domain-specific clouds/platforms are launched to the market 
(Figure 1). The concept of vertical clouds has taken hold and complements the 
original “general” clouds, which are now also called horizontal clouds. Vertical 
clouds represent industrial verticals and subprocesses within each vertical. They 
typically take the form of a PLM cloud, an MES cloud, an automation cloud, and so 
on. Here we can see, as described above, how automation vendors are now adding 
vertical domain-specific clouds or platforms to their offerings.

Another contemporary trend is locally distributed clouds known as edge com-
puting or sometimes fog, which we touched upon earlier in the report. Edge com-
puting is expected to have an increasing significance as AI technology increasingly 
requires a local capacity to complement the core resources of server halls.

One practical, short-term solution to get all these clouds working together 
through hybridisation solutions. The big hope for a long-term solution for industry 
in operational applications lies in standardisation which would make it pos-
sible for different environments to be combined in the same physical facilities. 
Standardisation work is going on within ISO, among other areas. The idea that 
we, like Windows, would become a de-facto standard is not likely, even though 
Microsoft is the provider that is currently the most successful in production-related 
applications.
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2.2 Automation suppliers

There is currently a developmental trend that has the highly consolidated 
automation industry and leading companies such as ABB, Siemens, Emerson and 
Rockwell all moving in the same direction. Their common goal is to achieve market 
platforms that are specifically tailored to the industry. While these structures can 
be likened to operating systems for IoT, they meet the criteria for platforms as they 
match different types of users against each other. (See also the section on vertical 
clouds on the previous page).

AI is being used as a management and administration tool within these plat-
forms and can also be used to produce products in the form of smart apps. These 
can be tailored to different applications and are available for purchase with one click 
via corporate app stores. Specialist centres are also being created for various product 
and industry applications and being linked to production facilities to allow for 
online optimisation and troubleshooting by experts.

• Schneider Electrics’ IoT platform is called EcoStruxure Platform and uses 
Microsoft Azure.

• In 2018, Emerson acquired GE’s famous Predix Platform, which uses services 
from Microsoft Azure and Oracle, among others.

• Rockwell has Connected Enterprise and Factory Talk, which also use Microsoft 
Azure.

Figure 1. 
Cloud structures are becoming increasingly complex. Public, vertical, local and distributed clouds are four 
varieties of the cloud with related services and infrastructures. These platforms are suitable for coordinating 
through hybridisation and, in the longer term, common standards.
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• Siemens’ investment in this area is called MindSphere and rests on resources 
from Microsoft Azure, IBM Watson, SAP and even Amazon Web Services.

• Microsoft has taken a firm grip on the close-to-production IoT market 
through its partners. Microsoft Azure is its platform and includes services, 
tools, and infrastructures that can, among other things, simplify AI 
development.

• Service offerings include Microsoft Cognitive Services, a set of pre-built AI 
features, including vision, speech, language, and search functions. Everything 
is in the cloud and can be integrated into applications. Some features are 
customisable and can be optimised to transform and enhance organisational or 
industry-specific processes.

• ABB’s venture is called Ability and is built on solutions from Microsoft Azure 
and IBM Watson.

The world market for IndTech – products and systems for industrial digitalisa-
tion and automation – is worth USD 340 billion and has a growth rate of 6–7%. The 
area can be divided into IT and OT (operational technology). The IT share is USD 
100–110 billion, while operational technology for production and logistics accounts 
for USD 230–240 billion. Within OT, the distribution is 45 per cent for automation 
for the manufacturing industry and 55 per cent for process automation.

OT includes different types of industrial control systems and field equipment 
such as instrumentation, drive systems and robots. A particular growth area is 
industry’s Internet of Things which complements traditional system environ-
ments. Several platform suppliers are now also launching dedicated and distributed 
systems for machine learning at a local level. Edge capacity on the factory floor can 
thus effectively be integrated into the cloud. For example, in 2018, Google released 
the third generation of the Tensor Processing Unit (TPU) chip.

This parallel development has led to several automation companies developing 
stand-alone AI modules with neural networks that can be plugged into the racks 
of the control systems. With this comes pre-custom type solutions for different 
processes or process objects.

2.3 Is AI expensive?

The computerisation of industry in the 1980s and 90s cost a large amount of 
money. Machines were replaced, and investment mainly focused on large process 
control systems and specialised computers, while thousands of kilometres of cable 
were laid. Air-conditioned computer halls were built, along with control rooms and 
cross-connection spaces. In short: it was expensive, but a good investment, none-
theless, as productivity and key quality figures skyrocketed. This type of primary 
investment will always be needed when rebuilding or when new investment is 
required, but the nature of digitalisation alters the equation. Consider the so-called 
“logic of small streams”, where a large number of spread-out, smaller contributions 
can come together to produce great results.

Today, you do not need to build air-conditioned computer halls and to buy serv-
ers to bring good ideas to fruition. It’s easy to order as much computing power and 
functionality as you require – including AI tools – from the cloud at comparatively 
low prices. The majority of the data monitoring and collection infrastructures one 
might require are already in place. If sensors and hardware are needed, there are – or 
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will soon be – cost-effective IoT modules that will meet even the strictest precision 
and environmental requirements. Communication solutions are also expected to be 
wireless, reliable and inexpensive in the future.

These developments are leading to an evolving approach to change. It’s becom-
ing possible to be creative, to test the boundaries, and to think outside the box. 
Massive investments will not be required to unlock parts of the hidden value within 
plant and production processes and to outperform both competitors and customers’ 
expectations.

The challenge with succeeding with AI is less about expensive investments in 
computer technology and more about obtaining the right skills in the right constel-
lations. Experience shows that good AI projects are characterised by successful 
teams where domain and process knowledge, knowledge of analysis, and the right 
tools, all play a crucial role.

2.4  Concluding thoughts about the market as a framework for technology 
development

Our first aim was to examine the expected value-creating effects of AI and, 
based on the evidence we have studied, we have found that AI’s impact on produc-
tivity development is likely to outpace by a factor of two previous, generic technol-
ogy shifts, such as the introduction of steam, robotisation and IT. According to 
PwC, the global GDP in 2030 could be as much as 14 per cent higher due to the AI 
effect. Global impacts on industrial sectors leading up to 2030 could amount to as 
much as USD 2.3 trillion.

Our second ambition was to examine whether the development of AI and the 
associated supplier system could meet the demand for the technology that is being 
generated by the potential value creation it brings. Our view is that the centre of 
the development is now leaving the initial innovation phase and moving into the 
best-practice phase. This assessment is based partly on the fact that the large R&D 
investments being made need to yield profits, and partly on the fact that standardi-
sation work is well on the way to show results. Besides, industry leaders around the 
world have come to realise the vast sums at stake in the coming transformation of 
the industry. Furthermore, there is also a dynamic that will arise when the three 
developmental hubs begin to work together, once development results reach the 
market. This is likely to produce an increase in torque for the entire system.

Thirdly, we wanted to understand whether this development was sustainable 
or whether we are currently seeing a hype effect that will wear off, with the actual 
market breakthrough coming much further down the track. Looking at Gartner’s 
(often challenged) model Gartner’s Hype Cycle for Emerging Technologies, there 
are different technical aspects of AI spread out across the different phases of the 
model. For example, deep learning using neural networks – which can be viewed 
as representative of the industrial use of AI – is currently at the “peak of inflated 
expectations” stage (Aug 2018) but could move to the “plateau of productivity” 
within 2–5 years.

Our assessment and our S-curve model suggest that digitalisation, in a broad 
sense, has now reached the beginning of the “plateau of productivity”: best prac-
tice. It is challenging to make timing predictions around the introduction of AI to 
industry. On the one hand, there is a spread over different verticals with different 
conditions, and there are also various activities underway, ranging from manage-
ment and administration to forecasting and foresight, to operational functions 
in production and logistics. In some areas, AI has already established technology, 
while in others, it is still in the developmental phase.
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But we also found via our empirical evidence that machine learning is being 
quietly tested in many more places than you might imagine. Safety reasons dictate 
that the incubation period for new technology within heavier industries is much 
longer than in other commercial areas and longer still than the consumer area. With 
this in mind, 2–5 years seems not a long time, but rather a reasonable action period 
for translating ideas into operational benefits. A two-to five-year timeframe for the 
more permanent establishment of AI technology is also in line with our analyses, 
with the focus point shifting from a “best practice” situation to a commercial 
production breakthrough on the S-curve.

We conclude that the massive underlying forces driving both the demand for 
and supply of technology guarantee a stable development outlook for AI for indus-
trial applications.

Within the period mentioned above, the timing seems right for a match between 
technology reaching the industry and the spreading of insight into the possibilities 
of this technology. This has the potential to create a significant industrial move-
ment and thus deliver increased commercial demand at the company level and the 
achievement of previously unachievable results in production systems.

We also expect structural changes in the supplier system as entirely new con-
cepts reach the market and previous industry and supplier limitations cease to be 
valid. There will be incentives for both extensive consolidation and repositioning in 
many areas.

Industry case study: Kone and ThyssenKrupp - Preventive Predictive 
Maintenance

Two hundred and sixteen centuries is a long time to wait for a lift. That figure is an 
estimate of the cumulative annual stopping time of the twelve million lifts in the world, 
moving about one billion people every day. To improve the maintenance of lifts, escala-
tors and conveyor belts, the two suppliers Kone and ThyssenKrupp, have begun to use 
machine learning. According to the companies, it is just a taste of what is to come. The 
idea of the work is to anticipate errors before they happen, and the experience gained 
from these large-scale, global applications is expected to provide a valuable knowledge 
base for the broader development of AI in preventive maintenance – something expected 
to be required in most industries.

The challenge
Predictive maintenance is not a new concept. Industries that require high availability 

such as pulp and paper, chemistry, oil, gas and steelworks, to name a few, have long used 
statistical analysis tools to forecast interruptions and improve maintenance work. But 
machine learning provides a new level of accuracy and efficiency and makes predictable 
maintenance possible on a large scale on a large installed base. It is possible to identify 
common error patterns over hundreds of thousands of lifts, and at the same time, using 
algorithms, detect anomalies and specific behaviours for each lift plant. While two lift 
plants might be of the same model, their practical use will differ from day to day, as will 
the infrastructure around them.

It is simply not possible to apply simple sets of rules across such large and heteroge-
neous environments – which is why machine learning represents a real breakthrough in 
this context. Until now, predictive maintenance has involved identifying fault thresholds 
using a range of sensor data, which in turn can statistically indicate faults in lift plants. 
Machine learning involves using historical data in which fault events have been identi-
fied to allow the system to learn to find new faults – all without operators having to tell 
the AI what a fault pattern looks like.

The experience
In 2015, ThyssenKrupp launched a service called “Max” based on data from IoT 

sensors, control system data and data from the company’s ERP environment and CRM 
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systems from SAP and Oracle. In collaboration with Microsoft, a cloud-based data 
storage facility was created based on the Azure Cloud Platform. ThyssenKrupp currently 
provides the service to approximately 120,000 lifts and other systems, or 10 per cent of 
the installed base.

Open source code is used to build classification and regression models. A combination 
of models across different data streams and types of objects is compiled to achieve highly 
relevant and reliable results. The various predictive models are also gradually becoming 
outdated, due to lifts and escalators wearing out, being rebuilt and maintained, and so 
continuous re-learning is carried out.

The goal is to send field technicians to a facility before it fails. Although the mainte-
nance system currently is not reaching that goal, the technician is often on the road when 
the call from the customer arrives. Once in place, the system has already done much 
of the troubleshooting work that would otherwise be started only once service staff are 
in place.

The introduction of AI technology at ThyssenKrupp has led to a review of some 
organisational boundaries between its service departments, IT and other functions. 
According to ThyssenKrupp’s data, the system (used by 20,000 service technicians 
worldwide) has so far reduced the stoppage times of over 40,000 customers. It’s not just 
the development of machine learning that has made this possible. Lower mobile data 
costs and the development of cloud technologies have also been enabling factors.

From an organisational development perspective, the project is not primarily 
technology-driven. From the outset, a broad group of different professions has been 
involved. Field technicians have been at the centre of the action, and they have been 
complemented with an IT team with skills in cloud and machine learning, as well as the 
skills to bring together and prepare the data. HR, legal, construction, production and 
other divisions have also become involved.

Kone – one of ThyssenKrupp’s competitors – has developed its service offering along 
with IBM and Watson IoT systems. The partnership was launched in February 2017, 
and Kone has since equipped the facilities that use the service with IoT sensors to measure 
around 200 different parameters, such as movement, temperature, air pressure and forces 
within the machine.

Data is transferred to the IoT cloud platform as well as data and error status from 
the control systems. IBM Watson’s natural language learning and machine learning 
processes have also been able to analyse information in maintenance logs and manuals 
accumulated over several decades. Watson can also be applied to images, sounds, and 
vibration patterns. Some generic components such as rotary machines have been mod-
elled with general data from the installed base, and models have since been refined with 
more data specific to each device.

The result is that customers see significantly fewer stops and errors, and they experi-
ence a higher level of service. Plans include adding more data and expanded infrastruc-
tures that will further develop the customer offering. There is a plan to let people interact 
with the lifts so that the lifts, for example, sense when someone leaves a hotel room and 
then ensure that a lift is available on the right floor. Kone sees great quantifiable benefits 
from applications like these, which will drive AI to integrate into other applications as 
the technology improves.

Kone and ThyssenKrupp show that technical industries with large dispersed installa-
tion bases can use AI and machine learning technologies in the cloud to build predictive 
models that plan and make maintenance more efficient. But just as we have noted 
before, there are challenges when it comes to developing and applying the computer 
models, especially concerning data management. This means that these techniques are 
likely to be mainly used, where the return is most significant.

Sources: ThyssenKrupp, Kone, Computer Weekly.
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2.5 The birth of modern AI

In the summer of 1956, a select group of researchers met at a seminar at 
Dartmouth College in the United States. The topic was Artificial Intelligence, and 
the optimistic goal of the summer meeting was to “achieve significant advances in 
the AI field”.

Convening the Dartmouth Summer Research Project on Artificial Intelligence 
was a young assistant mathematics professor who would later become legendary. 
His name was John McCarthy, in his invitation, he wrote: “We propose that a two-
month, ten-man study of artificial intelligence be carried out during the summer 
of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed 
based on the conjecture that every aspect of learning or any other feature of intel-
ligence can, in principle, be so precisely described that a machine can be made to 
simulate it. …. We think that a significant advance can be made in one or more of 
these problems if a carefully selected group of scientists work on it together for a 
summer.”

The seminar marked the beginning of a favourable period for American AI 
research. Support, in the form of considerable funding from the defence authori-
ties during the Cold War, led to great academic freedom and a creative research 
climate. But the 1970s brought challenges. AI researchers had underestimated the 
challenges, and a series of setbacks followed. Both American and British-oriented 
AI-foundational research was deprived of its funding. The research was criticised 
for lack of realism and lack of results.

The 1970s came to be called the first AI winter. Several setbacks would come 
later, as the hype around the field repeatedly rose and fell. The so-called LISP 
machines and expert systems of the 1980s were market failures that once again 
reduced development grants and led to new freeze periods. However, in the late 
1990s and early twenty-first century, AI development quietly began to make prog-
ress. Expert systems using the technology could be used commercially for logistics 
and medical diagnosis. These successes came from better methods and more, and 
cheaper, computational power. The twenty-first century, and especially the period 
after 2010, has shown that AI is now an established commercial field that is growing 
rapidly.

Consumer applications from Amazon, Google, Microsoft and Apple are being 
rolled out on a broad scale, while AI support is now built into finance, media, trade 
and industrial applications. AI for language management is expected to grab the 
largest share of the market in the coming years, while health care applications are 
forecast to have the highest growth rate. Meanwhile, industrial applications are also 
expected to grow rapidly, a trend that is supported by our analysis in the first part 
of this report.

The current commercial breakthrough of AI technology is the result of the 
simultaneous coming to maturity of several underlying fields. The rapid expansion 
of the Internet from the 1990s onwards means that large amounts of data are readily 
available today. Data is the raw material of AI technology and is transformed into 
money and growth using algorithms.

In parallel, other developments mean that the cost of computer capacity is now 
rarely a limiting factor. Algorithm technology has undergone a similar process. All 
this comes on top of unprecedented growth within tech companies and their large 
appetites for investing thousands of billions of dollars in AI development, as well 
as general conditions that have allowed for the spread of AI. The overall picture 
is clear: AI in the form of machine learning is an established field of commercial 
technology that is achieving significant breakthroughs within all verticals in all 
markets.
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The purpose of this concluding section of the report is to provide a somewhat 
deeper technical perspective to complement the report’s market focus in the 
first part.

We will start with an overall picture of IndTech and the scope of industrial IT, 
automation and digitalisation in general. This will be followed with a description 
of machine learning technology, and finally, a discussion of the data challenge, the 
concept of collaborative intelligence and the future of AI.

2.6 IndTech: an overview of the industry as an application area

The concept of IndTech brings together IT with both operational technology 
on the factory floor and digital development. It has a special significance in that it 
is where technologies from a range of different fields and periods come together 
(Figure 2). In addition to helping to transform the industry, the IndTech movement 
is creating a world market for industrial technology worth SEK 3.5 trillion per year 
[1]. IndTech is a hidden and yet giant industry and a field of excellence for Sweden, 
with numerous renowned companies operating in the area across the world.

The installed base of automation and industrial IT in the world is estimated to be 
SEK 50 trillion. This is where technology with roots in the 1980s meets with digital 
innovations generally not even developed for industry; something that’s hardly 
surprising given that a range of other sectors encountered digitalisation far earlier. 
The picture of the field that is emerging is thus one of the great opportunities but 
also significant challenges.

The traditional view of system support for the industry has been a pyramid-
shaped hierarchy, with operational technology closest to production, and IT 

Figure 2. 
The model for IndTech: traditional and new technologies come together and make “smart industry” possible. 
Classic automation and industrial IT meet digitalisation and create new digital platforms and business 
ecosystems. Source: Blue Institute, 2019.
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for administrative processes located above it. The idea that this hierarchy, the 
Automation Pyramid, might be dissolved in favour of more flexible structures has 
long been the subject of discussion. How this might happen has been less clear.

Incremental change scenarios seem the most likely given industry’s installed 
base of 1990s technology, much of which has a significant remaining life span, and 
the need for extensive standardisation work. In the short term, the focus may be on 
removing silos through better, more practical integration between computers and 
organisations, both within companies and in supply chains. In the longer term, the 
focus is likely to be on interoperability in the shape of the full interchangeability of 
information, without manual intervention, based on accepted industry standards.

To understand the general impact of digitalisation on the industry, it’s essential 
to consider which existing structures could simply be replaced by new technologies 
(a less common scenario), and which are likely to go through incremental changes 
over a long period (the more common scenario). The challenge going forward will 
be to use digital platforms and information transparency to address market fluctua-
tions with new organisational approaches and ways of doing business (Figure 3).

Industry’s experience with previous technology shifts has demonstrated the 
importance of creating an overall conceptual picture, as well as having clear objec-
tives from the outset and working towards them one step at a time. These objectives 
should include at a bare minimum: having digital infrastructure delivered through 
one, or several, specialised cloud services from different providers; using AI analy-
sis for automation, augmentation and a collaborative approach between people and 
machines; using of the Internet of Things as a general application platform to lowers 
prices and simplify hardware and software.

Together, these three verticals form a digital platform with the potential to 
resolve information hierarchies over time. One of these verticals pertains to 
advanced analytics, an area in which machine learning if applied correctly, can be a 
potent tool. We will now examine this field in more detail.

Figure 3. 
Development can be summarised as integration in vertical and horizontal directions, and through new 
technology fields that both complement, improve and challenge the traditional environments and hierarchies. 
Source: Blue Institute, 2019.
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2.7 AI analytics with machine learning

Artificial intelligence is often seen as something almost supernatural, and the 
media is often prone to highlighting its more sensational aspects. But as we will see, 
machine learning might just as well be called data analysis or applied mathematical 
statistics. The principles are very logical, even if the calculation processes are wide-
ranging and complex.

Advances in AI development typically based around machine learning being 
applied to larger and larger sets of data and the development and efficiency of 
learning algorithms. Machine learning is, therefore, the technology behind most 
types of AI we see today. While traditional computer programs adhere to prede-
termined explicit program instructions, machine learning algorithms scan data to 
detect patterns and then learn to make predictions. The algorithms adapt gradually, 
and the experience they gain is utilised and improves efficiency over time.

The mechanism behind machine learning centres on how tasks are presented 
as an input to a matrix-like structure; a neural computer network inspired by the 
functioning of the brain.

A machine learning algorithm expresses a function between the data it is fed, 
and the data produced by the model: y = f (x). This function is always unknown, 
as it cannot be precisely determined mathematically, and this is where the finesse 
lies in machine learning: estimating the target function as accurately as possible. 
Correspondingly, if it is possible to determine the function in some other way, 
machine learning is not needed.

The output of the network, the prediction, depends on how the junction points 
in the network where the data meets during the process are given different values, 
called weights. These weights are the secret to the system’s learning. (The junction 
points can be likened to the neurons of the brain (Figure 4)).

The problem lies in how to calculate the weights. The most common way is to start 
by giving them random values and seeing how significant the errors emerging from 
the model are. Each error is measured and then used to gradually change the weights 
and eventually approach a solution where the error is as little as possible—in other 
words, minimising the function’s cost. A central part of the learning process is a 
mechanism called “backpropagation” that tells the network which mistakes it makes.

Figure 4. 
A machine learning algorithm expresses a function between the data it is fed, and the data produced by the 
model: y = f (x).
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A tremendous amount of data is required to train and validate a model. Some 
models can automatically separate data into different clusters and see the context 
and patterns themselves, but many forms of neural networks require data with 
guidance. This includes examples of what should be entered and what the expected 
results should be. For this purpose, collections of open training and test data are 
created of various kinds, such as those for traffic images, with a label that classifies 
them as representing a traffic light, a pedestrian, etc.

As we have often returned to in this study, the amount, structure and quality 
of data are the most challenging parts of machine learning, which are both time 
consuming and costly.

For industry, the technology is useful in optimising the sourcing and the supply 
of materials; optimising internal and external logistics; planning production and 
forecasting demand and capacity utilisation; for process management and energy 
optimisation; for creating maintenance plans and working with preventive main-
tenance; for understanding customer behaviours; and for simulating cash flows. In 
summary, for progress in operational development.

The key to success using analysis as a method for operational development lies 
in good domain knowledge, that is knowledge of the company’s operations and pro-
cesses, and in the ability to create an analysis culture with a solid understanding of 
both mathematics and statistics. The tools needed are rapidly being commercialised 
and are becoming both cheaper and easier to use.

One of the simplest methods of classifying items through supervised machine 
learning, and also one of the most accurate, is called the “nearest neighbour” 
method. The technique is to measure the difference between two objects, or the 
distance between the objects. A large number of items are collected with each object 
labelled with a class affiliation. This is called the reference quantity. When a new 
unknown object is found, it is compared to the reference quantity until the object 
that differs the least from the new one is found. The unknown object is then consid-
ered to be of the same class as its nearest neighbour from the reference quantity.

Regression analysis, or regression, is a branch of statistics where the goal is to 
create a function that best fits the observed data. Linear regression is a method com-
monly used in machine learning contexts that has its limitations but compensates 
for these with simplicity, interpretability and efficiency. Simple linear regression 
assumes that a straight line can be adapted to the data and the regression equation 
can be described as y = a + b x. The intercept with the y-axis A and the slope B is 
calculated so that the error compared to the observed data is minimal. The error can 
be calculated using, for example, the least square method or maximum likelihood.

Logistic regression is an appropriate method of analysis when the dependent 
variable is binary. Like all regression analyses, logistic regression is a predictive 
analysis. Logistic regression is used to explain the relationship between a dependent 
binary variable and one or more independent variables.

With clustering, the aim is to divide the inputs into several groups. A difference 
between clustering and classification is that with clustering, it is not clear what the 
groups are in advance. This is typical of unsupervised learning.

2.8 How data becomes money: the machine learning process

A fundamental difference between neural networks and conventional com-
puter programs is that the former develops in two stages. In the first stage, which 
can partly consist of regular programming, the width and depth of the network 
are determined, along with how it is to be provided with data and how it will be 
connected with the rest of the application and the process to be automated or 
optimised. The next stage is that the network begins to be trained.
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The machine learning process (Figure 5) – the pipeline – begins with data collec-
tion in a procedure called ingesting and includes the cleaning and normalisation of the 
data so that, for example, numerical scales of values are aligned with each other. This is 
a time-consuming part of the process and can take as much as 80% of the project time.

The data sets need to be representative, and it is essential to analyse how bias can 
affect the model. The critical issue is how data is selected and how it is normalised. 
Distortions and prejudices built-in by algorithms is one of the most significant risks 
of machine learning because these undermine the entire purpose of the technology. 
The old truth about “you put garbage in, you get garbage out” applies in the highest, 
amplified, degree to machine learning.

In many cases, the process involves working with streaming data. In that way, it 
is possible to choose to first save the data in a database or to collect the data continu-
ously to fine-tune existing models. The alternative is to build new models and train 
them with new data occasionally. The decision affects the choice of algorithms, as 
some algorithms are suitable for fine-tuning and others are not.

The next phase is comprised of training the model, or to put another way: 
determining the weights in the function relationship so that the model delivers the 
best possible results. The procedure for setting the weights is called hyperparam-
eterisation. A hyperparameter is a setting that controls how a model is to be created 
based on an algorithm.

In reality, the process of teaching a model by seeking the “correct” weights can 
include millions, perhaps billions of iterations. To increase performance during 
modelling, there need to be multiple, parallel work processes running. That is copies 
of a program that run simultaneously at different locations. The parallelisation cal-
culations utilise special hardware. CPUs originally used for graphic drivers (GPUs) 
have proven to be excellent in these cases.

In the summer of 2019, there was an emerging discussion over the impact of 
machine learning technology on the environment and the climate, given the energy-
intensive GPUs that run the learning processes. A recent article from the University 
of Massachusetts [2] has found it is the marginal fine-tuning of models, in particu-
lar, that consume energy, thus leaving an imprint on the climate if the computers 
are driven by, for instance, coal power. This is also one of the reasons why Sweden is 
a country of interest to the localisation of data centres.

Figure 5. 
The machine learning process or pipeline that begins with the collection of data and continues with data 
preparation and training of the model. The model is then implemented and run to provide accurate predictions. 
Source: InfoWorld.
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Figure 5. 
The machine learning process or pipeline that begins with the collection of data and continues with data 
preparation and training of the model. The model is then implemented and run to provide accurate predictions. 
Source: InfoWorld.



AI and Learning Systems - Industrial Applications and Future Directions

94

The final phase of the process is to use the pre-trained model. The model is now 
run with new, live data to make predictions that can then be translated into inter-
mediate values such as quality, time and efficiency, which in turn can be assigned a 
price. Data has thus been transformed into money.

2.9 Typical problem types and methods of analysis

1. Classification, which means that based on a set of training data, new input 
data is categorised into one of several different categories. An example of clas-
sification is identifying whether an image contains a specific type of object or 
product of acceptable quality from a manufacturing line.

2. Continuous estimates calculate the next numeric value in a sequence based 
on a set of training data. These types of problems are sometimes described 
as “predictions”, mainly when applied to time-series data. An example of 
continuous estimates might be to forecast the sales demand for a product 
based on inputs such as previous sales, consumer preferences and the weather 
situation.

3. Cluster comparisons require systems that create sets of categories where the 
data instances have common or similar characteristics. An example of cluster 
formation is different consumer segments based on data from individual con-
sumers, including demographics, general preferences and consumer behav-
iour.

4. Anomaly detection, which, with a set of training data, determines whether 
specific input data falls outside of a norm. For example, a system that has been 
trained with historical vibration data from a machine can determine whether a 
new data batch suggests there is a fault in the machine. Anomaly detection can 
be considered a subcategory of the classification problem.

5. Ranking involves algorithms being used for information retrieval problems 
where the results of a request need to be set against a criterion. Recommenda-
tion systems that, for example, suggest prioritised purchases of products use 
these types of algorithms to sort the suggestions by relevance before they are 
presented.

6. Recommendations are systems that provide recommendations based on a set 
of training data. A typical example is a system that suggests a “next purchase” 
for a specific customer based on the buying patterns of similar people and the 
observed behaviour of the particular person.

7. Data generation requires a system that can generate appropriate new data 
based on the training data. For example, a music composition system can be 
used to create music pieces in a particular style after being trained on pieces of 
music in that style.

• Bad - means that the quality of available data is substandard, even though 
it has a clear physical significance. This makes it difficult to compensate 
for flaws in quality by adding more data of more or less the same type. The 
latter is a method that can work for applications using deep learning, such 
as image recognition.
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• Broken - means that data that has been collected to train a machine 
 learning model lacks the essential qualities of validity/relevance and 
contain error conditions. This then leads to false positives or negatives in 
the online implementation of the model. This is a serious problem because 
even a few or occasional erroneous statements can endanger the reliability 
of the system, and industrial AI applications typically have significant 
potential to impacts on assets and personal safety.

• Background – means the data patterns in industrial contexts can be tran-
sient. The process involved is volatile, fluctuating and fast. Interpreting 
such data often requires in-depth domain knowledge, and it’s not enough 
to simply dig for more numerical data. In addition to precision around 
predictions and quality of performance, an ability to find the roots of 
possible anomalies is also required.

2.10 The data challenge

One of the biggest challenges with AI concerns the quality of the data needed to 
make predictions, create forecasts, and recognise patterns. It is a widespread issue, 
and a great deal of monotonous, routine work takes place behind the sometimes 
simplified depictions of AI that we see.

In autumn of 2018, BBC News [3] brought attention to a new concept: 
labelling farms. This is a rapidly growing global sector involving data centres 
that have been located in low-cost countries for economic reasons. Labelling 
farms today employ thousands of people whose only task is to help AI algorithms 
interpret data.

Pixel by pixel, the content of millions of images is classified; a car is identified 
as a car, a dog as a dog, a road sign as a road sign, and so on so that self-driving cars 
can recognise real-world objects. Similar data challenges are being encountered 
everywhere that AI is to be applied. The high cost of data preparation means that 
there are financial incentives to solve the data problem, and many projects are being 
carried out with the help of even more AI in a bid to find new solutions and better 
methods.

Industrial AI involves transforming raw data into “intelligent” predictions to 
make decisions. In industrial processes – in a steel mill or a paper mill – quick deci-
sions are made in real-time at the millisecond level in models representing physical 
reality. Several challenges arise in such processes. Real-time requirements mean 
that the cost-effective and almost endless resources of the cloud need to be supple-
mented with locally distributed computational and storage capacity, also known as 
“edge”. But the most fundamental challenges also concern the availability and the 
quality of the data.

Since the 1980s, industrial control systems have been producing enormous 
amounts of information. Industrial Big Data is available in every factory, and 
yet while industrial data is generally well structured, it often lacks quality. You 
sometimes hear talk of the “three B’s” of Industrial Big Data: Bad, Broken & 
Background.

Teams of people who possess both process knowledge and computer science 
are required for the development of good adaptive models. There is also a need 
for method development, with experience teaching us that data preparation 
demands a disproportionate amount of work. This is a serious issue that needs to 
be continuously addressed and prioritised, lest it becomes an obstacle in releasing 
industrial value.
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2.11 Solutions to data deficiency and manual intervention

Much of the success of modern AI applications are based upon bottom-up strate-
gies within which models are trained using large, well-structured data sets typically 
collected via the Internet. For example, the GPT-2 text bot was trained using a data 
set of eight million web pages. Intelligent assistants like Apple’s Siri or Amazon’s 
Alexa use thousands of terabytes of data to perform their tasks, and self-driving 
cars consume about forty terabytes per eight hours of driving, according to INTEL.

For operational industrial applications, large amounts of information are being 
collected. However, critical processes, in particular, lack the volumes needed to 
train good models. There is a lack of data in marginal or edge cases, and it is not 
always easy to deliberately address such deficiencies (by inducing errors in physical 
processes). The errors they represent correspond to high costs due to significant 
production disruptions. This is a problem that also applies to other, normally 
data-rich applications. One of the considerable challenges in the development of 
autonomous vehicles is managing the most unusual of operating cases. Another 
characteristic of today’s AI technology is that it tends to easily become “confused” if 
circumstances deviate significantly from what is expected.

Methods are in development to overcome these weaknesses. Similar to human 
intelligence, they involve working in a more flexible, top-down manner, which 
allows for reduced data requirements and enhanced speed. There are a number of 
trends related to the development of more natural systems worth keeping an eye out 
for soon.

2.12 Eight trends

1. The first trend involves giving robots conceptual properties (both physical and 
artificial) that in turn give them a greater ability to perceive themselves – and 
their environment. See the text box on page 45, describing how researchers at 
the University of Columbia have succeeded in giving a robot such properties.

2. Another developmental avenue involves something of a renaissance of the con-
cept of “expert systems” within which computers become better at doing what 
human process operators do by making adjustments in real-time to optimise 
processes.

Siemens has developed data-efficient methods such as these based on 
“reinforcement learning” to control the company’s gas turbines. In this area, 
traditional neural networks would take up to a hundred years to learn the 
complex combustion processes. The method has subsequently been developed 
to increase the efficiency of the company’s wind turbines. Google is also using 
technology to reduce the energy consumption of its data centres successfully.

3. A third way to address the weaknesses of today’s AI algorithms is to give 
computers more common sense. According to an article in Harvard Busi-
ness Review [4], the Allen Institute for Artificial Intelligence is working on 
developing test data that can be used to verify what common sense means 
to a machine. Meanwhile, DARPA is investing USD 2 billion in AI research 
through, among other things, creating models that mimic human cognition. 
And Microsoft and McGill University have jointly developed a system for 
distinguishing ambiguities in natural language; a challenge needs to be solved 
if, among other things, computers are to be able to communicate with human 
beings in a human way.
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4. A fourth track is the possibility of letting computers make similar balances of 
probability assumptions to those that humans intuitively make. This is being 
made possible through stochastic Gaussian processes that can function and 
recognise patterns within limited data sets and learn from experiences. An-
other feature of this method is that processes are traceable if something goes 
wrong, unlike with the black boxes of neural networks.

5. Yet another method of advancement is Probabilistic Programming for the ap-
plications described above. This method brings together the best practices for 
mimicking human intelligence such as probability theory for modelling, statis-
tical methods for drawing conclusions, and neural pattern recognition net-
works, along with symbolic program languages that hold the system together.

6. “Explainable AI” is an adjacent developmental track. The black box phenom-
enon of machine learning can be problematic. Therefore, systems must be able 
to justify how they have arrived at their conclusions. It’s also essential to ensure 
that human beings can have trust in the way that such systems arrive at their 
results and decisions when, for example, traffic situations, legal support or 
medical diagnosis become automated.

7. Federated machine learning is another method showing promise. The idea 
was launched in 2017 by Google as a concept within which the ability to train 
a model is decoupled from the up-until-now necessary central storage of data 
in the cloud. The method can train a single machine learning algorithm over 
several decentralised servers that store data, without actually exchanging data 
with other servers. It allows multiple actors to build a common, robust ma-
chine learning model without sharing data, thereby addressing critical issues 
such as data privacy, data security, data access rights, and access to heteroge-
neous data. It also enables capacity in distributed applications.

This way of working is based on the idea that a distributed device, such as a 
phone, downloads an existing shared model, improves it by learning the data 
that is locally available on the phone/device and then summarises the changes 
as a small concentrated update. Only the update is sent to the cloud, via en-
crypted communications, where it is immediately computed and integrated 
with other user updates to improve the shared model. All training data remains 
on the local unit, and no individual updates are stored in the cloud.

The technology can contribute to breakthroughs for industrial operational ap-
plications based on conventional automation or IoT, where distributed capac-
ity is both a prerequisite and natural in the current concept of control and 
monitoring.

8. Finally, AutoML or Automatic Machine Learning looks like the holy grail 
for solving the many and long routine steps found in today’s state of the art 
technology. Automated machine learning involves automating the process 
from end-to-end. As we have noted, typical machine learning projects involve 
extensive pre-processing before the dataset can be made available for actual 
machine learning.

Pre-processing is followed by a selection of an algorithm, hyperparameterisation 
and fine-tuning to maximise predictive performance in the final model. In addition, 
many of these steps require both experience and specialist knowledge. What could 
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be more logical, then, than to suggest AutoML as an artificial intelligence-based 
solution to these growing challenges? Automating the process would be an effective 
productivity-enhancing method, which besides would be likely to provide solutions 
and models that exceed manually designed ones.

AutoML solutions with drag-and-drop-based user interfaces, and that do not 
require any coding in the ordinary sense are now on the market and are offered by 
all major platform providers such as Google, MS Azure and IBM, along with many 
specialised smaller companies. The technology is evolving rapidly and will further 
lower the threshold for users.

Industry case study: BillerudKorsnäs in Gävle, Sweden - Deep Process 
Learning.

DEEP is a project that will show how deep process learning (deep learning) can be 
used for the next step in process automation. The project takes advantage of data that 
already exists in process control systems and uses it to suggest the measures required to 
improve selected key performance figures. The project, which is a collaboration with 
PiiA, consists of a consortium between BillerudKorsnäs, Peltarion, PulpEye and FindIT.

“The forestry sector has an advanced supply chain with multiple levels of complexity 
and difficult, resource-intensive processes…”.

The process industry accounts for almost half of all industrial production in Sweden. 
So, the achievement of efficiency and productivity improvements within it is certain to 
have a significant impact on the Swedish economy. The forestry sector has an advanced 
supply chain with multiple levels of complexity and difficult, resource-intensive processes: 
from felling to barking and chipping the wood, to boiling, washing and bleaching the 
pulp before it reaches the paper machine to be refined to produce paper and cardboard of 
various grades.

Process industries produce vast amounts of data and have a high degree of automa-
tion, but they also face a variety of challenges. These challenges cannot always be addressed 
through traditional analysis methods. As such, the data produced can be a valuable asset, 
capable of being refined through AI to generate insights, predictions and automation 
algorithms – thus creating the next stage of productivity, quality and automation.

BillerudKorsnäs is a forestry company that supplies packaging materials and 
packaging solutions. The company has three divisions: Division Board, which manu-
factures and sells liquid and non-liquid packaging board, as well as fluting and liner; 
Division Paper, which produces and sells high-quality kraft and sack paper; and the 
Solutions Division, which meets the needs of brand owners for efficient packaging 
solutions and systems.

During a feasibility study for DEEP, BillerudKorsnäs and Peltarion jointly led a 
machine learning project to predict the kappa number of pulp after boiling. The kappa 
number is a measure of residual lignin in the pulp and determines the boiling process 
required for different pulp qualities. The project was successful and resulted in a useful 
technique for predicting the kappa number. This success encouraged further development 
of the approach in other process steps.

“The successful use of machine learning as a tool is based upon a deep understanding 
of the processes that are to be optimised”.

The challenge
Paper machine 4 in Gävle is a cardboard machine that manufactures liquid packag-

ing board for juice and milk packaging, among other things. The purpose of the DEEP 
project has been to realise the efficiency potential identified in the manufacturing process 
by proposing optimal machine operational parameters. An essential feature of the fin-
ished liquid packaging board is the carton’s bending stiffness. This property is determined 
by complex relationships between the different stages of the manufacturing process, not 
least by the pulp’s fibre properties. The goal is to produce strong packaging using less raw 
material.
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To meet the quality objectives at optimum production speed, process settings must 
be continuously evaluated and adjusted. In the DEEP project, data is being collected to 
support the online optimisation of such decisions. The data used in the project consists of 
high-resolution microscopy images from PulpEye’s analyser which provides information 
about the pulp’s fibre properties and camera images from the drying cylinder which pro-
vides information about the dewatering of the pulp, in combination with measurement 
values from different sensors in the system. In the next step, data will be used to develop a 
suitable model to predict quality properties.

During the DEEP project, many different attempts were made using various methods, 
including deep learning with Peltarion’s self-developed platform.

The experience
BillerudKorsnäs has formed a digitisation team with different competences from dif-

ferent parts of the organisation, and that initiates and runs transformation projects. The 
company’s various AI initiatives are part of that transformation process.

BillerudKorsnäs’ experience shows that deep learning technology is ripe for use in 
various types of classification problems and for further increasing the degree of process 
automation. The process industry is characterised by a combination of large amounts of 
data and a high degree of automation, which partly produces conditions that differ from 
other fields that apply deep learning and machine learning. Over time, the technology 
will find its place in process analysis and control and will solve many more problems that 
affect efficiency, quality and logistics.

One of the essential takeaways from BillerudKorsnäs’ AI projects is the need for 
domain knowledge and the ability to formulate the right problems. The successful use of 
machine learning as a tool is based on a deep understanding of the processes that are to be 
optimised.

BillerudKorsnäs is continuing its work on developing processes with the help of AI, 
and another project will be launched in collaboration with PiiA in the spring of 2019. 
This time, it will be led together with Finnish Quva OY as a data analytics provider.

Sources: PiiA, BillerudKorsnäs, Peltarion.

2.13 Man and machine: collaborative intelligence

It was once said that we should, “Let the machine take care of the details and 
let the man think and dream”. And, as Anders Ynnerman, a professor at Linköping 
University, states, “for every AI system that we have where we add on the human 
aspect, we get a much better system.”

At the same time, there is a fear that AI will eventually push people out of the 
labour market. The latter is hardly inevitable or even the most plausible outcome. 
Never before have digital tools been better suited for collaboration with people. And 
while AI will surely change the way work tasks are performed, and who performs 
them, the role of machines in future will be to reinforce and supplement human 
abilities rather than to replace them.

The concepts of collective and collaborative intelligence are also worth bear-
ing in mind. Models where people’s intellectual capacity can be increased through 
smart, collaborative methods, either working with other people or with machines, 
will have a significant impact on industrial development. Man’s abilities in leader-
ship, teamwork, creativity and social interactions will complement AI’s speed, scal-
ability and quantitative ability to keep track of large complex data sets. Industrial 
activities require both.

But the above line of reasoning also demonstrates the need for changed pro-
cesses and in many cases, radical transformations of both business activities and 
the way people and machines interact on a practical level. An article in Harvard 
Business Review [5] notes that the business effects of artificial intelligence depend 
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be more logical, then, than to suggest AutoML as an artificial intelligence-based 
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required for different pulp qualities. The project was successful and resulted in a useful 
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“The successful use of machine learning as a tool is based upon a deep understanding 
of the processes that are to be optimised”.

The challenge
Paper machine 4 in Gävle is a cardboard machine that manufactures liquid packag-

ing board for juice and milk packaging, among other things. The purpose of the DEEP 
project has been to realise the efficiency potential identified in the manufacturing process 
by proposing optimal machine operational parameters. An essential feature of the fin-
ished liquid packaging board is the carton’s bending stiffness. This property is determined 
by complex relationships between the different stages of the manufacturing process, not 
least by the pulp’s fibre properties. The goal is to produce strong packaging using less raw 
material.
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on the ability to “rethink” activities so that they both incorporate AI and cultivate 
related abilities in human employees, in addition to allowing creative experimenta-
tion and having clear AI strategies. Last but not least, it is crucial to managing data 
in both a relevant and responsible manner.

"For every AI system that we have where we add on the human aspect, we get a 
much better system.”

Anders Ynnerman, Professor at Linköping University

AI will lead to more automation and more advanced automation. One of the signif-
icant advantages of automation is avoiding errors caused by people not being able to 
repeat tasks efficiently. A robot that is asked to do the same motion a thousand times 
makes the same motion a thousand times – as long as the sensors and the mechanics 
work. A person might be able to perform it three times but is at the same time a master 
at interpreting their senses and dealing with new, unexpected situations.

The process of how this might happen is not yet clear and making machines 
that act in a human-like manner is a complex matter. The recent accidents involv-
ing one of a highly advanced Boeing aircraft model have, in a frightening way, also 
shown that for every human mistake that a machine eliminates, there is a risk that 
a new one will be introduced. There are endless possibilities for misunderstandings 
to occur between human intelligence and machines. In the industrial context, the 
challenge boils down to establishing collaborative intelligence, and how well the 
interface between human and machine works. This developmental field is known as 
UX – user experience – or in the AI context, it’s perhaps more appropriately called 
MMC, man-machine communication.

Issues with misunderstandings and mistakes have the potential to intensify as 
the degree of automation increases further. Humans will no longer have full control 
over machines. Overall, this will lead to a decrease in those parts of industry domain 
knowledge that include artisanal process knowledge. At an operational level, the 
challenge for the machine operator will be to monitor a process over a significant 
amount of time and to be prepared to take over the moment something goes wrong. 
Problems in this area have the potential to be costly in the process industry and 
utterly catastrophic within aviation.

One conclusion that can be drawn is that machines that do not allow people to 
keep up with the processes they are managing aren’t optimal in events where people 
are forced to take over. Another conclusion is that the best kind of automation is 
not necessarily where the computer automatically does most of the work, but rather 
where there are an optimal distribution and a realisation that people and machines 
will probably never understand each other perfectly. We have two pilots in the cock-
pit and two operators in the control rooms, and unfortunately, both can sometimes 
be expected to do unexpected things.

2.14 Looking ahead

In this section, we have skimmed over some of the concepts and constructs 
that may come in handy from an applied industrial perspective. Of course, there 
are countless other aspects of AI that could potentially be taken into account when 
assessing a technology which proponents claim to be “intelligent.” Many of these 
issues relate to morals and ethics. As society and industry move ahead, we will 
likely encounter machines with questionable intentions and distorted develop-
ment, whose intent is to benefit individual stakeholders. AI will influence people’s 
attitudes; false correlations and self-reinforcing feedback will eventuate – and 
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algorithms may influence reality to gain even more influence, even though their 
base assumptions are false. The origin and quality of data will continue to be an 
issue and, last but not least, we will face uncertainty around what is real and true: 
will we, in future, be able to trust what we see and hear? Will we be able to trust 
pictures, movies and sounds?

From an industry development point of view, our hopes for AI and machine 
learning might be for them to provide greater flexibility than that currently found 
in our simple neural networks which are only capable of performing one task at a 
time and are expensive and arduous to retrain. We might also hope to see significant 
productivity gains in system development, while there is also room for improve-
ment in the deployment of models.

But we can rest assured that these are areas that are currently being addressed 
by research. Likewise, the substantial data requirements, the need for manual 
intervention, and the problems with edge data all need to be addressed. The actual 
learning process, with its hyperparameterisation, needs to be further automated. 
Another potentially growing concern is the lack of transparency in neural networks, 
which, for the most part, resemble black boxes.

It’s impossible to know how and when these issues will be addressed. It could take 
years, or there may be sudden breakthroughs, such as when the AlphaGo defeated 
one of the world’s best Go players with the help of reinforcement learning. But it does 
not change the fact that AI and machine learning are already powerful enough tools 
to change the industry, and that those who acquire knowledge, experience and an 
upper hand when it comes to applying the technology have everything to gain.

"Will we in the future be able to trust what we see and hear? Will we be able to 
trust pictures, movies and sounds?"

2.15 Glossary

The article contains some terms that may need clarification. Key terms include:

Artificial Intelligence (AI)

The term “Artificial Intelligence” (AI) does not have any clear definitions or 
delineations. AI research itself is both specialised and spread across many subfields. 
For this analysis, we have chosen the definition also used by Vinnova in the study of 
Artificial intelligence in Swedish business and society, 2018″.

This is: “The ability of a machine to mimic intelligent human behaviour. Artificial 
intelligence is also the designation of the science and technology field that aims to 
study, understand and develop computers and software with intelligent behaviour.”

When we talk about AI in an industrial context, we are primarily referring to 
machine learning technology with neural networks.

Algorithmisation

Algorithmisation is a mega-trend within which more and more value-adding 
activities are managed and controlled by algorithms instead of human beings.

IndTech

IndTech is used to describe the development, companies and markets that 
arise when traditional automation and industrial IT meet digitisation. IndTech 
companies include:



AI and Learning Systems - Industrial Applications and Future Directions

100

on the ability to “rethink” activities so that they both incorporate AI and cultivate 
related abilities in human employees, in addition to allowing creative experimenta-
tion and having clear AI strategies. Last but not least, it is crucial to managing data 
in both a relevant and responsible manner.

"For every AI system that we have where we add on the human aspect, we get a 
much better system.”

Anders Ynnerman, Professor at Linköping University

AI will lead to more automation and more advanced automation. One of the signif-
icant advantages of automation is avoiding errors caused by people not being able to 
repeat tasks efficiently. A robot that is asked to do the same motion a thousand times 
makes the same motion a thousand times – as long as the sensors and the mechanics 
work. A person might be able to perform it three times but is at the same time a master 
at interpreting their senses and dealing with new, unexpected situations.

The process of how this might happen is not yet clear and making machines 
that act in a human-like manner is a complex matter. The recent accidents involv-
ing one of a highly advanced Boeing aircraft model have, in a frightening way, also 
shown that for every human mistake that a machine eliminates, there is a risk that 
a new one will be introduced. There are endless possibilities for misunderstandings 
to occur between human intelligence and machines. In the industrial context, the 
challenge boils down to establishing collaborative intelligence, and how well the 
interface between human and machine works. This developmental field is known as 
UX – user experience – or in the AI context, it’s perhaps more appropriately called 
MMC, man-machine communication.

Issues with misunderstandings and mistakes have the potential to intensify as 
the degree of automation increases further. Humans will no longer have full control 
over machines. Overall, this will lead to a decrease in those parts of industry domain 
knowledge that include artisanal process knowledge. At an operational level, the 
challenge for the machine operator will be to monitor a process over a significant 
amount of time and to be prepared to take over the moment something goes wrong. 
Problems in this area have the potential to be costly in the process industry and 
utterly catastrophic within aviation.

One conclusion that can be drawn is that machines that do not allow people to 
keep up with the processes they are managing aren’t optimal in events where people 
are forced to take over. Another conclusion is that the best kind of automation is 
not necessarily where the computer automatically does most of the work, but rather 
where there are an optimal distribution and a realisation that people and machines 
will probably never understand each other perfectly. We have two pilots in the cock-
pit and two operators in the control rooms, and unfortunately, both can sometimes 
be expected to do unexpected things.

2.14 Looking ahead

In this section, we have skimmed over some of the concepts and constructs 
that may come in handy from an applied industrial perspective. Of course, there 
are countless other aspects of AI that could potentially be taken into account when 
assessing a technology which proponents claim to be “intelligent.” Many of these 
issues relate to morals and ethics. As society and industry move ahead, we will 
likely encounter machines with questionable intentions and distorted develop-
ment, whose intent is to benefit individual stakeholders. AI will influence people’s 
attitudes; false correlations and self-reinforcing feedback will eventuate – and 

101

AI & Digital Platforms: The Technology [Part 2]
DOI: http://dx.doi.org/10.5772/intechopen.93579

algorithms may influence reality to gain even more influence, even though their 
base assumptions are false. The origin and quality of data will continue to be an 
issue and, last but not least, we will face uncertainty around what is real and true: 
will we, in future, be able to trust what we see and hear? Will we be able to trust 
pictures, movies and sounds?

From an industry development point of view, our hopes for AI and machine 
learning might be for them to provide greater flexibility than that currently found 
in our simple neural networks which are only capable of performing one task at a 
time and are expensive and arduous to retrain. We might also hope to see significant 
productivity gains in system development, while there is also room for improve-
ment in the deployment of models.

But we can rest assured that these are areas that are currently being addressed 
by research. Likewise, the substantial data requirements, the need for manual 
intervention, and the problems with edge data all need to be addressed. The actual 
learning process, with its hyperparameterisation, needs to be further automated. 
Another potentially growing concern is the lack of transparency in neural networks, 
which, for the most part, resemble black boxes.

It’s impossible to know how and when these issues will be addressed. It could take 
years, or there may be sudden breakthroughs, such as when the AlphaGo defeated 
one of the world’s best Go players with the help of reinforcement learning. But it does 
not change the fact that AI and machine learning are already powerful enough tools 
to change the industry, and that those who acquire knowledge, experience and an 
upper hand when it comes to applying the technology have everything to gain.

"Will we in the future be able to trust what we see and hear? Will we be able to 
trust pictures, movies and sounds?"

2.15 Glossary

The article contains some terms that may need clarification. Key terms include:

Artificial Intelligence (AI)

The term “Artificial Intelligence” (AI) does not have any clear definitions or 
delineations. AI research itself is both specialised and spread across many subfields. 
For this analysis, we have chosen the definition also used by Vinnova in the study of 
Artificial intelligence in Swedish business and society, 2018″.

This is: “The ability of a machine to mimic intelligent human behaviour. Artificial 
intelligence is also the designation of the science and technology field that aims to 
study, understand and develop computers and software with intelligent behaviour.”

When we talk about AI in an industrial context, we are primarily referring to 
machine learning technology with neural networks.

Algorithmisation

Algorithmisation is a mega-trend within which more and more value-adding 
activities are managed and controlled by algorithms instead of human beings.

IndTech

IndTech is used to describe the development, companies and markets that 
arise when traditional automation and industrial IT meet digitisation. IndTech 
companies include:



102

AI and Learning Systems - Industrial Applications and Future Directions

Author details

Örjan Larsson
Blue Institute and Strategic Innovation Program PiiA, Västerås, Sweden

*Address all correspondence to: orjan.larsson@blueinst.com

• Suppliers of industrial automation, such as ABB or Siemens.

• Suppliers of industrial IT software, such as SAP or IBM.

• Providers of digital platforms, such as Microsoft or Amazon Web Services.

• IoT providers, such as Ericsson or Nokia, and operators, such as Telia or 
Telenor.

• System integrators and machine suppliers who base their process or  mechanical 
engineering offerings on digital technology. These include companies such as 
Sandvik, Epiroc, Valmet and many more.

Platformisation

Platformisation can be used to describe the general movement of various compa-
nies’ automation and IT support to the cloud, and also to describe the movement 
of platforms created by open standards to platforms owned and controlled by a 
particular actor. Because the value of a platform tends to increase for all involved 
as more people use it, there is a tendency for already-large platforms to grow 
even bigger.

Operational Development - OD

We have chosen to use the term operational development to encompass the 
operational changes in processes or in organisations that lead to increased efficiency 
or increased customer values. Within this area, AI can be a potent tool.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 

103

AI & Digital Platforms: The Technology [Part 2]
DOI: http://dx.doi.org/10.5772/intechopen.93579

[1] Blue Institute. PiiA Insight. Västerås, 
Sweden: PiiA; 2018

[2] Strubell E et al. University of 
Massachusetts. In: Energy and Policy 
Considerations for Deep Learning 
in NLP. Ithaca, NY, USA: Cornell 
University; 2019

[3] BBC News. Why Big Tech Pays Poor 
Kenyans to Teach Self-Driving Cars. 
United Kingdom: BBC; 2018

[4] James Wilson H et al. The future of 
AI will be about less data. In: Not More. 
Brighton, Massachusetts: Harvard 
Business Review; 2019

[5] Collaborative Intelligence: Humans 
and AI Are Joining Forces. Brighton, 
Massachusetts: Harvard Business 
Review; 2018

References



102

AI and Learning Systems - Industrial Applications and Future Directions

Author details

Örjan Larsson
Blue Institute and Strategic Innovation Program PiiA, Västerås, Sweden

*Address all correspondence to: orjan.larsson@blueinst.com

• Suppliers of industrial automation, such as ABB or Siemens.

• Suppliers of industrial IT software, such as SAP or IBM.

• Providers of digital platforms, such as Microsoft or Amazon Web Services.

• IoT providers, such as Ericsson or Nokia, and operators, such as Telia or 
Telenor.

• System integrators and machine suppliers who base their process or  mechanical 
engineering offerings on digital technology. These include companies such as 
Sandvik, Epiroc, Valmet and many more.

Platformisation

Platformisation can be used to describe the general movement of various compa-
nies’ automation and IT support to the cloud, and also to describe the movement 
of platforms created by open standards to platforms owned and controlled by a 
particular actor. Because the value of a platform tends to increase for all involved 
as more people use it, there is a tendency for already-large platforms to grow 
even bigger.

Operational Development - OD

We have chosen to use the term operational development to encompass the 
operational changes in processes or in organisations that lead to increased efficiency 
or increased customer values. Within this area, AI can be a potent tool.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 

103

AI & Digital Platforms: The Technology [Part 2]
DOI: http://dx.doi.org/10.5772/intechopen.93579

[1] Blue Institute. PiiA Insight. Västerås, 
Sweden: PiiA; 2018

[2] Strubell E et al. University of 
Massachusetts. In: Energy and Policy 
Considerations for Deep Learning 
in NLP. Ithaca, NY, USA: Cornell 
University; 2019

[3] BBC News. Why Big Tech Pays Poor 
Kenyans to Teach Self-Driving Cars. 
United Kingdom: BBC; 2018

[4] James Wilson H et al. The future of 
AI will be about less data. In: Not More. 
Brighton, Massachusetts: Harvard 
Business Review; 2019

[5] Collaborative Intelligence: Humans 
and AI Are Joining Forces. Brighton, 
Massachusetts: Harvard Business 
Review; 2018

References



105

Chapter 5

Artificial Intelligence and ISO 
26000 (Guidance on Social 
Responsibility)
Weiwei Zhao

Abstract

With the rapid development of artificial intelligence, it has a more and more far-
reaching impact on social, economic, cultural, and other fields. At the same time, 
artificial intelligence faces ethical, moral, privacy, and security issues. In order to 
realize the healthy development of artificial intelligence, it is urgent to apply the 
social responsibility management system to artificial intelligence. Based on the 
seven core subjects of social responsibility proposed by ISO 26000: organizational 
governance, human rights, labor practices, the environment, fair operating prac-
tices, consumer issues, and community involvement and development. In this chap-
ter, the possible risks of artificial intelligence in these seven aspects are analyzed, 
and the corresponding countermeasures are discussed according to the causes of 
these problems. The final conclusion is the aspects that artificial intelligence should 
pay attention to when fulfilling its social responsibility.

Keywords: artificial intelligence, ISO 26000, social responsibility, seven core 
subjects, issues

1. Introduction

Artificial intelligence has become the focus of social concern. At present, various 
countries are expanding and strengthening new industrial clusters, implementing 
big data’s development actions, strengthening the research and development of 
the new generation of artificial intelligence, and promoting the “Internet” in many 
fields such as medical care, old-age care, education, culture, sports, and so on. At 
present, the innovation rhythm of artificial intelligence technology is accelerating 
constantly, the application scene also changes with each passing day. The realm 
of artificial intelligence is not limited to playing go and acting as a smartphone 
assistant; manufacturing, warehousing, transportation, car, education, health, 
finance, home, escort, entertainment, services, and many other industries can see 
the presence of artificial intelligence. And what’s more, it’s. We are now from indus-
trial water testing to large-scale application stage. The global market for artificial 
intelligence will reach $643.7 million in 2016 and $36.8 billion in 2025, according to 
a study by the US Tractica [1].

Artificial intelligence is the subversive technology that leads the future indus-
trial change. It may mean as much to human society as the Internet, electricity, 
and steam engines. The more powerful technology is, the more obvious the tool 
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attribute is in practical application: it can greatly improve social productivity, 
bring well-being to human society; it may also be used improperly; and it brings 
new challenges to social management. Therefore, it is necessary to standardize the 
application of artificial intelligence by strengthening social responsibility. Recently, 
the dispute over Facebook and data privacy, Uber auto-driving accident of, which is 
relate to the artificial intelligence security. It is wise to consider the social responsi-
bility of artificial intelligence in a timely manner.

2. Artificial intelligence and industry

Artificial intelligence (AI), as a leading and strategic technology in the future, 
has become an important driving force for the new round of scientific and tech-
nological revolution and industrial transformation. Artificial intelligence can run 
through the design, process, production, management, service, and other links of 
industry, so that the industrial system has the mode and result of intelligent func-
tions such as description, diagnosis, prediction, decision-making, and control. The 
impact of the COVID-19 outbreak in 2019 on industrial production has become 
apparent. Some enterprises have accelerated the application of intelligent industrial 
robots and other new ways to carry out intelligent production. Industrial enterprises 
can make use of AI to digitize and intellectualize manufacturing, supply, sales, 
and other information in production, and finally achieve the purpose of providing 
consumers with fast and effective personalized product supply.

Through artificial intelligence learning, industrial enterprises can assist main-
tenance personnel and engineers with more accurate identification and diagnosis 
from massive historical maintenance records, technical data, drawings, experience, 
and other data, so as to shorten the maintenance time and improve the accuracy of 
predictive maintenance. Artificial intelligence analysis can inform business decision 
makers of the data performance reflected in what is the most impact on profit-
ability, what is the reason? By using AI technology, manufacturing will achieve 
higher engineering efficiency, shorter time to market, and production flexibility in 
the future.

Industrial enterprises form a sustainable industrial ecological chain through the 
Internet, virtual economy, personalized marketing, and hardware manufacturing. 
The relationship between the business and the consumer will change the original 
custom relationship. Take the smart refrigerator as an example. As the pace of life 
quickens, people have much less free time to do housework. The advent of smart 
refrigerators will be necessary to improve people’s quality of life and save resources. 
When people buy food and put it in the refrigerator, it often causes waste. On the 
one hand, they buy too much food at one time; on the other hand, they forget it 
after putting it in the refrigerator. Smart refrigerators can not only process expired 
food by themselves and purchase fresh food but also make overall arrangements 
to reduce food waste and make personalized recipes. It adjusts the location of 
the ingredients in the fridge to remind people to eat them in time, depending on 
whether they are fresh or not. In addition, the smart refrigerator can also analyze 
the rationality of users’ meals and make recipes. At the same time, it is suggested 
that once the user has determined the ingredients that need to be supplemented, the 
smart refrigerator will automatically select e-commerce for home delivery, directly 
realize the automation and intelligence of food distribution and delivery, and 
realize the remote viewing and control of the mobile phone. The use of artificial 
intelligence in industrial products can greatly enhance user experience and 
product value.
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3. Artificial intelligence and social responsibility

Since 2016, the issue of social responsibility for artificial intelligence has 
received increasing attention. In September 2016, The British house of commons 
science and technology committee issued a report, robotics and artificial intel-
ligence, calls for greater ethical research on artificial intelligence to maximize the 
benefits and try to minimize its potential threat. In the report, they recommended 
a commission on artificial intelligence should be established to identify principles 
to govern the development and application of artificial intelligence, provide 
advice to the government, and foster public dialog [2]. In September 2017, the 
World Commission on Ethics of Scientific knowledge and Science and Technology 
(COMEST), which is an advisory body and forum of reflection that was set up by 
UNESCO in 1998, issued the report on Robotics Ethics. Considering that robots not 
only need to respect the ethical norms of human society but also need to incorpo-
rate specific ethical norms into robots. There are seven relevant ethical principles 
and values, which are human dignity, value of autonomy and privacy, do not harm 
principle, principle of responsibility, and value of beneficence and justice [3]. In 
January 2017, Future of Life Institute, an artificial intelligence research institute, 
convened Asilomar Conference. A large number of experts and scholars in the 
fields of law, ethics, philosophy, and so on convened the 2017 Asiloma Conference 
and formed 23 AI principles as a guide to the research, development, and utiliza-
tion of artificial intelligence. They believe designer and builder of stakeholders 
in the moral implications of their use, misuse, and actions, with a responsibility 
and opportunity to shape those implications [4]. In addition, governments and 
industry have invested heavily in setting up research funds to advance the social 
responsibility of artificial intelligence. In December 2016, the Institute of Electrical 
and Electronic Engineers global initiative for ethical considerations in artificial 
intelligence and autonomous systems, a standard-setting organization, released 
ethical design: a vision for prioritizing human well-being with artificial intelligence 
and autonomous systems (version 1: for public discussion). The aim is to encourage 
scientific and technological personnel to prioritize ethical issues in the research and 
development process of artificial intelligence [5].

Figure 1. 
Social responsibility seven core subjects bases on ISO 26000.
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Based on ISO 26000, social responsibility means“responsibility of an organiza-
tion for the impacts of its decisions and activities on society and the environment, 
through transparent and ethical behaviour that contributes to sustainable develop-
ment, including health and the welfare of society; takes into account the expecta-
tions of stakeholders; is in compliance with applicable law and consistent with 
international norms of behaviour; and is integrated throughout the organization and 
practised in its relationships” [6]. To identify relevant issues and set its priorities, 
artificial intelligence should address the following core subjects (see Figure 1): orga-
nizational governance, human rights, labor practices, the environment, fair operat-
ing practices, consumer issues, and community involvement and development. This 
chapter comprehensively analyzes the problems of artificial intelligence on social 
responsibility in theory and practice by using the research framework of ISO 26000.

4. Challenges of artificial intelligence faces on social responsibility

4.1 Organizational governance

Organizational governance is the most crucial factor in enabling artificial intel-
ligence to take responsibility for the impacts of its decisions and activities and to 
integrate social responsibility throughout the organization and its relationships [7]. 
The White House’s October 2016 report on artificial Intelligence, “preparing for 
the Future of artificial Intelligence,” said organizational governance should aim to 
ensure public safety and a fair market. Some characteristics in the process of artificial 
intelligence research and development and operation challenge the organizational 
governance of artificial intelligence social responsibility. Firstly, the covert nature of 
artificial intelligence research and development, which little visible infrastructure 
investment, is required. Secondly, the decentralization nature of artificial intelligence 
research and development, which developers, participants, etc., may be distributed 
in different countries or regions. Thirdly, the discontinuity nature of artificial intel-
ligence research and development, which involving many components and elements. 
Fourthly, the opacity nature of artificial intelligence research and development, 
which stakeholders do not know the artificial intelligence system. It may be difficult to 
define the artificial intelligence system that needs to be managed by the organization.

Artificial intelligence-related products, such as robots and self-driving cars into 
the human society, when it causes damage, how to allocate responsibility? Existing 
governance frameworks, such as product liability and fault liability, have limitations 
in managing the damage caused by artificial intelligence systems. Designers may also 
be unable to foresee their follow-up actions, making it unfair for designers to take 
responsibility for unforeseen damage. Because of the autonomous learning ability of 
artificial intelligence, when the user loses control of the artificial intelligence system, 
the user or anyone is no longer responsible for the artificial intelligence system.

On the one hand, what kind of organizational governance can contribute to the 
development of safe, reliable artificial intelligence systems? On the other hand, 
when artificial intelligence systems cause personal and property damage, how 
should responsibilities be allocated? These two aspects are not only realistic prob-
lems that need to be studied in depth, but also challenges faced by existing manage-
ment systems.

4.2 Human rights

Human beings influence everything on earth. They have invented many dif-
ferent tools to improve human productivity. Artificial intelligence is also a tool 
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invented by humans; it has its uniqueness; it may be smarter than us in many ways. 
A huge paradigm shift is taking place. We will develop faster than before. Artificial 
intelligence will solve problems that we cannot solve in the future, such as cancer 
and traffic accidents. But artificial intelligence has also raised a range of questions 
about human rights. Since 2016, celebrities such as Stephen William Hawking, Elon 
Musk, and Eric Emerson Schmidt have expressed concern about the development 
of artificial intelligence. It is even thought that the development of artificial intel-
ligence will open the door to human destruction.

Robots and artificial intelligence systems are becoming more and more human-
like, both in their external form and in their internal mechanisms. What on earth 
should man do with artificial intelligence? Can artificial intelligence enjoy a certain 
moral or legal status? The rights of machines have been paid more and more atten-
tion and become an unavoidable problem in human society. With the increasing 
popularity of robot applications, this problem will become more and more impor-
tant. In addition, what is the law of artificial intelligence systems such as robots? 
Natural person? Legal person? Animal? Or is it a new subject of law? Answering this 
question may involve agency, tax payment, liability, and so on [8].

Although artificial intelligence provides a wide range of information, gives 
people a lot of choices, and offers many opportunities, its essence is to liberate 
human knowledge and loosen control, and in practice, if it is controlled by certain 
power organizations, humans will be restricted in the reception of certain informa-
tion and narrow their horizons opportunities. This will result in a more serious 
centralization, which is easily ignored and difficult to detect.

Artificial intelligence has an impact on human privacy, freedom, and dignity. 
It challenges human privacy and data protection by collecting, utilizing, automat-
ing, and intelligentizing data analysis. At present, artificial intelligence based on 
machine learning needs a lot of data, many of which are personal data. How to 
protect human privacy? If human beings are surrounded by artificial intelligence 
systems everywhere in the future, how can individual freedom be realized? Gender 
discrimination. Artificial intelligence always associates women with certain ele-
ments, a “sexist” artificial intelligence, which thinks the person standing in the 
kitchen should be a woman. Gender bias is not only common in databases but also 
magnified by artificial intelligence.

4.3 Labor practices

Artificial intelligence has many beneficial effects on labor practice. Artificial intel-
ligence can help companies select suitable candidates, avoid the risk of false resumes, 
and reduce recruitment and training costs. At the same time, it can also create a more 
honest and fair competitive environment for job seekers. Like any science and tech-
nology in human society, the application of artificial intelligence in many fields such 
as transportation, medical health, manufacturing, service industry, and so on will 
inevitably bring safety problems. In July 2015, for example, a robot at the Volkswagen 
factory in Germany suddenly “shot” a worker in the chest, killing him instantly.

Artificial intelligence replaces human beings on a large scale in low-skill, low-
creative work or tasks, which is the trend of the times. With the advent of more ver-
satile artificial intelligence systems, even highly skilled, highly creative occupations, 
such as doctors and teachers, may be partially replaced by artificial intelligence.

4.4 Environment

Artificial intelligence can promote the environmental protection, such as the 
related technology can better control the air pollution. But at the same time, the 
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development of artificial intelligence also brings more and more electronic garbage. 
Electronic waste exacerbates environmental degradation and brings environmental 
radiation; with the rapid development of artificial intelligence technology, the 
garbage generated by the replacement of related products will be even more severe 
[9]. Abandoned mobile phones, computers, etc. can be regarded as electronic waste. 
These electronic wastes contain precious metals such as gold, silver, copper, and so 
on, which can benefit from the recovery, but also contain a lot of toxic substances 
such as lead, mercury, and so on. If it is not properly treated, it will cause great 
pollution harm to the environment.

The emergence of artificial intelligence has given us too many reasons for 
upgrading electronic devices. Not only phones, sockets, cooking machines but also 
surveillance cameras, traffic lights, and so on, which are widely used as urban infra-
structure, are also being updated. Artificial intelligence reduces the cost of related 
products. Low-cost products mean shorter service life and higher wastage rates. The 
resulting mass of discarded hardware could become a far-reaching burden on the 
environment.

4.5 Fair operation practices

Artificial intelligence automated decision-making systems are increasingly 
widely used in many fields such as education, employment, advertising, medical 
care, criminal justice procedures, and so on. From speech assistant sex discrimina-
tion to crime assessment software discrimination against blacks, the unfairness of 
artificial intelligence system decision-making has spread to many fields. In the con-
cept of artificial intelligence, the wedding dress is a white western wedding dress 
and does not “know” the culture of the third world. The search engine responds 
not to reality but also to its user’s understanding of reality. Search for “black,” but 
come up with “black criminals.” When identifying image content in the United 
States and the third world, artificial intelligence is always “selective blind.” Today’s 
machines, of course, do not have the ability to experience emotions or deliberately 
impose prejudices, but honestly reflect the real prejudices in the database and even 
in society, which are sometimes not what we want.

Artificial intelligence will replace human beings in taking on more and more 
decision-making, and the question is how can fairness and justice be guaranteed? 
How can we ensure that there is no discrimination and injustice in the algorithm? 
When an individual is implicated in such a decision, how can he or she be provided 
with a complaint mechanism in order to achieve fairness to the individual? If you 
have artificial intelligence technology, you will have wealth.

Tech giants will enjoy rich resources of big data, which may pose a threat to 
mankind, although it cannot be inferred. Big date’s monopoly will become a barrier 
and a tool for industry giants to pursue their personal interests. It may lead to the 
accumulation of wealth in the hands of a small number of people, resulting in new 
inequalities.

4.6 Consumer issues

Artificial intelligence provides consumers with a lot of convenience. The mer-
chant recommends the next item according to the consumer’s shopping history 
and interest. Through the network taxi, greatly reduce the travel cost of consumers 
and provide consumers with a more reliable time security. Self-driving can reduce 
the death rate in traffic accidents because machines do not suffer from fatigue, 
road rage, drunk driving, speeding, and congestion problems, which can reduce 
many traffic accidents. At the same time, due to the remote internet operation of 
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unmanned cars, the average speed of the vehicle can be greatly improved, and it can 
also be of great help to the urban traffic. Artificial intelligence can help people solve 
the problem of parking better. Also with its help, you can better find parking spaces, 
through positioning, to avoid the trouble of forgetting the location of parking.

Artificial intelligence also brings a series of problems to the rights and interests 
of consumers. Many businesses promote artificial intelligence face recognition 
payment. Face recognition payment does provide a quick and convenient payment 
experience for consumers, but how to use the consumer portrait data obtained by 
businesses? Artificial intelligence system for personal data automation, intelligent 
analysis, and decision-making affect consumers’ personal rights and interests, and 
consumers may be completely unaware of this, and how to achieve the balance 
between data commercial utilization and consumer rights and interests? In recent 
years, there have been many accidents in driverless cars. Who should bear the 
responsibility for the accidents?

4.7 Community involvement and development

In addition to offline communities, there are online communities. Cyberspace is 
a real virtual existence, an independent world without physical space. The leakage 
of Facebook user data reflects the fact that personal privacy has been embezzled 
in the era of big data. People do not keep their information secret anymore, they 
volunteer to share their information online, but it just means people are adopting 
new definitions and new privacy rules. Keeping information private does not mean 
keeping it secret; people want to control the information share to whom and how to 
use the shared information.

5. Causes of problems

5.1 Technical limitations and culture factor

Intelligent robots, however, lack the unique conscience of mankind. The reason 
for this concern is essentially due to the limitations of artificial intelligence tech-
nology. Today’s artificial intelligence does not have the ability to be emotional or 
deliberately biased, but honestly reflects the biases that exist in the database and 
even in society. Artificial intelligence recombines and pushes the contents through 
the algorithm; however, the original data are not completely fair; some of the 
original data have been biased, and the algorithm will further expand the original 
data. In addition, the machine is prone to make another mistake, is to treat most of 
the characteristics of the data as general features; this can be very unfair for a small 
number of data. Artificial intelligence for data mining and understanding always 
has a variety of limitations.

5.2 Lag of policies and regulations

Artificial intelligence technology as the emerging development technology, 
and it is not a long time, which causes the related social responsibility problem 
that are gone beyond the scope of the existing law, such as the environment, labor 
practice, and community involvement and development. These problems are more 
constrained by the social responsibility consciousness of researchers and develop-
ers. Since they are not mandatory, the effect is not very obvious. At present, many 
countries have made efforts; however, these policies are still relatively simple, need 
human being to improve constantly.
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responsibility for the accidents?
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deliberately biased, but honestly reflects the biases that exist in the database and 
even in society. Artificial intelligence recombines and pushes the contents through 
the algorithm; however, the original data are not completely fair; some of the 
original data have been biased, and the algorithm will further expand the original 
data. In addition, the machine is prone to make another mistake, is to treat most of 
the characteristics of the data as general features; this can be very unfair for a small 
number of data. Artificial intelligence for data mining and understanding always 
has a variety of limitations.

5.2 Lag of policies and regulations

Artificial intelligence technology as the emerging development technology, 
and it is not a long time, which causes the related social responsibility problem 
that are gone beyond the scope of the existing law, such as the environment, labor 
practice, and community involvement and development. These problems are more 
constrained by the social responsibility consciousness of researchers and develop-
ers. Since they are not mandatory, the effect is not very obvious. At present, many 
countries have made efforts; however, these policies are still relatively simple, need 
human being to improve constantly.
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5.3 Stakeholders’ social responsibility consciousness is insufficient

How stakeholders manage conflicts of interest, including current and long-term 
interests, local interests and overall interests, anthropocentrism and sustainable 
development? [10]. If developers, designers, and users have poor motives to treat 
artificial intelligence, such as for nuclear testing, inventing intelligent weapons for 
war will eventually destroy the harmony and stability of human society. If people 
use artificial intelligence technology to carry out illegal and criminal activities, it 
will pose a threat to the public interest. In addition, the random dissemination of 
false information about artificial intelligence will make people panic when people 
do not know enough about artificial intelligence. The scientific and cultural quali-
ties of the developers and users of artificial intelligence technology can greatly 
affect the sustainable and healthy development of artificial intelligence technology.

The mistakes, discrimination, and prejudices of artificial intelligence also come 
from technical staff problems. They lack consideration of the data and the social 
realities behind them, and groups and regions that do not have the right to speak are 
likely to be more severely marginalized in the future.

6. Suggestions

By regulating the development of artificial intelligence through social respon-
sibility, it can be avoided from being improperly used, so as to deviate from the 
original intention of letting technology benefit human society and to build up 
consumers’ trust in artificial intelligence, thereby reducing unnecessary suspicion, 
panic, and exclusion. To strengthen the social responsibility management of 
artificial intelligence, the characteristics of artificial intelligence should be deeply 
considered.

6.1 Organizational governance

A social responsibility committee for artificial intelligence could be set up to 
guard the design and development of artificial intelligence to ensure that robots 
conform to ethical, legal, and other norms of human society. The committee should 
be interdisciplinary, involving both male and female participants. Conduct cross-
disciplinary monitoring of artificial intelligence applications, identify industry 
best practices, and propose regulatory measures in due course. On the one hand, it 
promotes the application and innovative development of artificial intelligence by 
clearing some existing rules and institutional barriers. On the other hand, it ensures 
the security and reliability of artificial intelligence systems in these fields through 
the perfection of rules and standards, maintain public safety, enhance public trust, 
and accelerate the popularization of new technologies.

To promote the standardization of social responsibility in artificial intelligence 
at the international level, we should continue to work toward the international 
unification of social responsibility standards of artificial intelligence. It is necessary 
to establish the corresponding artificial intelligence social responsibility stan-
dardization framework, so as to avoid the conflicts and disputes arising from the 
inconsistency of standards among countries.

6.2 Human rights

When artificial intelligence enters human society, it is necessary to abide by 
the legal, moral, other norms and values of human society, and to act legally and 
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in accordance with human morality. Because artificial intelligence system is the 
subjective design of research and development personnel. On the one hand, it is 
necessary to embed all kinds of norms and values into artificial intelligence system 
in a technically feasible and effective way, so that the system can make ethical 
behavior when it is running. On the other hand, it is necessary for research and 
development personnel to avoid subjective bias, preference, discrimination, and so 
on in the process of artificial intelligence system research and development.

The policy makers, researchers, and consumers of products need to take respon-
sibility toward artificial intelligence, because once the artificial intelligence technol-
ogy is developed, it is unlikely will fall back. It is necessary to integrate the social 
responsibility concept into the artificial intelligence technology.

6.3 Labor practices

Automation driven by artificial intelligence is disrupting the labor market. In the 
future, it is necessary to strengthen the education and training of talents in artifi-
cial intelligence, so as to ensure that workers can adapt and transform to the new 
employment and work paradigm brought about by artificial intelligence.

In the environment of artificial intelligence, the working hours and rest of work-
ers are being blurred. The organization should create the conditions as far as pos-
sible so that the employees can realize the balance between work and life. To prevent 
the stress and anxiety of employees caused by the speed-up of the work rhythm 
caused by the intelligence of the workplace, and to create the appropriate profes-
sional environment to adapt to the physical and mental health of the employees.

6.4 Environment

E-waste can be recycled in a more rational and environmentally friendly way. 
Establish professional electronic waste disposal institutions to provide workers with 
protective measures to separate precious metals and toxic substances from elec-
tronic waste in a safe environment and to dispose of toxic substances in a specified 
manner. Educating stakeholders, advertising, setting up e-waste collection sites on 
the streets, and so on is to make people aware of the dangers of private disposal of 
e-waste.

6.5 Fair operation practices

The degree of automation of artificial intelligence decision-making is increasing 
day by day. It is necessary to ensure transparency, participation, and accuracy in 
artificial intelligence decision-making process. When an algorithm-based artificial 
intelligence system makes important decisions, it ensures transparency, participa-
tion, and accuracy. Transparency and accountability should be the primary goal in 
the design of artificial intelligence system.

6.6 Consumer issues

Artificial intelligence is a series of related technologies, which is widely used and 
involves all aspects of society. It should be taken into account in the process of social 
responsibility management. Moreover, the development of artificial intelligence 
technology relies heavily on big data, which greatly improves data acquisition. 
And the efficiency of processing also increases the risk of improper application and 
disclosure of data, so it is necessary to pay special attention to data application and 
privacy protection in social responsibility management.
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6.7 Community involvement and development

Pay attention to the network community. The Internet is not an extrajudicial 
place. Behavior in network community, including business innovation, must be on 
the rule of law track. For a long time, there has been a view that the Internet should 
be completely self-disciplined, to survive the fittest by itself. Now it has been found 
that this is not the case. Regulate the developers, users, and owners of artificial intel-
ligence; do not harm the legitimate interests of the state, society, and individuals.

7. Conclusion

The development of artificial intelligence has had a profound and long-term 
impact on human production and life. While making people enjoy the good life, it 
also allows people to feel its negative effects, such as infringing on human privacy 
and bringing new inequalities to human beings. There are a lot of problems in 
theory and practice of artificial intelligence on social responsibility. However, 
these problems will not be solved in a short time. This chapter discusses the social 
responsibility problem of artificial intelligence with some related suggestions. We 
will proceed from the seven core subjects to enhance the social responsibility of 
artificial intelligence and ultimately achieve the sustainable development.
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Operationalizing Heterogeneous 
Data-Driven Process Models for 
Various Industrial Sectors through 
Microservice-Oriented  
Cloud-Based Architecture
Valdemar Lipenko, Sebastian Nigl, Andreas Roither-Voigt  
and Zelenay David

Abstract

Industrial performance optimization increasingly makes the use of various 
analytical data-driven models. In this context, modern machine learning capa-
bilities to predict future production quality outcomes, model predictive control 
to better account for complex multivariable environments of process industry, 
Bayesian Networks enabling improved decision support systems for diagnostics and 
fault detection are some of the main examples to be named. The key challenge is to 
integrate these highly heterogeneous models in a holistic system, which would also 
be suitable for applications from the most different industries. Core elements of 
the underlying solution architecture constitute highly decoupled model microser-
vices, ensuring the creation of largely customizable model runtime environments. 
Deployment of isolated user-space instances, called containers, further extends the 
overall possibilities to integrate heterogeneous models. Strong requirements on high 
availability, scalability, and security are satisfied through the application of cloud-
based services. Tieto successfully applied the outlined approach during the partici-
pation in FUture DIrections for Process industry Optimization (FUDIPO), a project 
funded by the European Commission under the H2020 program, SPIRE-02-2016.

Keywords: industrial optimization, model predictive control integration, machine 
learning model integration, Bayesian network integration, enterprise resource 
planning (ERP) forecast model integration, prediction model integration, model 
calculation graph, microservice-oriented architecture, cloud computing

1. Introduction

In the area of industrial manufacturing performance optimization, prediction 
models are often used to predict future plant outputs in order to increase product 
quality and energy efficiency or optimize planning of plant maintenance activities.

Forecasts and predictions are utilized to generate lead time to plan and oper-
ate the manufacturing processes in a highly optimized way. To achieve predictive 
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operation on optimized performance, analytical calculation models are developed 
and operationalized to calculate the future behavior of manufacturing plants. This 
chapter describes the techniques and methods for operationalizing the prediction 
models in industrial manufacturing environments.

A model is defined as a simplified mathematical representation of a real natural 
process. Such process can be an industrial plant (e.g., a heat exchanger) or a com-
plex plant like a continuous production machine (e.g., large-scale waste incineration 
steam boiler). Models are also called digital twins in applications where a model 
represents the real plant in a very high degree of details as in finite-element-method 
(FEM) model of a system (machine) or its components.

A model in the context of this chapter is characterized by three main features:

1. The model is a representation of a real plant.

2. The model is simplified “version” of the real plant that does not include all 
properties or behavior.

3. The models can be generalized, so they represent a type or a class of a real plant 
and not necessarily a real existing instance of a plant at a specific time.

Models are typically operationalized calculation (software) modules that allow 
a causal calculation of outputs from inputs and parameters. A model is defined as 
a calculation module that can predict the future industrial plant behavior. Such 
“plant behavior” can be the quality of produced product and the consumption of 
energy such as steam, electricity, raw material, and chemicals. Operating industrial 
plants based on predictive analytics allows optimized planning and real-time 
optimization. An industrial manufacturing or process industry plant has usually 
strictly separated information technology (IT) and operational technology (OT) 
systems (Figure 1).

2. Requirements and convergence of industrial system architecture

Industrial manufacturing industry continuously seeks for performance optimiza-
tion strategies and ways of operationalizing new methods for improving product 
quality, production efficiency, energy efficiency, emission reduction, and, of course, 
cost reduction techniques. Digital transformation programs need to support these 

Figure 1. 
Most basic representation and elements of a model.
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performance optimization goals. By driving convergence of OT and IT on all levels of 
enterprises (people, processes, interfaces, and system architecture), beneficial effects 
from integrated and consistent data and information utilization can be achieved.

Furthermore, a state-of-the-art operational architecture should be open and 
scalable for a whole ecosystem of internal or external partners to benefit from a 
learning culture on how to operate all production and business processes at maxi-
mum performance levels under changing market, raw material, and environment 
conditions (Figure 2).

Typical areas of industrial OT systems are as follows:

• machines and parts of machines (pumps, mixers, valves, tanks, etc.);

• automation systems [distributed control system (DCS), programmable logical 
controller (PLC), supervisory control and data acquisition (SCADA) system]; 
and

• operator user interfaces of SCADA system and DCS.

Typical areas of industrial IT systems are as follows:

• business applications like customer relationship management (CRM) system;

• business intelligence and data warehousing;

• enterprise resource planning (ERP) system;

• data analysis;

• computing systems and technology; and

• data warehouse and storage systems.

The main questions relevant in the design process of an industrial prediction 
model operationalizing framework development can be as follows:

• How to make exchange of prediction models as easy as possible for an indus-
trial ecosystem with partners from process industry and scientific community 
and commercial partners?

• What framework elements have impact on the calculation performance of 
large-scale models and what are the performance requirements based on the 
dynamic behavior of the processes of interest?

• What architectural security elements are required to ensure a safe operation of 
the model calculation runtime system and user interfaces.

2.1 Requirements by heterogenous industries

Various industries have significantly different requirements for the integration 
of prediction and optimization models.

Examples of different industries that benefit from prediction/forecast model 
integration are shown in Table 1:
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operation on optimized performance, analytical calculation models are developed 
and operationalized to calculate the future behavior of manufacturing plants. This 
chapter describes the techniques and methods for operationalizing the prediction 
models in industrial manufacturing environments.

A model is defined as a simplified mathematical representation of a real natural 
process. Such process can be an industrial plant (e.g., a heat exchanger) or a com-
plex plant like a continuous production machine (e.g., large-scale waste incineration 
steam boiler). Models are also called digital twins in applications where a model 
represents the real plant in a very high degree of details as in finite-element-method 
(FEM) model of a system (machine) or its components.

A model in the context of this chapter is characterized by three main features:

1. The model is a representation of a real plant.

2. The model is simplified “version” of the real plant that does not include all 
properties or behavior.

3. The models can be generalized, so they represent a type or a class of a real plant 
and not necessarily a real existing instance of a plant at a specific time.

Models are typically operationalized calculation (software) modules that allow 
a causal calculation of outputs from inputs and parameters. A model is defined as 
a calculation module that can predict the future industrial plant behavior. Such 
“plant behavior” can be the quality of produced product and the consumption of 
energy such as steam, electricity, raw material, and chemicals. Operating industrial 
plants based on predictive analytics allows optimized planning and real-time 
optimization. An industrial manufacturing or process industry plant has usually 
strictly separated information technology (IT) and operational technology (OT) 
systems (Figure 1).

2. Requirements and convergence of industrial system architecture

Industrial manufacturing industry continuously seeks for performance optimiza-
tion strategies and ways of operationalizing new methods for improving product 
quality, production efficiency, energy efficiency, emission reduction, and, of course, 
cost reduction techniques. Digital transformation programs need to support these 

Figure 1. 
Most basic representation and elements of a model.
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2.2 Requirements by heterogenous models

Forecast and prediction models can be of various types and purposes of 
integrated usage by a smart manufacturing system. The huge spectrum of very 
specific requirements makes it hard for practitioners to find models from existing 

Industry category Model value/benefits

Continuous process industry (e.g., pulp 
and paper mill, continuous waste water 
treatment plant, oil and gas refinery)

• Production rate of continuous production machines

• Tank level utilization for stable production

• Optimized quality stability

Original equipment manufacturer 
(OEM), e.g., micro-combined-heat-
power unit manufacturer

• Improved overall equipment efficiency

• Machine flexibility in conditions with changing raw mate-
rial properties

• Enable predictive maintenance use cases

Energy and utilities (e.g., waste 
incineration power plant, district heating 
network)

• Increased process stability (temperatures, pressure, steam 
flow) from predictive boiler operation using feedforward 
model predictive control

• Increased energy efficiency by predictive control of excess 
combustion air (=O2) control

Discrete manufacturing (e.g., 
automotive)

• Increased overall equipment efficiency (productivity time 
quality acceptance ratio)

• Reduced costs due to lower reject rates

Table 1. 
Industry categories and model benefits (by examples).

Figure 2. 
Model operationalization framework overview (examples of).
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libraries that fulfill the requirements of the specific application. An ontology-based 
approach to classify and identify such model application usage scenarios can be 
found in Ref. [1]. The challenge of model exchange can be solved by using standards 
for model exchange such as functional mockup interface (FMI) or functional 
mockup units (FMU), as specified in Ref. [2].

Model examples illustrating the range of requirements are as follows:

• prediction of future process information based on production plan;

• prediction of future process output based on (just) recent process inputs, 
process states, and predicted future disturbance variables;

• prediction models for use in model predictive control (MPC). Dynamic MPC 
models can be linear or nonlinear; and

• first principle physical models (dynamic, static).

Models can be developed in various simulation software tools and have very 
different requirements when it comes to the runtime environments. As models are 
software components, many dependencies need to be fulfilled to run the models. 
Running models in this context means execution with actual inputs and user-
specified parameters to calculate the predictions for a specific period (usually a time 
period in the future).

In order to avoid a complicated or even contractionary model runtime system 
architecture, a containerization technology can be used. In a software container 
(like Docker [3]), each model gets the required dependencies installed in the con-
tainer rather than on the global runtime system. Utilizing container technologies 

Figure 3. 
Microservice-based architecture for operationalized model integration.
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different requirements when it comes to the runtime environments. As models are 
software components, many dependencies need to be fulfilled to run the models. 
Running models in this context means execution with actual inputs and user-
specified parameters to calculate the predictions for a specific period (usually a time 
period in the future).

In order to avoid a complicated or even contractionary model runtime system 
architecture, a containerization technology can be used. In a software container 
(like Docker [3]), each model gets the required dependencies installed in the con-
tainer rather than on the global runtime system. Utilizing container technologies 

Figure 3. 
Microservice-based architecture for operationalized model integration.



AI and Learning Systems - Industrial Applications and Future Directions

122

allows a clean deployment of operational models in their own containerized run-
time system avoiding any additional requirements on the main application level as a 
container provides all required dependencies.

The resulting system architecture is called microservice architecture as it 
contains smaller independent software components packed into smaller application 
units (containers). An additional service orchestrator application is required to 
handle the messages between the OT systems and the microservices (containers) 
and the user interface.

Figure 3 shows the system architecture for an example with two containers 
where Linux is used as container operating system and the model container host 
server can be Microsoft Windows® based. This scenario allows the integration of 
models for all commonly used operating systems and can therefore provide all 
dependencies of other software components needed by the models to run/execute 
properly.

3. Calculation graph configurator

This section will cover why it is beneficial to use a calculation graph configurator 
when integrating one or more models into one software solution. Furthermore, it 
will be explained how node-RED can be used as a calculation graph configurator [4].

3.1 Calculation graph configurator overview

Since executing models often requires multiple calculation steps, for example, 
preprocessing the model input data or apply filters when selecting input data, a 
visual tool to connect and modify these calculation steps is beneficial. For example, 
in the FUDIPO project Node-RED, a flow-based programming tool is used as a calcu-
lation graph configurator. One big advantage of a tool like Node-RED as a calculation 
graph configurator, is that it saves a lot of cost due to the fact that Node-RED is 
highly customizable and open source. Therefore developing a custom calculation 
graph calculator, is not necessary. Furthermore, Node-RED is cross platform com-
patible as it runs on Node.js. There is also an official Docker image for Node-RED [4].

3.2 Node-RED as a calculation graph configurator

In Node-RED, calculation steps are called nodes. The nodes communicate via 
JavaScript Object Notation (JSON) messages. Node-RED provides a base set of 
nodes with a special functionality like nodes making a HTTP-Request or executing a 
JavaScript code. In addition to the base nodes, the community develops and contrib-
utes nodes that are available, thus providing very versatile functionalities. Node-
RED also offers a dashboard where the model results could be displayed, although 
the default dashboard of Node-RED does not support multiple users, it should just 
be used for debugging or if only one user accesses the user interface (UI). Another 
great feature of Node-RED is that it provides a node to map data. Data mapping is 
required when the data source variables and the model input variables are not in 
the same structure. In some cases, the data must be mapped twice, once before the 
model execution, and a second time after the model has been executed to store the 
model results, as shown in Figure 4.

Node-RED’s dashboard offers some basic UI elements, like charts, input 
forms, buttons, switches, and slides; however, it is also possible to write HTML, 
cascading style sheet (CSS), or JavaScript code directly, and this offers the ability 
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to create a highly customizable UI within Node-RED. Furthermore, Node-RED 
offers the possibility to customize its theme to match the company’s color scheme. 
Additionally, Node-RED also offers the ability to secure the editor and dashboard 
user interface with a username and password, so if you have sensible data or do 
not want your Node-RED to be publicly available, it can be secured with a login 
mask [4].

3.3 Node-RED calculation graph example

An example calculation graph would be to retrieve data from an MicroSoft 
Structured Query Language (MSSQL) Server → map the data to match the model 
input data → filter or preprocess the input data → execute the model → map data back 
to match the schema of the MSSQL database → filter the model result data → save the 
filtered model results in a MSSQL server. In Figure 5, the example just explained is 
realized in Node-RED [4].

The first node runs the calculation graph every 15 minutes. At the time of 
writing, the interval can range from 1 second to 596 hours. The “Get Data from 
MSSQL Database” is a contribution node, which means that a user created this 
node and provided the source code, so everyone can use it. This node retrieves data 
from an MSSQL Server using Structured Query Language (SQL) statements. The 
yellow “Map data” node uses JSONata to change the structure of a JSON object. In 
the “Filter/preprocess data,” node JavaScript is used to apply custom-made filter 
and preprocessing algorithms. The “Execute Model” in this example sends a HTTP 
POST request to an Application Programming Interface (API), where the model is 
being executed and returns the model results as an HTTP response. The next node 
maps the model result data to the schema of the MSSQL database. Afterward, these 
data are filtered again before writing it back to the MSSQL database in the last node. 
An advantage of this solution is that there is only little effort needed to integrate 
models into the solution. The only thing that needs to be developed is API that 
executes the model. Node-RED also offers the possibility to execute terminal com-
mands, so if a model can be executed via the terminal, even less effort is needed to 
integrate the model. This calculation graph could also be used for multiple systems 
or machines if the model is designed to do so [4].

Figure 4. 
Data mapping for normalized model execution.

Figure 5. 
Calculation graph example in Node-RED.
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4. User interface

In this section, it will be discussed how a user interface for displaying the model 
results and for uploading or tuning the models could be developed. The key fea-
tures, a user interface should have, are as follows:

• visualizing model results with charts;

• allowing the model developer to upload a new version of the model; and

• allowing the model developer to test and tune the model.

Node-RED allows the model developers to tune and test their models with the 
live data; however, Node-RED does not offer the feature to upload new models. A 
possible solution for this would be to use Node-RED’s dashboard to visualize the 
model results, to use Node-RED’s editor to make it possible for the model developer 
to verify and tune his model(s) with live data, and to build a separate website 
enabling the model developers to upload newer and improved versions of their 
models. As already mentioned, Node-RED’s dashboard has the big advantage that 
it is very easy to use, even people with little to no knowledge about HTML, CSS, 
or JavaScript can make a simple user interface in Node-RED. However, the major 
flaw in the provided dashboard is that it does not support multiple users; for small 
use cases or debugging purposes, this might be enough, but in large-scale applica-
tions where multiple people are going to use the dashboard, another solution must 
be used. In such cases, it is either possible to develop a new website and access the 
model results either from an API or from a database, or use a fork of Node-RED’s 
dashboard, developed by the community, that supports multiple users [4].

Another possible solution would be to display the model results in the company’s 
current software solution. If there is already a software that acts as a user interface 
for the machine data, it might be possible to display the model results too.

If the goal is to continuously integrate multiple models, a possible solution 
would be to develop a website where the model developers are able to upload and 
maybe even verify, possibly with real live data from the machines, their models. 
Even though such an automated process might be convenient, it requires a lot of 
development effort and it should be considered if the initial effort is worth spend-
ing. Another possibility is to initially integrate the model manually in the solution 
and provide the model developers the possibility to update their models, by upload-
ing a new version to a website. This is especially useful if there are models that 
require frequent updates. For example, training a machine learning model requires 
a lot of computing power, due to this it is suboptimal to train the model on the 
server where the model is executed. Thus, training the model on a separate com-
puter or server that is suited for such high loads is better; therefore, a web interface 
could be used to upload the newly trained model, providing the model needs to be 
trained continuously. Another possible feature such a website could have would 
be allowing model developers to test the newly uploaded model with live data. So, 
model developers are able to ensure that their models are working correctly.

To be able to display the model results in a website in most cases, a charting 
library is needed. One of the many JavaScript charting libraries is Highcharts®. 
The advantage of Highcharts® is that it is very configurable, well documented, and 
feature rich. Highcharts®, for example, is able to export the data that are displayed 
in the chart as an Excel sheet or download the chart as an image. Highcharts® has 
many feature add-ons, called modules. Another big advantage of Highcharts® is 
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that it has a boost module, which significantly boosts the performance of the charts 
making it possible to display well over 500,000 datapoints in one chart while keep-
ing about the same performance as a chart with 1000 datapoints [5].

5. Pulp and paper use case

Processes in the pulp and paper industry are considerably complex with sig-
nificant time delays (up to few hours) resulting in major difficulties for appropri-
ate process optimization and control. An example of such process is continuous 
cooking in pulp digester, aiming at removing lignin from wood chips [6]. The 
most widely used index for measuring residual lignin present in the pulp is kappa 
number [6]. The digester primary control objective consists in minimizing the 
variability of kappa number, keeping it in a small range within few percent of target 
value (too low and too high kappa numbers negatively both impact quality and 
production stability).

The current situation is shown in Figure 6.
Through utilization of various process-specific analytical data-driven models, 

it is possible to substantially improve the process control, hence also the product 
quality and production stability.

One of such data-driven approaches is to conduct the forecast of future observa-
tions, such as based on certain characteristics of wood chips to predict the resulting 
kappa number (which is otherwise known only with the delay of ca. 4 hours from 
the time when respective wood chips came into cooking process). Measurement of 
wood chips with near-infrared (NIR) provides the capabilities to extract data on 
lignin content, moisture, and reactivity of wood chips. Subsequent utilization of 
specific physical and/or machine learning models enables to forecast the resulting 
kappa number.

MPC integration is another important approach in this context, in particular 
accounting for multivariable specifics of the underlying process control. The pres-
ence of measurement noise and various complex chemical process uncertainties, 
which are common in the pulp and paper industry, can also effectively be addressed 
through MPC [7]. Here, data from NIR-based soft sensors coupled with various 
dynamic process models are the main enablers of a feedforward MPC [7].

Process diagnostics (such as identification of digester hang-ups, screen clog-
ging, and channeling of liquor inside the digester [8]) can effectively be done by 
input of certain information on current system status to a causality tree, such as 
Bayesian Networks (BN), with subsequent inference for computations of prob-
ability of different faults. Hence, the resulting decision support system is a valu-
able tool to improve diagnostics and fault detection capabilities in pulp and paper 
applications.

A comprehensive view on model-based control and diagnostics for pulp digester 
provides [9] the possibility of feedforwarding the lignin content of incoming wood 
chips based on NIR measurement under the incorporation of modeling and simula-
tion studies. Additionally, Rahman et al. [9] proposed a simple Bayesian network-
based diagnostic approach to detect pulp digester faults. Rahman et al. [7] provided 
an approach for feedforward MPC as applied to the pulp and paper industry.

Moreover, the analytical data-driven models need continuous updating to utilize 
process changes and to learn from experience. The feedback can be done automati-
cally, by process operators, maintenance staff, and so on.

Thus, Figure 7 provides an overview of the potential process improvement as 
compared to the current situation.
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that it has a boost module, which significantly boosts the performance of the charts 
making it possible to display well over 500,000 datapoints in one chart while keep-
ing about the same performance as a chart with 1000 datapoints [5].

5. Pulp and paper use case
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ate process optimization and control. An example of such process is continuous 
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most widely used index for measuring residual lignin present in the pulp is kappa 
number [6]. The digester primary control objective consists in minimizing the 
variability of kappa number, keeping it in a small range within few percent of target 
value (too low and too high kappa numbers negatively both impact quality and 
production stability).

The current situation is shown in Figure 6.
Through utilization of various process-specific analytical data-driven models, 

it is possible to substantially improve the process control, hence also the product 
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specific physical and/or machine learning models enables to forecast the resulting 
kappa number.
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Figure 7. 
Pulp digester improved process [8].

6. Micro turbine powered combined cycle

A key factor to reduce the operating cost of a micro gas turbine (MGT) powered 
combined heat and power fleets is to improve the maintenance strategy. The goal is 
to stop maintaining the micro gas turbines on a timely basis, instead maintaining 
MGT based on anomaly detection (condition-based maintenance) with specifi-
cally developed models that are able to detect MGT faults. In addition to lowering 

Figure 6. 
Pulp digester [8].
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maintenance and operating costs using such models can also increases the safety 
of micro gas turbines. Two ways to develop such models would be either by using 
a physics-based approach or by using a data-driven approach, and the best results 
are achieved when combining a physics-based model and a data-driven model. The 
challenge when developing the models for a fleet of micro gas turbines is that often 
models are tuned for a specific machine and cannot be applied to a similar machine; 
however, when having a fleet of thousands of micro gas turbines, it would require 
way too much effort to develop a model for each system; therefore, the model must 
detect anomalies for multiple MGTs. To sum it up models should predict the main-
tenance actions long before the MGT fails, this will likely increase the safety, reduce 
the maintenance cost, and possibly increase the availability of MGTs [14, 15].

Physics-based models are based on mathematical formulas and constraints 
between sensor data. A physical model for MGTs basically simulates a micro gas 
turbine and compares the simulated values with the real sensor data. With the 
results, a degradation of a MGT can be calculated. The main disadvantage of such 
models is that they require an expert knowledge of the machines they are developed 
for. In contrast, data-driven models do not require such comprehensive knowledge 
of the field. Data-driven models use big quantities of sensor data and known 
failures. These data-driven models are able to classify and predict the future failures 
based on learning (machine learning) from the historical data. The drawback of 
data-driven models is that it is often not comprehensible how the model results are 
exactly calculated.

6.1 Example system architecture for micro gas turbines

This subsection will illustrate an example system architecture for micro gas 
turbine powered heat and power fleets.

Figure 8 represents an example system architecture for MGT fleets. Every MGT 
in the fleet writes its sensor data to a database, which is in the Azure [16] cloud for 
maximum scalability and availability. The SQL server has two databases, one for the 
sensor data and a separate database for the model results. The databases are sepa-
rated because if one database crashes, the other will keep running. If even more reli-
ability is needed, the two databases can also be in separate SQL servers. The virtual 

Figure 8. 
Example system architecture for MGT fleets.
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machine (VM) runs Node-RED as a calculation graph configurator and allows 
the model developers to verify and tune their models. Node-RED then executes 
the calculation graph as explained in Section 3.3. In this example, Node-RED’s 
dashboard is being used to validate, tune, and debug the models. Additionally, the 
model results (e.g., future maintenance actions) are visualized in the company’s 
own UI. Furthermore, the model results and sensor data could be processed and 
displayed in the UI of the customer, so the owners of the MGT(s) could see how 
good their MGT(s) perform, or even allowing them to plan for the future mainte-
nance costs [4, 5].

7. System environment

In the present setting, the view on the overall system architecture may not be 
limited to IT aspects but is necessarily extended to OT. Hahn [10] provides an 
in-depth analysis of the differences between IT and OT in the domain of industrial 
control systems (ICSs). On the one hand, OT is traditionally seen as the heart of 
ICS. On the other hand, modern ICS increasingly utilizes IT capabilities, creating 
a convergence of OT and IT domains [10]. For an in-depth understanding of the 
impact and posed challenges of OT and IT consolidation, it is therefore important to 
align on different principles to handle data in these both domains, together with dif-
ferences in how the overall systems are operated and managed, which technologies 
are used to support them, and so on. Hahn [10] provides the respective explanations 
as follows:

• Operational domain. In order to control and monitor physical processes (such 
as power grids, pulp production, and oil refinery), various sensors, actuators, 
controllers, and human operators are altogether utilized in ICS. The resulting 
unique operational requirements are much different from the traditional IT 
environments, whose focus is more strongly on controlling and managing the 
data, retrieved here from the underlying OT.

• Technical domain. The unique technical requirements for the software used 
to support the operations of ICS mainly result from or are closely related to 
specific communication protocols and architectures; real-time performance 
demand; domain-specific device manufacturers and integrators; complex 
integration of digital, analog, and mechanical controls; and so on.

• Managerial domain. From the management of OT system’s point of view, 
their underlying complex physical infrastructure usually requires much 
larger capital investments than it is the case for the IT systems. Hence, the 
operation of ICS is subsequently usually planned for decades, in order to 
recuperate the cost.

Thus, in order to successfully integrate specific solutions from the IT domain 
(in particular, analytical data-driven solutions) with OT in a holistic ICS, the 
 following requirements should be, respectively, satisfied [11]:

1. Data source requirements. Support for data produced by various industrial 
machines and sensors, usually connected in one network, without the possibil-
ity to access over a common application programming interface (API) is cru-
cially important. The unique characteristics of single heterogeneous elements 
should be harmonizable for further processing.
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2. Processing requirements. Data from sensor instrumented industrial devices 
commonly possess typical Big Data characteristics, so-called four Vs:

• velocity: data arrive rapidly from many different sources;

• volume: huge amounts of data produced in seconds or milliseconds;

• variety: structured, semi-structured, and unstructured data appear; and

• veracity: occurrence of noisy or otherwise of a poor-quality data.

This makes such data very challenging to manage, integrate, and analyze.

3. Human interface requirements. The insightful results from assessed data are 
necessary to be made available to operations professionals in convenient man-
ner for them. In other words, the respective process database should eventu-
ally contain all the data required to accordingly inform process responsible 
(in form of visualizations, notifications, alerts, etc.).

4. Security requirements. Integration, development, deployment, extension, and 
customization are required to take place in secure environments with ensured 
security standards on at least the same level as already in-place.

An important extension to the considerations regarding IT and OT is the 
runtime environment itself, or more precisely the decision between installing and 
running single solution components on the premises of demonstrators (on-prem) 
as opposed to remote facilities (cloud-based). The outlines of advantages and 
disadvantages of on-prem and cloud-based solutions are, respectively, depicted in 
Tables 1–3. At the same time, since in this case the single advantages and disadvan-
tages are often overlapping, the summarized information should be seen as a very 
general overview only.

Since on-prem and cloud-based solutions have own strong advantages and dis-
advantages, there is naturally no single best choice for every different demonstrator. 
In other words, it is crucially important to enable an efficient system architecture 
setup for on-prem the same as cloud based. Then, the decision for a particular setup 
is left to be met solely in accordance with respective internal policies, with posing 

Advantages of cloud-based solutions Disadvantages of cloud-based solutions

Short implementation time Limited customization possibilities

No need for system maintenance Security depends on cloud provider

Low upfront investment Low solution design flexibility

Table 3. 
Advantages and disadvantages of cloud-based solutions.

Advantages of on-prem solutions Disadvantages of on-prem solutions

Great possibilities for customizations Solution implementation takes longer

Possibility for specific security policies High system maintenance effort

High solution design flexibility High system management cost

In-house system and data knowledge High upfront investment

Table 2. 
Advantages and disadvantages of on-prem solutions.
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Figure 9. 
Simplified generic system overview.

no technological limitations whichsoever. Hence, disregarding the differences 
between the outlined system architectures, they can be consolidated as depicted in 
Figure 9.

Hence, the consolidated system environment may easily be generalized as of a 
cloud-based nature, differencing solely in certain administrative responsibilities of 
the underlying technical infrastructure.

8. Microservice architecture

The decision in favor of microservice architecture (MSA), which is a variation 
of service-oriented architecture (SOA), naturally results from the cloud-based 
(either a public cloud or an on-prem configuration) specifics of the underly-
ing solution. In a nutshell, a solution adopting microservice-based architecture 
consists of a large number of small services, each responsible for a single-specific 
aspect (e.g., data access, execution of certain model, and specific data preprocess-
ing step) [12]. Hence, the main benefits of solutions implemented based on MSA 
include their major scalability capabilities (both scaling up and scaling down 
depending on the present circumstances), reusability, loose coupling, and their 
advanced technology agnostic nature, which are probably the most important in 
the discussed context. The latter advantage of MSA enables easily utilize different 
runtime environments and programming languages in single microservices of one 
mutual solution, hence also adapting to technological changes to avoid technology 
lock-in, and so on [12].

Coming back to the previously elaborated requirements in the context of OT 
consolidated with IT to successfully implement analytical data-driven solutions, 
MSA solves these as follows:

1. Data requirements. The heterogeneous nature of the underlying data produced 
by industrial machines and sensors is best supported through the creation of 
separate microservices responsible for particular types of data, retrieving data 
from specific sources, and so on. Moreover, every new type of data or data 
source can further be easily supported by simply adding a new and indepen-
dent respective microservice to the overall solution. Through further microser-
vice, heterogeneous data can be harmonized and brought to common format 
and structure for the subsequent processing stages.

2. Processing requirements. The architecturally unlimited number of microservices 
in-place best support the requirement to process even data produced in near 
real time through simply extending the number of instances of respective 
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microservices. The only bottleneck could be imposed through requests 
dispatching entity, such as a certain API management microservice, which is 
nevertheless efficiently replicable nowadays as well. Thus, all of the V’s of Big 
Data can efficiently be approached by utilizing MSA.

3. Human interface requirements. The way of how results of data processing and 
analysis are made available to process professionals (process operators, process 
engineers, etc.) is again not limited by the architecture and only requires the 
implementation of appropriate single-independent microservices for writ-
ing the data to respective type of process database, or even simply visualizing 
in-place in the underlying solution. Moreover, the initially chosen implemen-
tation is easily adjustable during the whole solution lifecycle based on, for 
example, specific usability requirements.

4. Security requirements. Single microservices made responsible for security act 
as respective middleware, thus ensuring conformity to require security stan-
dards. Again, customization and adaptability are major benefits of choosing 
MSA as opposed to monolithic solutions.

An exemplarily overview of how MSA can successfully be utilized for operation-
alizing the heterogeneous data-driven process models is depicted in Figure 10.

9. ERP integration of prediction models

In today’s times, the ERP system has a central role in almost every company. Its 
capabilities help the business to act, plan, and decide on the data, which will be col-
lected in such systems. In all firms, such decision-making processes are happening 
every day. The question is how a company could become more competitive than its 
competitors. What if, company leaders could predict future events or would be able 
to connect the dots beforehand. This and maybe other reasons are the motivation to 
integrate the prediction models in ERP systems.

The challenge is, to bring the best parts of business know-how, software 
 engineering, and data science together, to be able to predict the future.

Figure 10. 
Microservice-based system outline.
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The first step is to understand the company’s business. Only with that knowl-
edge, problems can be identified, which are worth enough to be avoided to save 
leaders in firm’s time and costs.

One example of such problem could be the question: When and how much will 
my customer order which products? There are too many parameters to answer this 
question with a deterministic approach, which means the only way to solve this 
problem is to get an empiric way of thinking. So, companies can work with that 
what they already gathered in so many ways, with data.

This leads to the second step to get the understanding of that data. The advan-
tage of having an ERP system is that the information is already collected and 
described. To get one step further, the challenge is to find out or explore where these 
data are stored and verify the quality.

Once this is done, the content of the third step is to prepare the data for model-
ing. Simply spoken, the task here is to bring the data in a correct format that predic-
tion models can work with. Every model needs a different format, which means in 
this step, it is also needed to know which model should be used. If the formatted 
data and prediction model fit together, the next step can be done.

Step 4 is about modeling. In this phase, data and the selected prediction model 
will be evaluated, tested, and improved in a couple of iterations or even exchanged. 
The quality of a prediction model can be measured in predictive power and predic-
tive robustness. The power measures the capacity of the input variables to explain 
the target. The robustness is the ability to display the same level of performance on 
new data sets as training ones.

The final step is to deploy and integrate the prediction model in the ERP system. 
To show how this can be accomplished, the following paragraphs will rely on the 
ERP solution Systems, Applications, and Products (SAP).

A typical SAP on-premise installation always comes with an application server 
called SAP S/4HANA and a database management system called SAP HANA [13–16].

When and how much will my customer order which products?
In the paper business, the products can be distinguished by different character-

istics, but one major characteristic is the grade. So, for every grade, different raw 
materials are needed to be ordered and purchased. Also, a major factor is that for 
every grade, the paper machine needs a different setup, which leads also to effort 
and costs. So, for the management of a paper producing company, it would be ben-
eficial to predict the customer’s behavior for the next month to save time and costs.

The information which customer orders which product with amount and point 
of time is maintained the so-called customer sales order. Information to the product 
is available in the material master. The following database tables are meant: VBAK 
(Sales Document Header), VBAP (Sales Document Position), MARA (Material 
Master), and AUSP (characteristic values).

To be able to work with that data, it is needed to bring all tables in view to 
aggregate the information on a monthly basis. This can be accomplished with a 
so-called core-data-service (CDS), which is nothing else than a view with special 
functionalities. The CDS-View plays a major role when it comes to data preparation 
and analysis.

As there is the need to predict the future time events, the auto regressive 
integrated moving average (ARIMA) model will be chosen for this scenario. The 
ARIMA model is delivered within the HANA database by SAP Predictive Analytics 
Library (SAP PAL) and can be accessed via ABAP Managed Data Procedures 
(AMDP) from the application layer. It must be mentioned that there are also differ-
ent integration scenarios possible. For example, a R- and/or Python-Integration can 
be implemented with SAP as well. This approach will be used for high sophisticated 
models where the functionalities of SAP PAL cannot match for this requirement.
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To integrate this predictive function in existing applications or reporting tools, 
an Advanced Business Application Programming (ABAP) will be written for this 
purpose.

The ABAP executes the training of the model and the forecast for the next 
period at one point of time.

To get an overview how this solution with its different integration scenarios 
could like the following illustrations should help to get a better understanding what 
has been described before (Figure 11).

10. Conclusions

Operationalizing and deployment of industry process prediction models can 
be achieved efficiently by setting up a microservice-based architecture that gives 
not only the industry companies but also the scientific community full flexibility 
in using software components to run the prediction models. Successful integra-
tion of heterogenous models for different types of industries has shown high 
added value for operating the prediction models for business performance optimi-
zation. Process industry and OEMs benefit by the proposed architecture from a 
very fast and cost-efficient implementation of models into their OT and IT 
environment.
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Chapter 7

Machine Learning Models for
Industrial Applications
Enislay Ramentol,Tomas Olsson and Shaibal Barua

Abstract

More and more industries are aspiring to achieve a successful production using
the known artificial intelligence. Machine learning (ML) stands as a powerful tool
for making very accurate predictions, concept classification, intelligent control,
maintenance predictions, and even fault and anomaly detection in real time. The
use of machine learning models in industry means an increase in efficiency: energy
savings, human resources efficiency, increase in product quality, decrease in envi-
ronmental pollution, and many other advantages. In this chapter, we will present
two industrial applications of machine learning. In all cases we achieve interesting
results that in practice can be translated as an increase in production efficiency. The
solutions described cover areas such as prediction of production quality in an oil and
gas refinery and predictive maintenance for micro gas turbines. The results of the
experiments carried out show the viability of the solutions.

Keywords: machine learning, prediction, regression methods, maintenance,
degradation prediction

1. Introduction

The amount of data accumulated by man’s activity is uncountable. Millions of
tuples are registered daily in the databases, each of them constitutes an observation,
an experience to learn from, and a situation that could reoccur in the future in a
similar way. Learning from experience is something that humans do naturally and
constantly, but what happens if the number of experiences exceeds our ability to
process it? What happens if a fact is repeated millions of times and never happens
again in exactly the same way?

Machine learning (ML) is the area of artificial intelligence, which deals with
learning from the experience, that is, to extract automatically implicit knowledge in
the information (stored in the form of data) [1].

In this paper we will describe two real-world industry problems that have been
solved using ML. The first of these consists in predicting the quality of the final
products of an oil and gas refinery, described in Section 2. The second consists of a
model for estimating the degradation of a fleet of micro gas turbines, described in
Section 3.

In the next section we offer the theoretical elements necessary for the develop-
ment of our solutions. Any interested reader can find in Section 1.1 the description
of the ML methods we have used. We also describe the general working scheme of
the ML applications.
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1.1 Machine learning

There are countless examples of complex real problems solved through ML, such
as [2–6]. In ML, one important subarea is inductive learning; this type of method
assumes that a set of examples or instances is known [7]. Formally, learning is
defined as:

Theorem 1.1. Let a set of examples (xi, yi), xi ∈D be a domain space state D and
yi ∈ S be a solution domain space state S, or, let (xi), i ¼ 1, 2, … , n, be a domain
space state D where the solutions are not defined, that is, S is undefined. The task of
creating a system that can learn the input-output pairs {(x, y)} or learn the charac-
teristics inherent to {x} is defined as learning.

The first case refers to supervised learning, where there is a solution yi (the
class label) for each input vector xi, these examples are known as “classified” or
“labeled” [8]. The second case refers to unsupervised learning, in which a system
learns characteristics, traits, groups, and concepts from unlabeled data.

The supervised learning is a technique to deduce a function from training data.
One component of the pair is the input data and the other, the desired results. The
output of the function can be a numerical value (as in the regression problems) or a
class label (as in the classification ones).

Formally supervised learning is defined as:
Theorem 1.2. Let T a training set, which is formed by pairs (xi, yi), i ¼ 1… n,

where n represents the number of features, xi is defined as input vector, yi is the
output value (the target). If, yi is numeric then it is a regression task, and if, yi is
discrete then it is a classification task.

The need for supervised learning arises from the requirements of having an
automated procedure that is much faster than a human supervisor and that, at the
same time, can avoid biases and prejudices adopted by an expert [9].

There is also another area in ML known as semi-supervised learning (SSL)
[10, 11]. SSL uses both labeled and unlabeled data for training. Reinforcement
learning (RL) is an example of SSL. In RL, the model learns how to act in changing
environments. It is about taking suitable action to maximize reward in a particular
situation. It has been widely used in games, autonomous driving, and many indus-
trial applications. Figure 1 summarizes the previous definitions.

However, to get to the learning process, it is necessary to go through some
preparing phases first. Figure 2 shows these phases.

The first phase is the data collection; the data can come from multiple sources,
be in different formats, etc. The second phase is the data preprocessing; in this

Figure 1.
Machine learning tasks.
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phase numerous tasks are performed in order to prepare the data for the learning
stage. These tasks can remove noise; normalize, discretize (is needed for the learn-
ing phase), and remove/replace missing values; select features; and select instances.
When the data is ready, the learning phase can start. The data is partitioned in:

Training set: is the set of examples used to build the model to train the ML
model.

Testing set: is the set of examples used to test the models. The ML model will
assign an output to each example in the test set. In classification, if the output value
assigned by the ML model matches the label that has the example in the test set,
then it is true classified. In regression, an error is computed using the difference
between the real value and the predicted. Figure 2 shows the phases described
above.

Given the relevance of preprocessing to our study in the following subsection,
we will describe in detail some of the preprocessing techniques.

1.2 Preprocessing steps

In real-world applications, especially the industrial ones, data is rarely clean and
homogeneous. Most often we find data that tends to be incomplete, redundant,
noisy, or inconsistent. The area of ML that deals with the above problems is known
as preprocessing. The preprocessing task consists of the set of techniques that are
carried out before the learning process. Its objective is to obtain a higher-quality
dataset. These techniques can be divided in the following groups:

1.Handling missing values: missing values occur for various reasons: human
errors, errors in sensor measurements, data is merged from various sources,
etc. Some learning methods can deal with missing values internally, while
others do not. The most common techniques to deal with missing values are:

a. Remove the variables or remove the examples with missing values. This
technique can reduce the data sample and cause loss of information.

b. Replace with an “estimated value.” There are several methods to
estimate a missing value, such as the mean value of the variable, the
median, the most frequent value, and so on.

2.Handling noise: a noisy value is a value that is not the correct one. It is also
known as corrupt data. The noisy value may be very close to the true signal.

Figure 2.
Learning phases.
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Figure 2.
Learning phases.

141

Machine Learning Models for Industrial Applications
DOI: http://dx.doi.org/10.5772/intechopen.93043



3.Handling outliers: an outlier is a value that is much different than the other
values. Most of the time, the outliers are noise, but sometimes a data point that
is true signal can be an outlier.

4. Instance selection (IS): not all instances are equally important. IS consists of
the selection of the most appropriate examples for the learning stage. It is also
known as dataset reduction or dataset condensation. During the IS process,
you can select those most representative instances, free of noise, outliers, or
missing values. Some of the used FS algorithms are those based on rough set
theory and fuzzy rough set theory.

5.Feature selection (FS): not all features are equally important. FS consists of the
selection of the most representative variables or features for the learning stage.
Selecting the right subset of features to be used for the learning phase has
proven an improvement in the performance of supervised and unsupervised
learning.

1.3 Learning algorithms background

In this section, we will describe the most significant learning algorithms from
the state of the art, emphasizing those that were used in the present research. First,
we will describe some classifiers and then some regressors.

1.3.1 Classification task

As we defined in previous sections, classification is the learning task where each
input vector corresponds to a discrete output value, known as a class. Next we will
describe the most representative classifiers in the state of the art.

• Decision tree C4.5 [12]: In 2008, it was ranked as #1 in the Top 10 Algorithms
in Data Mining pre-eminent paper published by Springer LNCS. C4.5 builds
decision trees (DT) from a training set, using the concept of information
entropy. At each node of the tree, C4.5 chooses the attribute of the data that
most effectively splits its set of samples into subsets enriched in one class or the
other. The splitting criterion is the normalized information gain (difference in
entropy). The attribute with the highest normalized information gain is chosen
to make the decision. The C4.5 algorithm then recurses on the partitioned
sublists.1 Decision trees are predictive models that use a set of binary rules to
calculate a target value.

• k nearest neighbors’ classifier (kNN) [13]: It is a non-parametric algorithm.
Its purpose is to use a dataset in which the instances are separated into several
classes to predict the classification of a new instance. This method, for a new
example to be classified, finds its k nearest neighbor using Euclidean distance,
and then the example is classified by a majority vote of its neighbors. In a
similar way, this method is used in a regression task. The numeric output is
mean of the nearest neighbors.

• Random forest (RF) [14]: It is an ensemble method formed by decision trees.
During the training phase, the method builds n decision trees from randomly

1 https://en.wikipedia.org/wiki/C4.5_algorithm.
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sampled datasets with replacement and randomly selected subset of features,
where n is an input parameter. In the testing phase, each individual tree spits
out a class prediction and the class with the most votes is then predicted. RF
avoids the overfitting of the traditional decision trees.

• Multilayer perceptron (MLP) [15]: It is one of the most used artificial neural
networks. It consists in a set of layers (minimum 3): one input layer, one or
more hidden layer, and one output layer. The input layer has as many neurons
as features in the training set. The number of hidden layers and the number of
neurons in these layers are parameters defined by the user. The number of
neurons in the output layer corresponds to the number of classes in training
set. MLP used backpropagation for the learning process. MLP can be used for
classification and regression task.

• Support vector machine (SVM) [16]: It is a discriminative classifier defined by
a separating hyperplane. This algorithm performs as follows: given a labeled
training set, it outputs an optimal hyperplane which categorizes new examples.

1.3.2 Regression task

Regression is a widely used task in the world of industrial applications. It learns
from the data and then when facing a new entry, is able to predict an output value.
The most used regression algorithms are:

• Linear regression (LR) [17]: is a linear method that models the relationship
between a group of dependent variables and one or more independent vari-
ables. In LR the relationships are modeled using linear predictor functions.

• Partial least square (PLS) [18]: is also similar to linear regression but that at the
same time projects the data into a lower dimensional space, so that less vari-
ables are used in reality in the prediction model.

• Decision tree regressor: is regression method that works in the same way as the
DT as a classifier; it was introduced in [19]. A decision tree arrives to an
estimation by asking a series of questions to the data. Every node of the tree
represents a binary question to be answered. Each question is further
restricting our possible values until the model has enough confidence to make a
single prediction. In this way, it is possible to build very accurate rules about
the data.

• Ridge [20]: is a method of regularization also known as Tikhonov regulariza-
tion that puts weighted l2 norm penalty on the regression coefficients. This
method has shown very good results in regression problems, specifically in
those of linear regression with the problem of multicollinearity. Multicol-
linearity, correlated independent variables, is very common in problems with a
large number of features.

• LASSO [21]: is another regularization method that puts weighted l1 norm
penalty on the regression coefficients. The least absolute shrinkage and selec-
tion operator, known as LASSO, is a method that performs variable selection
and regularization in order to enhance the prediction accuracy and interpret-
ability of the statistical model it generates.
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• Gaussian process regression (GPR) [22]: is a non-parametric, Bayesian method
for regression that infers all possible values over a probability distribution. In
recent years, GPR has gained popularity among the machine learning
researchers because of its robustness and performance in terms of classification
and prediction accuracy. The advantage of using GPR is that it can be utilized
in the exploration and exploitation scenario [22].

2. Use case 1: predicting output quality in Tüpras

Obtaining high-quality products is a fundamental objective of the Turkish Refin-
ery Tüpras. Its four main products (diesel 95%, diesel sulfur, HSRN 95%, and LSRN
95%) must meet certain quality parameters dictated by the customer. In practice,
achieving the quality required by the client is not a simple task, since during the
distillation process the oil is subjected to many physical and chemical processes.
However, taking into account that (a) in each of the phases of distillation of the crude
oil, many variables are measured (in the laboratory or using sensors), (b) the initial
chemical properties of the crude oil are known, and (c) the company have historical
data on the final quality of the products, in this investigation, we will use machine
learning techniques to predict the final quality values of Tüpras products.

2.1 Problem description

The main task of the Tüpras refinery is to convert crude oil into usable final
products, satisfying the specifications established by consumers. To achieve the
quality specifications, it is necessary to take many decisions, which means in our
context change the manipulated parameters in the distillation process. Figure 3
shows how the crude oil goes through a distillation process.

As can be seen in Figure 3, crude oil goes through several processes before
becoming a final product. When we analyzed the historical data we have, we
observed that in only 7 of the 254 days of which we have information, the three
products were in the desired range. This gives us the measure of how hard it can be
to achieve the desirable quality. Predictions based on historical values, using ML,
can help achieve the desired quality. Knowing in advance the quality value, it will
be possible to take decisions and make changes in the distillation process that allows
to reach the desired value.

Figure 3.
Tüpras refinery process scheme.
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2.1.1 Variables and the frequency in measuring

The complete cycle, starting with crude oil until transforming into a high-quality
diesel, lasts approximately 240 min (4 hours). Having a large amount of data that
comes from different sources, measured with different frequency, our first task is to
create a dataset that logically and consistently unifies the complete distillation cycle.

Data was collected from 260 days, but after removing missing data, we have
254 days left. The data consists of:

• 17 raw input feed characteristics measured once a day where the timepoint was
not specified.

• 272 process-related parameters measured every minute each day, in total 1440
measurements each day.

• 44 output feed characteristic variables where we only predict four of them
(diesel 95%, diesel sulfur, HSRN 95%, and LSRN 95). The output variables
were measured at 8 am every day and are valid for process measurements from
4 am to 8 am.

For the creation of the dataset, we consider:

• The dataset was created in the form x1, x2, … , xn ! y, where n is the number of
independent variables and each xi represent a variable measured during the
distillation process. These variables can be sensor measurements, manipulated
variables, control variables, and the 17 raw input feed characteristics. The
output variable or the dependent variable (y) is the final quality. In this way we
have a decision system ready for learning task.

• We take into account the time delay of the process.

Thus, in total we have 279 (17 feed +272 process) independent variables that are
used to predict four dependent variables. However, since the output variables are
only valid for 4 hours, that is, 240 minutes in total, there are 240 � 272 measure-
ments plus 17 input variables for each output variable sample. Thus, there are many
more independent variables than dependent variables, and therefore, we use the
mean and standard deviation of each process parameter over each 4-hour period as

Figure 4.
Dependent and independent variables in the learning process.
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features. Consequently, we have 17 + 272 � 2 = 561 independent variables for each
4-hour period. A graphic description can be found in Figure 4.

Notice also that only the above 4 hours of each day have labels—that is, have
valid output variables (data is labeled)—while the remaining 20 hours lack valid
labels (data is unlabeled).

Now we have the data ready for the learning process; in the next subsection, we
will describe learning process.

2.2 A first approach: predicting final quality

In this subsection, we will describe the different experiments we used to evalu-
ate the prediction performance for the output variables. First, we will report results
from learning only from the labeled data. Next, we will present an analysis that uses
learning curves to understand the learning problem, whether more data or more
features would help improve the performance. Finally, we will describe results from
applying semi-supervised learning where also the unlabeled data was used.

2.2.1 Experiment 1: prediction with only labeled data

In the first experiment, we use four regression methods described in previous
section. We use LOO2 cross-validation to investigate which method works best for
predicting the four output variables when only trained on the labeled data. In LOO,
we use N � 1 (where N = 254 days) data points for training the machine learning
method that is then tested on the remaining data points. This is repeated N times
resulting in N different predictions. For evaluating the prediction performance, we
use root mean squared error (RMSE) that takes the square root of the mean of the
square of the difference between the predictions and the true values.

In Table 1, the result is shown, and as can be seen, ridge regression has the overall
best result with the smallest error (RMSE) for three of the output variables, while
random forest has the smallest error for two of the output variables. We also notice
that the errors of the two first output variables are not improved much by any of the
methods compared to PMEAN, while the two last are improved quite a lot. Thus, in
the following section, we will try to improve the performance for ridge regression.

2.2.2 Experiment 2: learning curves

In order to investigate whether we can learn some more from collecting more
data or whether more features are needed, we can plot learning curves. Learning

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEANa 2.50 1.00 8.22 5.31

Ridge 2.36 0.79 3.69 3.68

PLS 2.44 0.79 4.53 4.34

RF 2.36 0.73 4.05 3.96
aAs baseline, PMEAN is a simple algorithm used as a base of comparison. PMEAN uses the mean of the training data
as prediction.

Table 1.
RMSE of the LOO cross-validation result for labeled data.
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curves show the number training examples on the x-axis and the accuracy on the y-
axis for both training data and test data that was not used for training. As accuracy
we use the negative mean squared error (negative MSE), that is, the negative square
of the RMSE. The learning curves for the output variables using ridge regression are
shown in Figure 5.

The upper blue curve shows accuracy for training data, and the lower orange
curve shows the accuracy for test data. Higher value means better performance,
and as can be seen, the accuracy is better for the training curve than for the test
curve, which is natural since the test curve should indicate the generalization
performance of the algorithm. By extrapolating the curves, we can draw some
conclusions from them.

The number of training examples is quite limited so what can be learned from
the curves is also quite limited. However, we notice that the learning curves for the
two upper output variables—Figure 5a and b—are quite similar, while the same
can be said for the two lower learning curves, Figure 5c and d. We also observe
that for the two upper learning curves, the test curves reach a plateau around �6
and �0.65, respectively, after which no more improvement is seen. Neither do we
see much of an improvement for the training curves. This indicates that more
training examples will not likely improve the performance, but instead we need
more features or a more complex algorithm. For the lower left learning curve (c),
we do not see the plateau that clearly, while the lower right curve (d) shows
increasing performance with more data. So, for the lower curves, more training
examples might improve the performance. In the next experiment, we will inves-
tigate this by using a semi-supervised approach that also uses the unlabeled data
for training.

Figure 5.
The learning curves for the four different output variables.
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2.2.3 Experiment 3: prediction with a semi-supervised approach

A semi-supervised approach uses both labeled and unlabeled data in the training
phase [11]. In essence, we achieve this by creating more training examples and by
using the ML algorithm to label them. We create unlabeled data by moving a sliding
window of length 4 hours over each day with time step of 1 hour from 4:00 am to
0:00 pm. This created 20 periods of 4-hour data with 1 labeled and 19 unlabeled
time periods. This increased the number of training examples from 254 to almost
5000 (≈20� 254). The algorithm we use to train on both labeled and unlabeled data
has the following steps:

1. Train the learning method using only labeled data.

2. Predict the labels (output variables) of the unlabeled data.

3. Train the learning method using both labeled data and the data with predicted
labels.

4. Repeat step 2 and step 3 until the difference between the old and new
predicted labels becomes small.

The algorithm uses the maximum likelihood principle in that it converges
toward the values with maximum likelihood, similar to how the expectation-
maximization (EM) algorithm works [23].

For evaluation, we use also LOO cross-validation. That is, we used only labeled
data for evaluation but used all unlabeled data in the training phase as described
above and tested the trained method on the left-out labeled data. The result is
shown in Table 2. The overall best approach is clearly ridge regression with semi-
supervised learning. This confirms the observation from the learning curve analysis
that the first and second output variable would not improve with more training
examples, while the two last output variables we can indeed see improved
performance with more data.

2.3 A second approach

After concluding a first stage in which we carried out the study shown in the
previous section, we obtained new data from Tüpras. With the new data with a total
269 samples, we designed three new experiments. The objective of the following
three experiments is to find with which dependent variables the best predictions of
the variables are achieved.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.50 1.00 8.22 5.31

Ridge 2.36 0.79 3.69 3.68

Ridge (SEMI) 2.34 0.82 2.54 3.31

Table 2.
RMSE of the LOO cross-validation with semi-supervised learning.
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2.3.1 Experiment 1: not using the controlled variables

In our first experiment, we will predict the quality of the output variables without
using the controlled variables. As in previous section, we will use LOO validation.
Table 3 shows the results. As we can observe, best results are obtained in all cases for
LASSO, while ridge performs much worse for diesel 95% than in the first approach.
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Table 3.
RMSE of the LOO cross-validation for experiment 1.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.45 1.00 8.24 5.34

Ridge 2.41 0.88 2.79 3.56

PLS 2.72 0.88 3.30 3.92

LASSO 2.29 0.79 2.26 2.81

Table 4.
RMSE of the LOO cross-validation for experiment 2.

Methods Output variables

Diesel 95% Diesel sulfur HSRN 95% LSRN 95%

PMEAN 2.46 1.00 8.23 5.32

Ridge 2.18 0.85 5.68 4.42

LASSO 2.07 0.82 5.64 4.43

Table 5.
RMSE of the LOO cross-validation for experiment 3.
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2.4 Partial conclusions

In this section we have described the use of regression methods to predict the
four output variables of the Tüpras refinery.

In our first approach, we have described the evaluation of using ridge regression,
partial least squares, and random forest to the problem of predicting the four output
variables, where the ridge regression had the best performance. We have also
shown that using a semi-supervised approach, we could improve the performance
for two of the variables, which also indicates that more data collected from the
process would most likely further improve the performance. However, for two of
the variables, the learning methods did not improve the performance much com-
pared to the baseline using the mean value of the training data, and neither did
semi-supervised learning. For those two variables, we need to consider other rele-
vant features than the mean or standard deviation.

When using more data (second approach), we constantly get the best results
using LASSO regressor for the prediction of the four output variables. From our
results we conclude that:

• For the prediction of diesel 95 it is better to use only the controlled variables
and the diesel feed characteristics.

In contrast, ridge regression shows varying performance in the experiments,
while being many times the second best. Thus, ridge seems to be less stable than
LASSO for this problem.

3. Use case 2: predictive maintenance model from micro gas turbine

The need to predictmaintenance intervals is a problem that currently has great
relevance in the field ofML applied to the industry. Predicting in advance if a device
needsmaintenance can result in significant savings in time andmoney.With predictive
maintenance, important failures and breakdowns in production time can be avoided
[5, 23]. It is a fact that themaintenance intervals recommended by themanufacturers
almost never correspond in practice with reality. This is largely due to the fact that local
conditions vary a lot from one environment to another andmanufacturers operatewith
genericmeasurements that do not take into account specific conditions.

In this section we will describe a proposal to estimate the performance degrada-
tion of a fleet of micro gas turbines. An important issue to consider is that there is
no explicit degradation measure, which therefore must be estimated.

3.1 Problem description

The existing method for estimating degradation uses a linear model fitted to data
from a reference system which then is used to correct the generated power from an
installed system. Thus, the values are corrected and normalized so that they can be
compared. In Figure 6, we can observe an example of the current approach. The
yellow curve is the corrected power which shows the current approach to measur-
ing degradation.

In addition to that, there are some conditions that make the problem unusual.
These conditions are as follows:

• The systems are small-scale and low-cost installations, so there is only a small
number of sensors available.
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• At the time of development of our method, there were not many systems
installed and not many failures recorded, and thus, a traditional supervised ML
approach could not be used.

• Each system is always running at full capacity, where the ideal power is the
maximum power generated when there is no loss due to degradation and no
effect of ambient conditions.

• Finally, there are recordings of maintenance actions, but the effect of an action
on remaining degradation is not known.

Given the above list of circumstances, the design goal of the proposed method is
to measure degradation:

1. Using only data from real systems and removing the need for a reference
system

2. More smoothly than the existing method

3. Relative to the ideal power generation

3.1.1 Data collection and preprocessing

Data was collected from five different micro gas turbines with system ID 24, 27,
28, 29, and 30. The data was sampled every minute, but we used only samples from
every second hour, since it was deemed to be sufficient for long-term degradation
modeling. We use data from the parameters shown in Table 6.

3.2 Approach: power degradation model

The proposed method uses a regression model where physical properties are
taken into account. As we said before, we are not facing a classic problem of
supervised learning, since degradation cannot be measured. Thus, instead we let
both the degradation and ideal power be properties of the model, and the model is
trained to predict the measured electric power.

Now we introduce our model: let y be the measured power, x! be a column vector

with the ambient parameters like weather, pressure, etc. Then, let t
!
be a column

vector with time-dependent variables and n and m be the number of systems and
number of maintenance periods, respectively. We use 1≤ i≤ n to denote a specific

Figure 6.
Pe is measured and Pe_cor is corrected power; engine replacement indicates start of currently installed engine
life.
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system and 1≤ j≤m for a specific maintenance period. Now, we define the generic
model of degradation as follows:

y ¼ ki þ g x!
� �

þ e t
!
; i, j

� �
(1)

where ki is the known ideal power generation for system i, function g is the effect
of ambient variables, and function e is the degradation over time due to wear.

In the above equation, the signal is divided into to two parts: a variation caused
by ambient conditions and a degradation trend given by the time-dependent vari-
ables. It is also assumed that the variation due to ambient variables is the same for
different systems, while the degradation is dependent on both the individual system
and the maintenance period.

Let us assume a linear model for both functions g and e as follows:

g x!
� �

¼ c!
T
x!

e t
!
; i, j

� �
¼ ai þ b j þ e!

T
o t
! þ e!

T
i t
! (2)

where c! is a column vector to model ambient conditions and ai and bi model
remaining degradation at start or after a maintenance action for system i and
maintenance period j, respectively, and e!0 and e!i are column vectors modeling
the degradation common for all systems and for each individual system,
respectively.

Variables Parameters Unit

Predicted variable (y) • Net electric output power Watts

Ambient (contextual)
variables (x)

• Measured return water temperature Kelvin

• Inlet air temperature Kelvin

• Ambient pressure Bar

• Ambient pressure at stand still Bar

• Measured turbine speed Rpm

• Set point requests based on heat demand —

• The internal set point for desired speed and turbine exit
temperature

—

Ambient pressure variable* • Ambient pressure is missing Dummy

Time-dependent variables • Total number of running hours Hours

Affecting the degradation
trend (t)

• Total number of starts and stops Frequency

Maintenance actions (M) • Total number of running hours when action was taken —

The ideal power per system
(k)**

• Net electric output power during installation Watts

*To handle missing values of the ambient pressure variable, we add a dummy variable that is 1 when the variable
is missing and 0 when it is present.
**The ideal power was measured when a system was installed and corresponds to the power that would be
generated without disturbances from ambient variables and degradation due to wear.

Table 6.
Parameters used in the prediction model.
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In order to get a feasible solution, we put a l1 regularization on the remaining

degradation coefficients in a! and b
!
so that the coefficients are kept close to zero.

We also assume that the degradation is monotonic so that e!≤0. The solution was
implemented using a machine learning framework called Keras3 together with
TensorFlow4 as backend.

3.3 Experimental results

In this experiment, we use the existing method that uses corrected power
derived from a reference system to validate the new method. Table 7 shows, for
each of the five systems we have tested, the Pearson correlation coefficient (r)
between the estimated negative degradation and the corrected power, the root
mean squared error, and mean absolute percentage error (MAPE in %) for
predicting the measured power.

As can be seen, the correlation coefficients are above 0.9 for all but one system
(28), which indicates that the proposed method is indeed a good replacement for
the corrected power. Also, the RMSE and MAPE are of reasonable sizes.

3.4 Partial conclusions

In this use case, we presented a machine learning approach that incorporates
physical properties into the model in order to estimate the degradation of a fleet of
gas systems. In addition, we show that it was a good replacement of the existing
approach to measuring degradation that was based on data from a reference system.

4. Conclusion

In this chapter, we presented an overview of machine learning and presented
example use cases where we applied machine learning. In the first use case, we
predicted the diesel product quality using common regularized linear regression,
while in the second use case, we used a more customized regularized regression to
implement predictive maintenance.

System r RMSE MAPE

24 0.91 81.80 2.35

27 0.95 72.13 2.20

28 0.82 71.31 1.95

29 0.92 62.85 1.83

30 0.95 52.49 1.50

All 0.92 70.59 2.01

Table 7.
Estimation model results over five systems.

3 https://keras.io.
4 https://tensorflow.org.
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As general conclusions, we can summarize:

• LASSO and ridge regressor were very efficient methods in predicting diesel
quality at UC 1.

• For the prediction of diesel 95, it is better to use only the controlled variables
and the diesel feed characteristics.

• The incorporation of physical properties into the degradation model in use case
2 is very useful for the final maintenance prediction.

A summary of general approach to solving a problem with machine learning is to:

1.Start by defining the learning problem: what variable should be predicted? If
there is no explicit variable, it might be an unsupervised problem, but as in use
case 2, it can also be a variable that is not measured. Thus, the sought variable
needs to be extracted from or part of the estimated model.

2.Next, chose a performance metric that measures the desired outcome. In use
case 1, it was quite simple since the diesel quality was measured directly, while
in use case 2, the desired outcome—the time when the degradation of a system
is too bad—was not measured directly.

3.Then, start out with a simple model, like a linear regression model, which also
can be used as a baseline for comparison of more complicated models used in
the next step.

4.Plot and analyze the learning curves (see Section 2.2.2). If the curves indicate
potential of using a more complex model, then try with a more complex model
like a random forest or a neural network. However, the selection of model is
also dependent on the size of the dataset. If there is only small dataset as in use
case 1, it is not possible to use a too complex model since more model
parameters need more data for training.

5.Finally, test the models on a dataset not used for training above. This is to
ensure that the performance measures the generalization power of the model
and to avoid overfitting to the training data.

As an overall conclusion, we can see that we ended up with quite simple variants
of linear models in both use cases, which is not uncommon given the authors experi-
ence from industrial problems. Another general comment is that in most cases each
industrial problem is quite unique and there is no single solution that fits every
problem. So, it is important to understand the problem domain and chose methods
that fit that particular problem. Hence, machine learning is not a silver bullet that will
solve all problems. If there is a good physical model, a machine learning model will
probably not be a better choice. However, it might be a benefit to create a hybrid
model combining the physical model with a data-driven machine learning model.
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Chapter 8

Consensus Control of Distributed
Battery Energy Storage Devices in
Smart Grids
Javad Khazaei and Dinh Hoa Nguyen

Abstract

One of the major challenges of existing highly distributed smart grid system is
the centralized supervisory control and data acquisition (SCADA) system, which
suffers from single point of failure. This chapter introduces a novel distributed
control algorithm for distributed energy storage devices in smart grids that can
communicate with the neighboring storage units and share information in order to
achieve a global objective. These global objectives include voltage regulation,
frequency restoration, and active/reactive power sharing (demand response).
Consensus theory is used to develop controllers for multiple energy storage devices
in a cyber-physical environment, where the cyber layer includes the communica-
tion system between the storage devices and the physical layer includes the actual
control and closed-loop system. Detailed proof of designs is introduced to ensure
the stability and convergence of the proposed designs. Finally, the designed
algorithms are validated using time-domain simulations in IEEE 14-bus system
using MATLAB software.

Keywords: consensus control, battery energy storage, smart grids,
distributed control, droop control

1. Introduction

Integration of highly distributed renewable energy sources has introduced
significant challenges to the resiliency and efficiency of the smart grid systems. This
is mainly due to uncertain behaviors of these renewable energy sources and their
dependency to weather conditions [1, 2]. Battery energy storage has been intro-
duced as a solution to solve the intermittency and uncertain behaviors of renewable
energy sources in smart grids. The energy storage is normally connected to the
electric power system through a voltage source converter and by controlling the
charge/discharge rate of the storage units, output power regulation of renewable
energy sources can be achieved [3, 4].

Currently, energy storage units are distributed throughout the grid. Given the
centralized structure of supervisory control and data acquisition (SCADA) system,
it cannot meet the requirements of highly distributed renewable energy and storage
devices of future smart grid systems. In addition, the centralized controllers suffer
from single point of failure and are not a suitable choice for energy storage control
when the grid resiliency is significantly important [5–7]. As an example, an energy
storage device which is permanently out of energy is not able to use its power
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capability to support the load until a charge event is scheduled. Moreover, any
charge discrepancies will result in battery degradation due to the increased depth of
discharge.

Distributed control of distributed energy storage units has recently been intro-
duced [8–11]. For example, a coordinated control is proposed for low voltage dis-
tribution networks in [8], which mitigates voltage fluctuations in a distribution
feeder using distributed storage units. As another example, the voltage regulation
issue of distribution feeders is resolved using a droop-based distributed controller to
cooperatively charge/discharge the storage units to regulate the feeder voltage
considering the state of charge of the batteries [9]. In Hammad et al. [10], a virtual
inertia-based distributed controller is designed for transient stability of a power
system using distributed storage units. The authors then used a feedback lineariza-
tion control algorithm to evaluate the proposed virtual inertia and its effectiveness
in stability of the system.

Consensus control of energy storage units has also recently been proposed as an
emerging technique for synchronization of distributed storage devices [12–20]. In
Khazaei and Miao [13], the authors introduced a state of charge balancing algorithm
for distributed storage devices in AC microgrids using consensus theory and vali-
dated the results using a real-time simulator. In Guan et al. [15], a dynamic consen-
sus approach was introduced to balance the discharge rate of energy storage devices
in AC microgrids. The proposed model achieved power regulation by adjusting the
virtual resistance of voltage-controlled inverters. A novel distributed controller was
designed for load management in distribution networks using distributed battery
storage systems. The proposed methodology used limited communications to coor-
dinate multiple storage units with solar power energy penetration. The authors also
have significantly studied the consensus design for storage devices for power shar-
ing and energy synchronization [13], power sharing of heterogeneous storage units
with droop control [14], voltage and frequency regulation of storage devices in
smart grids [16], output power regulation of double-fed induction generator-based
wind farms [19], and power sharing of storage devices with different droop
schemes [20].

This chapter summarizes the findings of the authors in the distributed control
design of energy storage devices in smart grids to provide ancillary services includ-
ing: (1) voltage regulation, (2) primary frequency support, (3) equal active power
sharing between storage units based on their capacities, (4) equal reactive power
sharing based on storage capacity, and finally, and (5) controlling the load in both
islanded and grid-connected modes. Time-domain simulations on a modified IEEE
14-bus system are performed to validate the effectiveness of the proposed designs.

The rest of the paper is as follows: Section 2 covers the battery energy storage
model. Consensus design for heterogeneous storage units is considered in Section 3.
Section 4 includes multiple case studies to validate the designs, and Section 5
concludes the chapter.

2. Battery energy storage model

A basic schematic of an energy storage device, which is connected to the grid
through a DC/AC converter and an LCL filter is illustrated in Figure 1. The energy
storage control uses the well-known synchronous reference frame control, where
three cascaded control loops are adopted. The main objective is to control the active
and reactive demand using a droop control method in dq reference frame. The
droop control receives active and reactive power measurements from a sensor
installed at the point of common coupling (PCC) as
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Pmi ¼ 3
2

vodiod þ voqioq
� �

(1)

Qmi ¼
3
2

�vodioq þ voqiod
� �

(2)

where Pmi and Qmi are measured active and reactive powers, respectively. In
addition, vod, voq, iod, and ioq are measured converter voltages and currents at the
point of common coupling, as illustrated in Figure 1. The measurements will then
pass through a low-pass filter,

Pi ¼
αp

sþ αp
Pmi (3)

Qi ¼
αq

sþ αq
Qmi (4)

where αp and αq are the bandwidths of the low-pass filters. The AC-side dynam-
ics of the ith energy storage system in dq frame is expressed as:

L
diid
dt

� ωLciiiq þ Rciiid ¼ vod � vid (5)

L
diiq
dt

þ ωLciiid þ Rciiiq ¼ voq � viq (6)

where vod and voq are dq voltages at the point of common coupling (PCC), vid and
viq are the dq frame converter output voltages, and iid and iiq are the dq reference
frame currents flowing from the PCC to the converter.

2.1 Inner current controller

The most inner control loop in the energy storage system is the current control-
ler, which is in charge of regulating the converter current in a decoupled manner.
The inputs to this controller come from the voltage controller and are the reference
dq frame current setpoints. Two proportional integral controllers are utilized which
regulate the d and q axis currents with feedforwarded loops. Dynamics of the
current controller for ith battery storage system are presented as [14]:

Figure 1.
Control structure of a battery energy storage system.
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vrefid ¼ � kp þ ki
s

� �
irefid � iid

� �
þ ωLiiq þ 1

τsþ 1
vod

vrefiq ¼ � kp þ ki
s

� �
irefiq � iiq

� �
� ωLiid þ 1

τsþ 1
voq

(7)

where vrefid and vrefiq are reference converter voltages to be sent to the pulse width
modulation (PWM) controller, kp and ki are the PI regulator gains, and τ is the time
constant of the low-pass filter for voltage measurement. The controller computa-
tional delay and pulse width modulation (PWM) switching are modeled by τs which
can be ignored for simplicity [14].

2.2 Voltage control

Voltage controller receives inputs from the droop controller and provides refer-
ence currents for the inner current control loops. Similar to the current controller,
two PI regulator are used for the voltage controller. Dynamics of the voltage control
loop can be modeled by [14]:

irefid ¼ vrefod � vod
� �

kpv þ kiv
s

� �
� ω0Cfivoq þ 1

τvsþ 1
iod (8)

irefiq ¼ vrefoq � voq
� �

kpv þ kiv
s

� �
þ ω0Cfivoq þ 1

τvsþ 1
ioq (9)

where vrefod , v
ref
oq are dq frame reference converter voltages, vod, voq are the dq

frame measured voltages at the PCC passed through a low-pass filter, and iod, ioq are
the dq frame converter output currents. In addition, τv is the time constant of the
filter that is used in voltage controller.

2.3 Droop control

Droop control is used when multiple converters are installed in parallel to sup-
port the load based on their capacities. The principle of the droop control is based
on the fact that a converter with higher capacity should share more load compared
to a converter with lower capacity. This will be taken care of by designing droop
gains properly. The droop controller receives measurements from active and reac-
tive powers at the point of common coupling and provides reference voltage and
frequency to that shape the reference voltages in dq frame for the voltage controller
loop such that

vrefod ¼ ∣Vi∣ cosωit (10)

vrefoq ¼ ∣Vi∣ sinωit (11)

The droop controller sends the reference voltage magnitude and frequency
setpoints of the converter to the voltage controller. Dynamics of the droop control-
ler can be expressed by:

ωi ¼ ωnom
i �DP

i Pi (12)

∣Vi∣ ¼ ∣Vnom
i ∣�DQ

i Qi (13)
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where ωi is frequency setpoint of ith battery storage, ωnom
i is the nominal

frequency to be developed using the consensus theory, DP
i is the active power droop

gain, ∣Vnom
i ∣ is the nominal voltage magnitude of the ith storage to be designed by

consensus control, and DQ
i is the reactive power droop gain. The droop gains can be

found by:

DP
i ¼ Pmax

i � Pmin
i

ωmax
i � ωmin

i
(14)

DQ
i ¼ Qmax

i � Qmin
i

Vij jmax � Vij jmin (15)

The droop control design is similar to the primary frequency and voltage control
of synchronous generators, where the voltage and frequency will not be regulated
to their nominal values. To restore the voltage and frequency to their nominal
values, a distributed controller is designed in this work using a consensus theory.
The proposed controller receives signals from neighboring storage devices and
modifies the nominal frequency/voltage in the droop equations to regulate the
voltage and frequency to their setpoints.

3. Heterogeneous consensus design

The main objective of this section is to supplement a secondary controller to the
droop controller of the storage devices. The controller receives information from
neighboring storage units and shares the power between storage devices to regulate
the voltage and frequency of the system at the point of common coupling. Further-
more, a virtual leader is considered, which can be assigned to one energy storage in
the system, or a few storage devices. The leader will have the setpoints of the
voltage and frequency in the system and will share the information with its neigh-
boring storage units. To develop such a control design, the battery energy storage
model needs to be developed. In our recent work, a simplified battery energy
storage model was developed. The model accounts for the dynamics of the droop
controller and active power/energy relationship of the battery. Such model can
accurately incorporate the dynamics of energy storage devices in smart grids.
Dynamics of the energy storage devices can be represented by [14]:

ωi ¼ ωnom
i �DP

i Pi,

∣Vi∣ ¼ ∣Vnom
i ∣�DQ

i Qi,

_Ei ¼ �DP
i

3600
Pi,

_Pi ¼ uPi :

(16)

To develop such simplified model, it is assumed that dynamics of voltage con-
troller and current controller are much faster than the droop controller, therefore,
their dynamics can be ignored. In the above model, uPi is the input for distributed
active power sharing, and DP

i reflects the heterogeneity of batteries. To achieve
equal power sharing, DP

i Pi should be regulated among batteries so that a battery
with higher capacity (lower droop gain, DP

i ) contributes more to the power sharing.
To minimize the number of communication links between the storage devices, this
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2.2 Voltage control

Voltage controller receives inputs from the droop controller and provides refer-
ence currents for the inner current control loops. Similar to the current controller,
two PI regulator are used for the voltage controller. Dynamics of the voltage control
loop can be modeled by [14]:

irefid ¼ vrefod � vod
� �

kpv þ kiv
s

� �
� ω0Cfivoq þ 1

τvsþ 1
iod (8)

irefiq ¼ vrefoq � voq
� �

kpv þ kiv
s

� �
þ ω0Cfivoq þ 1

τvsþ 1
ioq (9)

where vrefod , v
ref
oq are dq frame reference converter voltages, vod, voq are the dq

frame measured voltages at the PCC passed through a low-pass filter, and iod, ioq are
the dq frame converter output currents. In addition, τv is the time constant of the
filter that is used in voltage controller.

2.3 Droop control

Droop control is used when multiple converters are installed in parallel to sup-
port the load based on their capacities. The principle of the droop control is based
on the fact that a converter with higher capacity should share more load compared
to a converter with lower capacity. This will be taken care of by designing droop
gains properly. The droop controller receives measurements from active and reac-
tive powers at the point of common coupling and provides reference voltage and
frequency to that shape the reference voltages in dq frame for the voltage controller
loop such that

vrefod ¼ ∣Vi∣ cosωit (10)

vrefoq ¼ ∣Vi∣ sinωit (11)

The droop controller sends the reference voltage magnitude and frequency
setpoints of the converter to the voltage controller. Dynamics of the droop control-
ler can be expressed by:

ωi ¼ ωnom
i �DP

i Pi (12)

∣Vi∣ ¼ ∣Vnom
i ∣�DQ

i Qi (13)
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where ωi is frequency setpoint of ith battery storage, ωnom
i is the nominal

frequency to be developed using the consensus theory, DP
i is the active power droop

gain, ∣Vnom
i ∣ is the nominal voltage magnitude of the ith storage to be designed by

consensus control, and DQ
i is the reactive power droop gain. The droop gains can be

found by:

DP
i ¼ Pmax

i � Pmin
i

ωmax
i � ωmin

i
(14)

DQ
i ¼ Qmax

i � Qmin
i

Vij jmax � Vij jmin (15)

The droop control design is similar to the primary frequency and voltage control
of synchronous generators, where the voltage and frequency will not be regulated
to their nominal values. To restore the voltage and frequency to their nominal
values, a distributed controller is designed in this work using a consensus theory.
The proposed controller receives signals from neighboring storage devices and
modifies the nominal frequency/voltage in the droop equations to regulate the
voltage and frequency to their setpoints.

3. Heterogeneous consensus design

The main objective of this section is to supplement a secondary controller to the
droop controller of the storage devices. The controller receives information from
neighboring storage units and shares the power between storage devices to regulate
the voltage and frequency of the system at the point of common coupling. Further-
more, a virtual leader is considered, which can be assigned to one energy storage in
the system, or a few storage devices. The leader will have the setpoints of the
voltage and frequency in the system and will share the information with its neigh-
boring storage units. To develop such a control design, the battery energy storage
model needs to be developed. In our recent work, a simplified battery energy
storage model was developed. The model accounts for the dynamics of the droop
controller and active power/energy relationship of the battery. Such model can
accurately incorporate the dynamics of energy storage devices in smart grids.
Dynamics of the energy storage devices can be represented by [14]:

ωi ¼ ωnom
i �DP

i Pi,

∣Vi∣ ¼ ∣Vnom
i ∣�DQ

i Qi,

_Ei ¼ �DP
i

3600
Pi,

_Pi ¼ uPi :

(16)

To develop such simplified model, it is assumed that dynamics of voltage con-
troller and current controller are much faster than the droop controller, therefore,
their dynamics can be ignored. In the above model, uPi is the input for distributed
active power sharing, and DP

i reflects the heterogeneity of batteries. To achieve
equal power sharing, DP

i Pi should be regulated among batteries so that a battery
with higher capacity (lower droop gain, DP

i ) contributes more to the power sharing.
To minimize the number of communication links between the storage devices, this
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paper regulates the nominal voltage and frequency of neighboring storage units.
In this method, there will be no need to receive measured voltage and frequency
signals from neighboring storage units and the control design only requires the
nominal frequencies ωnom

j and nominal voltages ∣Vnom
j ∣ of its neighboring storage

devices.
To provide voltage and frequency regulation as well as active/reactive power

sharing, new distributed inputs can be designed using consensus theories. These
inputs include ∣ _Vnom

i ∣ ¼ uVi , _Qi ¼ uQi , and _ωnom
i ¼ uωi . The overall dynamics of the

ith energy storage device is then formulated as [14]:

_Ei ¼ �DP
i

3600
Pi,

_Pi ¼ uPi ,

∣ _Vnom
i ∣ ¼ uVi ,

_Qi ¼ uQi ,

_ωnom
i ¼ uωi :

(17)

In the next section, control design to develop these new inputs will be elaborated
in detail.

3.1 Graph theory

Some preliminary information on graph theory is needed in order to design the
controllers. The multi-agent system theory is considered for designing the control-
ler inputs so that each battery energy storage unit is considered as an agent that can
communicate with neighboring agents. It is also assumed that the communication
network of the system is an undirected graph G that has a vertex set of V and an
edge set of E. Each vertex represents an energy storage system and the intercon-
nection between storage systems k and j is represented by element k, jð Þ∈ E.

The neighboring set of energy storage number k is expressed by
N k ≜ j∈V : k, jð Þ∈ Ef g. In addition, akj is an element of the adjacency matrixA of G,
i.e. akj ¼ 1 if k, jð Þ∈ E and akj ¼ 0 if k, jð Þ ∉ E. Finally, D is the degree matrix that is
derived byD ¼ diag dkf gk¼1,… ,n, where dk ≜

P
j∈N k

akj. It is noted that, the Laplacian
matrix L associated to G can be formulated by L ¼ D�A. The leader is in charge of
sending setpoints to energy storage units. The leader is represented by sub-index 0
and its neighboring storage units are denoted byN 0. Then a0i ¼ 1 if i∈N 0, while
a0i ¼ 0 if i ∉ N 0.

3.2 Consensus control design

Let ωref and Vref be the reference frequency and voltage magnitude of energy
storage devices. These references serve as external commands to force the fre-
quency and voltage magnitude of storage devices to converge precisely to the
expected values. In other words, they are virtual leaders while the frequency and
voltage magnitude of batteries are the followers. In this sense, the consensus design
is proposed as follows,
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uPi ¼ �C2

DP
i

X
j∈N i

DP
i Pi �DP

jP j

� �
,

uVi ¼ �C3

X
j∈N i

jVnom
i j � jVnom

j j
� �

� CV
0 a0i jVnom

i j�DQ
i Qi�jVref j

� �
,

uQi ¼ �C3

DQ
i

X
j∈N i

DQ
i Qi �DQ

j Q j

� �
,

uωi ¼ �C2

X
j∈N i

ωnom
i � ωnom

j

� �
� Cω

0a0i ω
nom
i �DP

i Pi � ωref� �
:

(18)

Note here that the controller gains for the active power and frequency are the
same, and similarly the controller gains for the reactive power and voltage magni-
tude are also the same. The structure of the proposed distributed primary and
secondary voltage/frequency controller is illustrated in Figure 2.

3.3 Consensus proof

Let ~Pi ≜DP
i Pi and ~Qi ≜DQ

i Qi, then the closed-loop model of BESS with the
consensus design (18) is

_Ei ¼ �1
3600

~Pi,

_~Pi ¼ �C2

X
j∈N i

~Pi � ~P j
� �

,

∣ _Vnom
i ∣ ¼ �C3

X
j∈N i

jVnom
i j � jVnom

j j
� �

� CV
0 a0i jVnom

i j� ~Qi�jVref j� �
,

_~Qi ¼ �C3

X
j∈N i

~Qi � ~Q j

� �
,

_ωnom
i ¼ �C2

X
j∈N i

ωnom
i � ωnom

j

� �
� Cω

0a0i ω
nom
i � ~Pi � ωref� �

:

(19)

Figure 2.
Structure of the proposed distributed controller.
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Note here that the controller gains for the active power and frequency are the
same, and similarly the controller gains for the reactive power and voltage magni-
tude are also the same. The structure of the proposed distributed primary and
secondary voltage/frequency controller is illustrated in Figure 2.
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Figure 2.
Structure of the proposed distributed controller.
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First, we introduce the proof for consensus of the active powers and reactive
powers of storage devices. It can be easily observed from Eq. (19) that the dynamics
of the proportional active powers ~Pi and reactive powers ~Qi have the same form.
Moreover, the consensus of the proportional active powers ~Pi will lead to the
consensus of batteries’ energy levels Ei, if the initial state of charge of the batteries is
the same. Therefore, we only present the proof for the consensus of the active
powers ~Pi. The dynamics of ~Pi is self-contained and in form of a first-order
differential equation, and hence, its solution can be easily found to be

~P tð Þ ¼ e�C2Lt~P 0ð Þ, (20)

where ~P 0ð Þ is the vector of initial proportional active powers of batteries. Since
L is a symmetric matrix, e�C2Lt is also a symmetric matrix. Let U ∈N�N be an
orthogonal matrix derived from diagonal matrix L. Subsequently, it can be easily
seen that

e�C2Lt ¼ U lim
t!∞

diag 1, e�C2λ2t, … , e�C2λNt
� �

UT ¼ Udiag 1, 0, … , 0f gUT, (21)

since λ2,… , λN are positive eigenvalues of L once G is connected. On the other
hand, Udiag 1, 0,… , 0f gUT ¼ 1N=

ffiffiffiffi
N

p
,0N,… ,0N

� �
UT ¼ 1N1TN=N since the eigen-

vector associated with the zero eigenvalue of L is 1N . Therefore, we obtain from
(21) and (20) that

e�C2Lt~P 0ð Þ ¼ 1TN~P 0ð Þ
N

1N, (22)

which means that the average consensus is achieved for batteries’ proportional
active powers. As mentioned above, similar proof can be utilized to get the consen-
sus of batteries’ proportional reactive powers.

Next, we present the proof for the consensus of the voltage magnitude and
frequency of batteries to their references ∣Vref ∣ and ωref . For brevity, only the proof
for the consensus of nominal frequency ωnom

i is given, while the proof for the
consensus of nominal voltage magnitude ∣Vnom

i ∣ can be derived similarly because
their equations are in the same form as seen in (19).

Let us denote

ω̂i ≜ωi � ωref , i ¼ 1, … ,N; ω̂≜ ω̂1, … , ω̂N½ �T:

Then

_̂ωi ¼ _ωi ¼ _ωnom
i � _~Pi

¼ �C2

X
j∈N i

ωnom
i � ωnom

j

� �
� C2

X
j∈N i

~Pi � ~P j
� �� Cω

0a0iω̂i

¼ �C2

X
j∈N i

ω̂i � ω̂ j
� �� Cω

0a0iω̂i:

(23)

Denote D0 ≜ diag a0if gi¼1,… ,N. Consequently, we obtain from (23) that

_̂ω
nom ¼ � C2L þ Cω

0D0
� �

ω̂: (24)
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Assume that the communication graph G among followers is connected and at
least one follower is connected to the leader, i.e. D0 is not a zero matrix, then it was
shown in [20] that all eigenvalues of the matrix C2L þ Cω

0D0 have positive real parts
for any C2 >0 and Cω

0 >0. Thus, it can be immediately concluded that the system
(24) is stable, i.e. lim t!∞ω̂ tð Þ ¼ 0. This is equivalent to the consensus of battery
frequency to the reference frequency ωref . Same analysis holds for the consensus of
the nominal voltage magnitude.

4. Case studies

To validate the proposed designs, IEEE 14-bus benchmark is used. The system
represents an approximation of U.S. utility system around 1962. The benchmark
includes five generation units and 11 loads. Parameters of the test system were
adopted from [21]. The system was modified for the current study. The generator
dynamics were replaced by the battery energy storage dynamics. The system was
modeled in MATLAB Simulink and a combination of MatPower and MatDyn tool-
boxes are used for dynamic simulation of the proposed control algorithms [22]. The
MatPower toolbox was used for power flow and initial conditions of the system,
where MatDyn was used for dynamic simulations and control design. The authors
have extensively studied integration of battery energy storage units to IEEE bench-
mark cases using MatDyn toolbox in their previous publications [9, 10]. The con-
sensus controllers then are supplemented to the model as inputs. The schematic of
the modified IEEE 14-bus system used for the simulations in this study is illustrated
in Figure 3. Parameters of the storage units are included in the Appendix section.

The communication structure of the system under investigation is illustrated in
Figure 4. As it can be observed, the communication graph of the system is undi-
rected and minimum number of communication links is needed to ensure the

Figure 3.
Modified IEEE 14-bus system with five energy storage units.
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convergence of the proposed algorithms. Furthermore, the leader is incorporated in
battery energy storage number 2. The leader can be designed in any storage number
as one leader is sufficient to ensure the functionality of the proposed control design.

4.1 Constant power control

In the first case, the performance of the designed voltage and frequency con-
troller is tested when a constant load is applied to the system. The secondary
controller ensures sharing the active and reactive powers between the storage units
based on their capacities as well as voltage/frequency regulation. Simulation results
for this case study are illustrated in Figure 5. For this case study, the leader is
activated by setting Cω

0 ¼ 1 and CV
0 ¼ 1. The overall load in the system (summation

of loads in all busses) is SD ¼ 0:5þ j0:5 p.u. It can be shown that the active/reactive
power sharing (first subplot) is achieved after 15 s, and the voltage and frequency

Figure 4.
Communication graph of the system.

Figure 5.
Primary frequency response to a constant load.
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are regulated to their reference setpoints (1 p.u.) after 15 s. The designed controller
can synchronize the operation of storage units in the system very fast.

4.2 Primary frequency response

In the second case, the primary active and reactive power sharing is the main
objective. The batteries should share the load power equally using the primary
droop concept. The leader will be deactivated in this case enforcing consensus gains
Cω
0 and CV

0 to zero. This will result in a primary voltage and frequency response,
where the battery storage units will share the load active and reactive power
demand, but the voltage and frequency will deviate from the nominal value. Similar
to the first case study, the system starts with a 0:5þ j0:5 p.u. load and a load change
event is scheduled to increase the demand to 1þ j1 p.u. after 20 s. Simulation results
are illustrated in Figure 6. It is shown that the batteries can equally share the active
and reactive power of the load even after the load event at 20 s. To support the
active power increase in the demand, the frequency will drop and the batteries will
settle in a lower frequency (0.91 p.u.). Furthermore, since the load active power has
increased after 20 s, the voltage will also drop and settle to new synchronized value
(0.94 p.u.).

4.3 Secondary frequency response

The third case, the performance of the secondary voltage and frequency con-
troller during a load change event is studied. The system starts with 0:5þ j0:5 p:u:

Figure 6.
Primary frequency response to a dynamic load change.
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load and the load increases to 1þ j1 p:u: after 20 s. The secondary distributed
controller is reactivated by tuning Cω

0 and CV
0 to 1, as illustrated in Figure 7. It is

observed that the load sharing is successfully achieved among the storage units. In
addition, the voltage and frequency are regulated to 1 p.u. in less than 3 s after the
load change.

4.4 Severe load change

In the last case, the performance of the proposed power sharing and voltage/
frequency restoration algorithms in handling a severe load change is examined. The
system initiates with 0:5þ j0:5 p:u: load and a load change of 1 p.u. is applied after
20 s. This means the total load increases to 1:5þ j1:5 p:u: after 20 s. As it can be
observed in Figure 8, the proposed distributed controller can equally share the
active and reactive load change while regulating the voltage and frequency. It
should be noted that the frequency drops to 0.75 p.u. after the load change, but it is
quickly recovered within a few seconds. Similarly, the voltage drops to 0.6 p.u. after
the load change, but it is recovered within 2 s. This case study showed that the
proposed controller can successfully operate under severe load changes.

5. Conclusion

This chapter proposed a novel distributed controller that can synchronize the
operation of distributed energy storage units in smart grids. By minimizing the
communication links between the neighboring storage units, the storage units share
information (voltage/current readings) with their neighbors to share the active/
reactive demand based on their capacities. Furthermore, a virtual leader is designed
and supplemented to one storage unit to regulate the voltage and frequency and to
provide secondary frequency response to the system. Results showed the effective-
ness of the proposed algorithms in equally sharing the active power and reactive
power of load during constant power load, and load change events. Furthermore,
the secondary controller could successfully regulate the voltage and frequency of
the system during constant load, load change, and severe load change events.

6. Future work

Future studies will focus on: (1) hardware validation of proposed approaches
and (2) expansion of the developed controllers to solar and wind energy
applications.

Conflict of interest

The authors declare no conflict of interest.

Appendices

Parameters of the system are shown in Table 1.

171

Consensus Control of Distributed Battery Energy Storage Devices in Smart Grids
DOI: http://dx.doi.org/10.5772/intechopen.93409



Figure 7.
Secondary frequency controller response to a dynamic load change.

Figure 8.
Response of the system under severe dynamic load change.

170

AI and Learning Systems - Industrial Applications and Future Directions

load and the load increases to 1þ j1 p:u: after 20 s. The secondary distributed
controller is reactivated by tuning Cω

0 and CV
0 to 1, as illustrated in Figure 7. It is

observed that the load sharing is successfully achieved among the storage units. In
addition, the voltage and frequency are regulated to 1 p.u. in less than 3 s after the
load change.

4.4 Severe load change

In the last case, the performance of the proposed power sharing and voltage/
frequency restoration algorithms in handling a severe load change is examined. The
system initiates with 0:5þ j0:5 p:u: load and a load change of 1 p.u. is applied after
20 s. This means the total load increases to 1:5þ j1:5 p:u: after 20 s. As it can be
observed in Figure 8, the proposed distributed controller can equally share the
active and reactive load change while regulating the voltage and frequency. It
should be noted that the frequency drops to 0.75 p.u. after the load change, but it is
quickly recovered within a few seconds. Similarly, the voltage drops to 0.6 p.u. after
the load change, but it is recovered within 2 s. This case study showed that the
proposed controller can successfully operate under severe load changes.

5. Conclusion

This chapter proposed a novel distributed controller that can synchronize the
operation of distributed energy storage units in smart grids. By minimizing the
communication links between the neighboring storage units, the storage units share
information (voltage/current readings) with their neighbors to share the active/
reactive demand based on their capacities. Furthermore, a virtual leader is designed
and supplemented to one storage unit to regulate the voltage and frequency and to
provide secondary frequency response to the system. Results showed the effective-
ness of the proposed algorithms in equally sharing the active power and reactive
power of load during constant power load, and load change events. Furthermore,
the secondary controller could successfully regulate the voltage and frequency of
the system during constant load, load change, and severe load change events.

6. Future work

Future studies will focus on: (1) hardware validation of proposed approaches
and (2) expansion of the developed controllers to solar and wind energy
applications.

Conflict of interest

The authors declare no conflict of interest.

Appendices

Parameters of the system are shown in Table 1.

171

Consensus Control of Distributed Battery Energy Storage Devices in Smart Grids
DOI: http://dx.doi.org/10.5772/intechopen.93409



Author details

Javad Khazaei1*† and Dinh Hoa Nguyen2†

1 Architectural Engineering, School of Science, Engineering, and Technology,
College of Engineering, State College, Penn State Harrisburg, Pennsylvania State
University, Middletown, USA

2 International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and
Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan

*Address all correspondence to: jxk792@psu.edu

†These authors contributed equally.

© 2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

Parameter BESSi, i ¼ 1, 2, … , 5

Nominal power 100 MW

Nominal voltage 132 kV

DP
i [p.u.] [1 1.2 1.5 2 1.6]

DQ
i [p.u.] [1 1.1 1.25 1.45 1.5]

C0 0.5 p.u.

n 5

C1, C2, C3 0.1, 0.4, 0.2 p.u.

Table 1.
Parameters of the system.
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Chapter 9

Power Flow Management
Algorithm for a Remote Microgrid
Based on Artificial Intelligence
Techniques
Karim Belmokhtar and Mauricio Higuita Cano

Abstract

This paper presents a novel power flow management algorithm for remote
microgrids based on artificial intelligence (AI) algorithms. The objectives of this
power management system are enhancing microgrid reliability, improving renew-
able energy source (RES) integration, and performing active/reactive power control
for remote microgrids using the fuzzy logic. This paper evaluates the performance
of the proposed algorithm, which consists of both sharing diesel genset active power
and regulating reactive power by using stepped and variable profiles of the load,
wind speed and solar irradiation. According to the simulation results, better perfor-
mance is achieved regardless of the rapid variation of different profiles. Thus, both
stability and reliability of remote microgrids are demonstrated with the proposed
algorithm. Indeed, the active/reactive power control algorithm responds quickly to
different events on the remote microgrid, especially to rapid voltage/frequency
variations on the AC-link system.

Keywords: power management system, artificial intelligence (AI),
renewable energy sources (RES), remote microgrid, fuzzy logic (FL)

1. Introduction

Renewable energy sources (RES) have been positioned as an attractive solution
to reduce dependence on fossil fuels while minimizing greenhouse gas emissions
(GHG) [1]. RES such as wind energy and solar (PV) energy have been extensively
researched in the literature [2–5]. One of the main issues with RES is that their
natural intermittency can affect the stability of the microgrid. On the other hand,
technical issues associated with high penetration rates of RES related to their inter-
mittency, different dynamics and response times can be addressed by using energy
storage systems (ESS) and advanced power management systems (PMS) [3].

ESS has been identified as a solution to increase energy reliability, improve the
balance in energy production, and better manage load demand on the microgrid.
The main purpose of ESS in the microgrid is to store excess power from an inter-
mittent RES and return the stored energy to meet load consumption as a function of
supply and demand [6]. In addition, ESS can be used in several applications in order
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1. Introduction
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ESS has been identified as a solution to increase energy reliability, improve the
balance in energy production, and better manage load demand on the microgrid.
The main purpose of ESS in the microgrid is to store excess power from an inter-
mittent RES and return the stored energy to meet load consumption as a function of
supply and demand [6]. In addition, ESS can be used in several applications in order
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to improve both microgrid stability and power quality. According to the
literature, ESS applications include load smoothing/peak shaving, power quality
improvement, increased renewable energy penetration and emergency storage
systems [7–9].

Power management systems (PMS) can be divided into two categories: (i) PMS
based on optimization methods and (ii) PMS based on artificial intelligence tech-
niques [10]. Mostly, the PMS based on optimization methods involve a multi-
objective function, which maximizes microgrid effectiveness, minimizes fossil fuel
consumption and meets operation conditions requirements. A PMS based on opti-
mization has recently been presented by Gao et al. [11]. In this study, optimal
control is proposed using a three-level control architecture. In the third control
level, a multi-objective is responsible for minimizing fuel consumption and GHGs
as well as scheduling operational maintenance. The second control level is based on
the discrete algorithms that regulate the frequency/voltage from active/reactive
power according to the load demand. Lastly, in this study, the first control level is
responsible for following the reference control between the components of the
system. A multi-objective optimization in cloud platform is presented by Li et al.
[12]. The optimization function is based on the particle swarm optimization (PSO)
method. One of the objectives of this work is to use the cloud to perform the
algorithm calculation in real time. Otherwise, hybridization between AI techniques
and linear programming-based multi-objective optimization is presented in [13]. In
this study, simulation results proved the effectiveness of the proposed multi-
objective intelligent energy management using an FL-based expert system. A
review of the advanced microgrid supervisory controllers (MGSC) and energy
management systems (EMS) is presented by Meng et al. [14]. The hierarchical
control, definitions and issues are presented. The centralized MGSC/EMS is usually
more suitable for small-scale microgrid applications where centralized information
gathering and decision-making can be performed with low communication and
computing costs. Among the techniques or methods used on centralized control, a
review has been presented by the authors with regard to genetic algorithms, swarm
algorithms, linear and non-linear optimization, the rule-based system and machine
learning systems. On the other hand, the decentralized MGSC/EMS can be more
desirable when the microgrid is large or the generation, consumption and storage
are widely dispersed, which makes centralized data acquisition difficult or costly.
The multi-agent system (MAS) based on MGSC/EMS has become a prominent
research direction, as it provides the probability to actualize decentralized manage-
ment functions.

PMS based on artificial intelligence (AI) algorithms are easier to implement and
are more widely used for real-time microgrid control. Furthermore, it is not neces-
sary to know the exact mathematical model for each RES or energy storage device in
the microgrid. Zahraee et al. [15] presented the applications of AI techniques for
hybrid energy systems (HES). The authors present a summary of research
concerning the use of AI algorithms for designing, planning and controlling prob-
lems in the fields of HES. AI algorithms are mostly used because they require less
computational time, show better accuracy and better convergence in comparison to
traditional methods. The research focuses on hybridization between optimization
and AI techniques. These approaches have been proven to be faster, more accurate
and more powerful than classical methods. Similarly, Rajesh et al. [16] presented a
review of AC microgrid control. The islanded and grid-connected modes of
microgrid operation are presented. The control techniques and their different hier-
archy levels are identified and explained in detail. According to the review, for
primary control level, droop control is used for small and large microgrids as it
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provides a high degree of plug-and-play capability. Centralized or decentralized
control can be used on the second control level. Centralized control is more suitable
for small-scale microgrid applications and decentralized control is normally used for
large-scale multi-user microgrids. The tertiary control is applied when the
microgrid operates in grid-connected mode. Reactive power compensation tech-
niques for microgrids are evaluated by [17]. An overview of the challenges and
power quality issues faced by microgrids are identified. Likewise, the different
compensation methods, various control techniques, algorithms and devices are
investigated in this study. A multi-agent system (MAS) decentralized energy man-
agement in a microgrid is presented in [18]. The microgrid system is composed of a
battery/genset/FC/PV/hydro plant and variable electrical load. This study demon-
strates that hybrid MAS – fuzzy Q-Learning is appropriate to solve the complex
issues of energy management in a stand-alone microgrid by controlling the power
flow between RES and ESS. Likewise, a control strategy for a Flywheel Energy
Storage System (FESS) using the Artificial Neural Network (ANN) is presented by
Daoud et al. [19]. The FESS is connected to an electric network. The charge/dis-
charge from the electrical grid to FESS is used as grid frequency support/control,
power conditioning or uninterruptible power supply (UPS) applications. The sim-
ulation and experimental tests show good results of the ANN strategy compared
with classical power control strategies. In addition to its simplicity, the ANN strat-
egy exhibits fewer tuning problems and requires less controller effort. Mallesham
et al. [20] propose an automatic first-control level of microgrid using AI techniques.
The difficulty in tuning a large number of parameters in complex systems can be
achieved through AI techniques. This study compared various AI techniques with
traditional power control strategies. The simulation results show that optimal
tuning of multiple parameters in a non-linear microgrid using BFO techniques is
better than PSO, GA and classical methods.

In order to address the various disadvantages of the optimal energy management
systems proposed in the literature, we present in this work a novel solution of an
optimal control of both active and reactive power flow for isolated microgrids based
on fuzzy logic techniques. The performance of this solution that allows a better
sharing of the active and reactive power flow will be presented. The stability and
reliability of remote microgrids are demonstrated in this work. Active/reactive
power control responds quickly to voltage/frequency variations on the AC-link
system.

The rest of this paper is structured as follows: The dynamic microgrid model is
presented in Section 2. The power management system based on fuzzy logic is
presented in Section 3. The simulation results and discussion are presented in
Section 4. Lastly, Section 5 presents the conclusions.

2. Dynamic microgrid model

2.1 PV panel model

A photovoltaic cell is basically a semiconductor diode whose p–n junction is
exposed to light. Photovoltaic cells are made of several types of semiconductors
using different manufacturing processes. The monocrystalline and polycrystalline
silicon cells are only found at the commercial scale at the present time [21]. The
basic equation from the theoretical operation of semiconductors that mathemati-
cally describes the current-voltage (I-V) characteristic of the ideal photovoltaic cell
is as follows [22]:
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using different manufacturing processes. The monocrystalline and polycrystalline
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I ¼ Iph � I e
q VþIRSð Þ

AKT � 1
� �

� V þ IRS

RP
(1)

where Iph is the photo-generated current, I0 is the dark saturation current, IRp is
current flowing in the shunt resistance, Rp is the cell series resistance, A is the diode
quality factor, k is the Boltzmann constant at 1.38 10�23 J/K, and q is the electron of
a charge at 1.6 10�19 C.

The solar photovoltaic system used in this study consists of 90 CS5P-220 panels
connected in series and parallel with each other. The maximum power point track-
ing (MPPT) voltage and currents are 48.3 V and 4.54 A, respectively, and generate
an output power of 220 W. As the output voltage is relatively low, it is necessary to
increase the output voltage of the PV system to the desired value of 500 V by using
a boost converter. An MPPT algorithm is used to track the MPP to control the boost
converter with an appropriate duty cycle to achieve a desired continuous output
voltage. The Perturb & Observe (P&O) algorithm is used to determine the desired
duty cycle of the boost converter so that the MPPT is reached. The resulting power
of the modeled PV generator is 19.7 kW with 90 panels, each having a maximum
power of 220 W, as described in Table 1. Similarly, a 25 kW wind turbine was also
used in this study.

2.2 Wind turbine model

A wind turbine based on the use of a Permanent Magnet Synchronous Generator
(PMSG) is considered the second distributed energy resource (DER) in the
configuration of our microgrid. The output power of the wind turbine [10] is
given by the following relation [23]:

pmec ¼
1
2
ρπR2Cp λ, βð Þv3 (2)

where R is the radius of the wind turbine aerodynamic rotor in meters, Ω is the
rotational speed of the rotor in rad/s, and v is the wind linear velocity in m/s. ρ is the
air density at the turbine in kg/m3, Cp designates the fraction of power available in
the wind that is converted into mechanical power.

Cp has a theoretical maximum value of 0.593 (Betz’ limit), and basically
depends on the tip speed ratio λ, and the blade pitch angle, β can be expressed as
follows [23]:

Parameters Value

Maximum power (Pmax) 220 W

Voltage at Pmax (Vmp) 48.3 V

Current at Pmax (Imp) 4.54 A

Open-circuit voltage (Voc) 59.26 V

Short-circuit current (Isc) 5.09 A

Rs 0.243 Ω

Rp 235.76 Ω

Table 1.
Electrical characteristic data from NREL system advisor model taken at STC.
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Cp λ, βð Þ ¼ 0:5
116
λi

� 0:4β � 5
� �

e�
21
λi (3)

with

λi ¼ 1
λþ 0:08β

� 0:035
β3 þ 1

� ��1

(4)

Generally, wind turbines are characterized by two parameters: tip speed ratio (λ)
and power coefficient (Cp). The tip speed ratio is defined as:

λ ¼ RΩ
v

(5)

Figure 1 illustrates the characteristic curves of the power coefficient obtained
from (Eq. (4)). In order for the wind turbine to extract the maximum available
wind power at a given wind speed, the operating point of the turbine must be
kept in the λopt area. Consequently, a Maximum Power Point Tracking (MPPT)
algorithm, which is detailed below, is needed to control the rotational rotor velocity
of the turbine and maintain it at the maximum power.

In order to achieve the PMSG control system, its dynamic model is required. The
generator model is derived from the projection of its equations on a reference
coordinate system rotating synchronously with the magnet flux. In order to achieve
synchronization between the dq rotating reference frame and the abc three-phase
frame, a phase-locked loop (PLL) is used. Then, a dynamic model of the surface
mounted PMSG is expressed as:

vds ¼ Rs ids þ Ls
dids
dt

� ωψqs

vqs ¼ Rs iqs þ Ls
diqs
dt

þ ωψds

8>>><
>>>:

(6)

Figure 1.
Power coefficient curves versus tip speed ratio for different blade angles.
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where Ls and Rs are the generator inductance and resistance, respectively, ω is
the electrical generator speed, and Ψds and Ψqs are d-axis and q-axis magnet flux,
respectively, which are expressed as follows:

ψds ¼ Ls ids þ φ

ψqs ¼ Ls iqs

8<
: (7)

where Ф is the magnet flux. Then, the electrical model of PMSG in the
synchronous reference frame can be expressed as:

dids
dt

¼ 1
Ls

�Rs ids þ ωLs iqs þ vds
� �

diqs
dt

¼ 1
Ls

�Rs iqs � ωLs ids � ωφþ vqs
� �

8>>><
>>>:

(8)

The electromagnetic torque of the non-salient poles PMSG is written as:

Tem ¼ 3
2
p φ iqs (9)

where p is the number of pole pairs of the generator. Eq. (9) shows that the
generator torque can be controlled directly via the q-axis current of the stator.

The mechanical dynamics model of the considered wind turbine system can be
defined by the following expression:

JT
dωr

dt
þ f ωr ¼ TT � Tem (10)

where TT represents the mechanical torque, JT is the moment of inertia, F is the
coefficient of friction, and ωr is the mechanical speed, which is related to the
electrical rotation as follows:

ω ¼ pωr (11)

2.3 Diesel genset model

The diesel generator is composed of the internal combustion engine and Wound
Rotor Synchronous Generator (WRSG) [23].

2.3.1 Diesel motor model

The diesel engine model is shown in Figure 2 [24–26]. The dynamic of the
actuator is modeled by a first order model with time constant τ1 and gain K1 [24, 27].
The combustion block is represented with gain K2 and delay τ2 [26].

The actuator is modeled as follows [23]:

K1

1þ sτ1
(12)

The combustion block can be expressed as follows:
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K2 esτ2 (13)

As for the delay, it can be modeled as follows:

τ2 ¼ 60h
2Nnc

þ 60
4N

(14)

where h represents the number of strokes, nc is the number of cylinders, N is the
speed of the diesel generator (rpm), and Φ is the fuel consumption rate (kg/s) [28].
In order to maintain the grid frequency (AC-bus) constant, the speed of the diesel
engine must be kept constant when the load varies.

2.3.2 Synchronous generator model

The simplified model of the Wound Rotor Synchronous Generator (WRSG) can
be obtained in dq frame (conversion between abc and dq can be realized by means
of the Park Transform) [29].

The stator armature windings voltages are:

vd ¼ �Rs id þ dλd
dt

� ωλq

vq ¼ �Rs iq þ
dλq
dt

þ ωλd

8>><
>>:

(15)

where Rs is the stator winding resistance. The stator fluxes are described by the
following formula:

λd ¼ �Ld id þ Lmd i f þ iD
� �

λq ¼ �Ld iq þ Lmq iQ

(
(16)

The rotor armature winding voltage of a synchronous generator is described as:

v f ¼ �R f i f � Ld
did
dt

þ L f
di f
dt

þ Lmd
diD
dt

(17)

Damper windings are expressed by the following equation:

0 ¼ RDiD � Lmd
did
dt

þ Lmd
di f
dt

þ LD
diD
dt

0 ¼ RQiQ � Lmq
diq
dt

þ LQ
diQ
dt

8>><
>>:

(18)

The electromagnetic torque of the synchronous generator can be expressed as
follows:

Tem ¼ p Ld � Lq
� �

id iq þ Lmd i f iq þ Lmd iq iD � Lmq id iQ
� �

(19)

Figure 2.
Block diagram of a diesel generator model [23].
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Block diagram of a diesel generator model [23].
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2.4 Electrical load model

In this article, we use a configuration of a dynamic three-phase load as shown in
Figure 3, which allows us to impose any load profile. As illustrated in Figure 3, the
gain G is used to transform the active power profile to current ones. Therefore, the
three-phase active power can be expressed as follows:

Pload ¼
ffiffiffi
3

p
VL�LI cosϕ (20)

where VL-L is the line-line voltage of the microgrid. As we are using a
three-phase resistor load, relation (20) can be expressed as follows:

I ¼ Ploadffiffiffi
3

p
VL�L

(21)

where the gain G is calculated as follows:

G ¼
ffiffiffi
3

p
VL�L (22)

3. Methodology: power management system for remote microgrid based
on fuzzy logic

The power management system (PMS) for remote microgrids is presented in
this section. Two control levels have been used for the PMS. The second control
level is based on the fuzzy logic algorithms, which balance the active power
between two diesel generators (master and slave) and regulate the reactive power
according to the load demand. The first control level is responsible for following the
reference control between all components of the microgrid. The artificial intelli-
gence (AI) algorithm maintains the stability of the remote microgrid and the supply
of electricity to the load demand. The PMS based on fuzzy logic is normalized with
the aim of ensuring its adaptability to different microgrid sizes.

Figure 3.
Matlab block of dynamic three-phase load.
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Figure 4 presents the PMS for remote microgrids based on artificial intelligence
(AI) algorithms. The remote microgrid is composed of two diesel generators
(genset). The genset-1 (master) is responsible for controlling the frequency/voltage
of the microgrid and to maintain its reliability. The genset-2 (slave) is used in
operation when the load demand is higher than genset-1 rated power. The remote
microgrid is composed of (i) an active/reactive electric load, (ii) a load dump, (iii)
PV solar system and (iv) a wind turbine (WT). In this study, the energy storage
system (ESS) has not been taken into consideration.

3.1 Second control level

3.1.1 Fuzzy logic controller overview: sharing diesel genset active power

An overview of the architecture of the fuzzy logic controller is presented in
Figure 5. The fuzzy logic control system aims to balance active power between
demand and generation in the remote microgrid for maintaining system reliability.
Thus, the gensets (1 and 2) can run simultaneously; two outputs of fuzzy logic
controllers are necessary. Pg1* and Pg2* are therefore designed as the output
variables of the fuzzy logic system or set points. The centroid method is used for
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2.4 Electrical load model
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Pload ¼
ffiffiffi
3

p
VL�LI cosϕ (20)

where VL-L is the line-line voltage of the microgrid. As we are using a
three-phase resistor load, relation (20) can be expressed as follows:

I ¼ Ploadffiffiffi
3

p
VL�L

(21)

where the gain G is calculated as follows:

G ¼
ffiffiffi
3

p
VL�L (22)

3. Methodology: power management system for remote microgrid based
on fuzzy logic

The power management system (PMS) for remote microgrids is presented in
this section. Two control levels have been used for the PMS. The second control
level is based on the fuzzy logic algorithms, which balance the active power
between two diesel generators (master and slave) and regulate the reactive power
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reference control between all components of the microgrid. The artificial intelli-
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of electricity to the load demand. The PMS based on fuzzy logic is normalized with
the aim of ensuring its adaptability to different microgrid sizes.

Figure 3.
Matlab block of dynamic three-phase load.
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Figure 4 presents the PMS for remote microgrids based on artificial intelligence
(AI) algorithms. The remote microgrid is composed of two diesel generators
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PV solar system and (iv) a wind turbine (WT). In this study, the energy storage
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The trapezoidal and triangular membership functions are used for the linguistic
variables’ input/output of the fuzzy control system with the aim of simplifying
computer calculations on the remote microgrid control (see Figure 6).

3.1.2 Fuzzy logic controller overview: regulate reactive power

An overview of the architecture of the fuzzy logic controller is presented in
Figure 7. The fuzzy logic control system aims to regulate the reactive power in

Figure 5.
Fuzzy inference system – sharing diesel genset active power.

Figure 6.
FL-membership function balance active power: (a) balancing active power between demand and generation in
microgrid, (b) set point of genset 1 active power (Pg1*) and (c) set point of genset 2 active power Pg2*.

Figure 7.
Fuzzy inference system – regulate reactive power.
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remote microgrids in order to maintain their reliability. Thus, regulation of reactive
power across the remote microgrid can be performed simultaneously on the two-
genset system; two outputs of fuzzy logic controllers are necessary. Thus, Qg1* and
Qg2* are designed as the output variables of the fuzzy logic system or setpoints. The
centroid method is used for defuzzication.

In order to maintain the efficiency of the fuzzy control systems in terms of rules
and decisions, we consider different linguistic variables. Therefore, ΔQ used 16
linguistic variables as shown in Figure 8(a). The measurement of the active power
of Genset 2 used two linguistic variables each as represented in Figure 8(b). The set
points of Genset 1 and Genset 2 are depicted with six linguistic variables each, as
represented in Figure 8(c) and (d). Lastly, the FIS output surface of reactive power
of Genset 1 is presented in Figure 8(e).

The trapezoidal and triangular membership functions are used for the linguistic
variables’ input/output of the fuzzy control system with the aim of simplifying
computer calculations on the remote microgrid control (see Figure 8).

3.2 First control level

The first control level is responsible for following the reference control signal for
all distributed energy resources (DER). A proportional integral controller (PI) is
used for controlling both the frequency and voltage of the microgrid through the

Figure 8.
FL-membership functions regulate reactive power: (a) balancing reactive power between demand and
generation in microgrid, (b) measured active power of Genset 2, (c) setpoint of Genset 1 reactive power,
(d) setpoint of Genset 2 reactive power and (e) FIS output surface of reactive power of Genset 1.
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diesel generators. The diesel genset speed control (frequency) and the AVR control
diesel genset control (voltage) are presented in this section.

Likewise, a PV solar system control using the MPPT algorithm based on the
fuzzy logic technique and the PV inverter control is depicted in this section. Addi-
tionally, the wind turbine system control based on the MPPT algorithm and the grid
side converter (GSC) control is presented in this section. Both MPPT algorithms are
based on the perturbation and observation (P&O) technique.

3.2.1 Fuzzy logic controller overview: regulate reactive power

Figure 9 represents the speed control used for the diesel generator. The model-
ing of the diesel generator governor is presented by Eqs. (12)–(14). Eqs. (15)–(18)
present the modeling of the synchronous generator.

Table 2 presents the PI controller parameters and the governor dynamic
coefficients.

3.2.2 AVR control diesel genset

Figure 10 represents the Automatic Voltage Regulator (AVR) control diesel
genset used for the diesel generator. The modeling of the synchronous generator is
presented by Eqs. (15)–(18).

Table 3 presents the PI controller parameters.

3.2.3 PV solar system control

A new control algorithm for the PV system based on fuzzy logic is presented in
this section. The P&O technique is used and implemented with the MPPT method-
ology. The power electronics converter control of the PV system is also presented in
this section.

Figure 9.
Diesel genset speed control model.

PI parameters Governor dynamic coefficients

Kp = 520 0.852

Ki = 240 2–0.15

Table 2.
PI controller parameters and governor dynamic coefficients.
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3.2.3.1 MPPT algorithm based on fuzzy logic techniques

An overview of the architecture of MPPT algorithms based on fuzzy logic used
in PV solar system control is presented in Figure 11. The fuzzy logic control system
aims to control the PV converter system. The MPPT method is based on the per-
turbation & observation (P&O) technique. The maximum PV active power is
extracted to every moment with the P&O technique. The variation of active power
(Δp) and the variation of DC voltage (Δv) of PV systems are the inputs to the
MPPT system. The duty cycle to control the dc-dc boost converter corresponds to
the output of the MPPT system. The fuzzy logic used the centroid method for
defuzzication.

In order to maintain the efficiency of the fuzzy control systems in terms of rules
and decisions, we consider different linguistic variables. Therefore, Δp and Δv used
five linguistic variables as shown in Figure 12(a) and (b). The duty cycle used five
linguistic variables each, as represented in Figure 12(c). Table 4 presents the
names of the linguistic variables.

The trapezoidal and triangular membership functions are used for the linguistic
variables’ input/output of the fuzzy control system with the aim of simplifying
computer calculations (see Figure 12).

Figure 10.
Diesel genset AVR control model.

PI parameters

Kp 12

Ki 5

Table 3.
AVR PI controller parameters.

Figure 11.
Fuzzy inference system – MPPT algorithm for PV control.
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3.2.3.2 PV solar inverter control

The three-phase two-sage photovoltaic grid-connected system used with its
overall control is illustrated in Figure 13. The system contains three controllers.
A two-loop controller controls the three-phase PV inverter. The outer loop controls
both the dc-link voltage to follow the reference value (Vdcref) and reactive power
and to provide the values (Idqref) of the reference current (iref) for the inner loop.
A phase-locked loop (PLL) algorithm is used to obtain this signal. The current
control loop controls the inverter current (id and iq) according to the reference
current (iref). An MPPT algorithm is used to track the maximum power from the PV
array regardless of the variation of both solar irradiance and temperature.

3.2.4 Wind turbine system control

3.2.4.1 MPPT algorithm

An overview of the architecture of MPPT algorithms for the WT system based
on fuzzy logic is presented in Figure 14. The objective of the fuzzy logic control

Figure 12.
FL-membership function MPPT algorithm for PV system: (a) variation of active power, (b) variation of DC
voltage, (c) boost converter duty cycle and (d) FIS output surface of MPPT algorithms.

Linguistic variable Description

NB Negative big

N Negative

Z Zero

P Positive

PB Positive, big

Table 4.
Linguistic variables.
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system is the calculation of the set point of the generator to track the maximum
power point regarding the wind speed variation. The instantaneous generated wind
power and its variation represent the respective inputs of the MPPT system. The
setpoint of the generator is the output of the used FL MPPT algorithm.

In order to extract the maximum wind power, we have applied in this article the
fuzzy logic. Thus, the set point of the speed of the generator is constantly calculated
in order to follow the maximum power as a function of the variation of the wind
speed. In order to avoid disturbances, the variation step of the generator speed
setpoint is proportional to the difference between the maximum power and the real
power. The name of the linguistic variables used is the same as represented in
Table 4.

The control strategy of the fuzzy logic is based on an expert human operator to
interpret a situation and initiate its appropriate command action [30]. Commonly, a
controller based on fuzzy logic has two inputs and provides a control action. For
FLC P&O, inputs are quantized into 5 levels represented by a set of linguistic vari-
ables: Negative Big (NB), Negative (N), Zero (Z), Positive (P), and Positive Big
(PB). The fuzzy rule base formulation of FLCP&O is shown in Table 5. These rules
are chosen to perform the optimization of wind generation capture as follows: (i)
when the input signals are far from the optimal point, the output of the FLCP&O
provides a big step size; (ii) when the inputs are close to the optimum point, the
output is set to a small step size value; (iii) once the inputs are close to the optimum
point, the step size is set to zero. In this article, we use the min and max operators as

Figure 13.
Proposed three-phase, two-stage grid-connected PV system.

Figure 14.
Proposed wind turbine MPPT algorithm.
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t-norm and t-conorm, respectively. Triangular membership functions are used,
principally due to their efficiency and high-performance computing. The
membership adopted for both input and output variables are illustrated in
Figure 15(a) and (b), respectively [31].

3.2.4.2 Rotor side converter (RSC) and grid side converter (GSC)

Figure 16 presents the control system of a wind turbine (WT) system that uses a
permanent magnet synchronous generator (PMSG). The MPPT method extracts the
maximum power from the WT using the P&O technique. The MPPT output signal
control or duty cycle is sent to the rotor side converter (RSC).

Figure 17 presents in detail the application of the MPPT algorithm for control-
ling the wind turbine. The WT rotation is measured (Ωmes) on the WT shaft. The
reference value of the WT shaft rotation (Ωref) is determined by MPPT fuzzy logic.

Step size ΔPower

NB N Z P PB

ΔSpeed NB NB N Z P PB

N NB N Z P PB

Z NB N Z P PB

P NB N Z P PB

PB NB N Z P PB

Table 5.
Membership functions of output variables [31].

Figure 15.
FL-membership function MPPT algorithms for WT control: (a) membership functions of inputs variables and
(b) membership functions of output variables.

Figure 16.
Block diagram of direct-drive wind turbine system.
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The objective of the grid-side converter is to keep the DC-link voltage fixed and
adjust the absorbed or provided reactive power according to grid code requirements.
As shown in Figure 18, the active and reactive power can simply be controlled by
d-axis and q-axis current using the grid voltage-oriented control. This control strategy
contains two nested loops. The inner loop controls the grid current while the outer
loop regulates the DC-link voltage and reactive power for the GSC. The DC-link
voltage is controlled by d-axis current since it depends on the active power. On the
other hand, the q-axis reference is set to zero when a unity power factor is required;
otherwise, it is adjusted as a function of the reactive power needed.

4. Simulation and analysis results

The simulation results are presented below. Three simulation scenarios are pro-
posed. The first scenario presents the results of the first control level and second
control level of a remote microgrid system with wind speed and solar irradiation
stepped profile. The second scenario presents the results of the remote microgrid
control using a wind speed and solar irradiation fluctuating profile. Lastly, the third
scenario presents the performance evaluation of MPPT-P&O based on fuzzy logic
techniques.

Figure 17.
MPPT control scheme for wind turbine system.

Figure 18.
GSC control scheme for wind turbine system.
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4.1 Scenario 1: wind and solar irradiation stepped profile

4.1.1 First control level of remote microgrid

Figure 19 presents the results concerning the first control level of remote
microgrids for both controllable and non-controllable energy sources such as diesel
generators and renewable energy sources (WT, PV). The solar irradiance and wind
speed profiles are presented in Figure 19(a) and (b), respectively. The PV system
power and the wind turbine active power are shown in Figure 19(c) and (d).
Figure 19(e) and (f) present the active power and reactive power load. Lastly, Genset 1

Figure 19.
First control level of remote microgrid results for wind speed and solar irradiation stepped profiles: (a) solar
irradiation profile, (b) wind speed profile, (c) PV system power, (d) wind turbine active power, (e) active
power, (f) reactive power load, (g) Genset 1 active power and (h) Genset 2 active power.
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active power and Genset 2 active power are presented in Figure 19(g) and (h),
respectively.

4.1.2 Second control level of remote microgrid

Figure 20 presents the results concerning the second level microgrid control for
both the controllable and non-controllable energy sources such as diesel generators and
renewable energy sources such as PV panels. The sharing of active/reactive power is
presented in Figure 20(a) and (b), respectively. Figure 20(c) presents the microgrid
frequency. Lastly, the DC-link voltage of the PV system is shown in Figure 20(d).

4.2 Scenario 2: wind and solar irradiation continuous profile

4.2.1 First control level of remote microgrid

Figure 21 presents the results concerning the first control level of remote
microgrids for both controllable and non-controllable energy sources such as diesel
generators and renewable energy sources (WT, PV). The solar irradiance and wind
speed profiles are presented in Figure 21(a) and (b), respectively. The PV system
power and the wind turbine active power are shown in Figure 21(c) and (d).
Figure 21(e) and (f) presents the active power with dump load and the reactive
power load. Lastly, Genset 1 active power and Genset 2 active power are presented
in Figure 21(g) and (h), respectively.

4.2.2 Second control level of remote microgrid

Figure 22 presents the results concerning the second control level of remote
microgrid for both controllable and non-controllable energy sources such as diesel
generators and renewable energy sources such as PV panels. The sharing of active/
reactive power is presented in Figure 22(a) and (b) respectively. Figure 22(c)

Figure 20.
Second control level remote microgrid results using fuzzy logic techniques: (a) active power sharing, (b) reactive
power sharing, (c) microgrid frequency and (d) DC-link voltage of PV system.
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irradiation profile, (b) wind speed profile, (c) PV system power, (d) wind turbine active power, (e) active
power, (f) reactive power load, (g) Genset 1 active power and (h) Genset 2 active power.
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active power and Genset 2 active power are presented in Figure 19(g) and (h),
respectively.

4.1.2 Second control level of remote microgrid

Figure 20 presents the results concerning the second level microgrid control for
both the controllable and non-controllable energy sources such as diesel generators and
renewable energy sources such as PV panels. The sharing of active/reactive power is
presented in Figure 20(a) and (b), respectively. Figure 20(c) presents the microgrid
frequency. Lastly, the DC-link voltage of the PV system is shown in Figure 20(d).

4.2 Scenario 2: wind and solar irradiation continuous profile

4.2.1 First control level of remote microgrid

Figure 21 presents the results concerning the first control level of remote
microgrids for both controllable and non-controllable energy sources such as diesel
generators and renewable energy sources (WT, PV). The solar irradiance and wind
speed profiles are presented in Figure 21(a) and (b), respectively. The PV system
power and the wind turbine active power are shown in Figure 21(c) and (d).
Figure 21(e) and (f) presents the active power with dump load and the reactive
power load. Lastly, Genset 1 active power and Genset 2 active power are presented
in Figure 21(g) and (h), respectively.

4.2.2 Second control level of remote microgrid

Figure 22 presents the results concerning the second control level of remote
microgrid for both controllable and non-controllable energy sources such as diesel
generators and renewable energy sources such as PV panels. The sharing of active/
reactive power is presented in Figure 22(a) and (b) respectively. Figure 22(c)

Figure 20.
Second control level remote microgrid results using fuzzy logic techniques: (a) active power sharing, (b) reactive
power sharing, (c) microgrid frequency and (d) DC-link voltage of PV system.
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presents the microgrid frequency. Lastly, the DC-link voltage of the PV system is
shown in Figure 22(d).

4.3 Scenario 3: performance evaluation of PV systems control: fixed-step P&O,
variable-step P&O (MPPT-FL) and inductance method

Several MPPT techniques have been proposed in the literature such as the
perturbation and observation (P&O) technique, incremental conductance tech-
nique, ripple correlation technique, short-circuit current technique, and open-
circuit voltage technique (OCV). These techniques vary in terms of complexity,
cost, speed of convergence, required sensors, hardware implementation and
efficiency [32–36].

Figure 21.
First control level remote microgrid results for wind speed and solar irradiation stepped profile: (a) solar
irradiation profile, (b) wind speed profile, (c) PV system power, (d) wind turbine active power, (e) active
power with dump load, (f) reactive power load, (g) Genset 1 active power and (h) Genset 2 active power.
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Due to the existence of numerous MPPT methods, various researches have
presented a comparative analysis of their performance. In fact, some articles pre-
sent a comparative study of just a fewmethods while others present a comparison of
multiple MPPT methods, based on simulations and from the standpoint of energy
production. The MPPT techniques are evaluated while taking into account both
solar irradiation and temperature variation and calculation of the total energy
provided by the PV solar system.

In this work, we will focus on the simulation of two MPPT techniques (pertur-
bation and observation, and incremental conductance) and compare their perfor-
mance regarding the proposed MPPT algorithm based on the fuzzy logic techniques
presented above. Both P&O and incremental conductance techniques used in this
paper are widely presented in the literature [36]. It should be noted that the most
significant feature among all MPPT techniques is convergence speed. Thus, any
improvement in convergence speed can increase the reliability and robustness of
the entire PV system. For this reason, we propose in this work to use a variable step
based on fuzzy logic techniques.

In order to achieve good characterization of the different MPPT techniques,
simulations were carried out using a Matlab/Simulink environment. The PV solar
system was simulated under different operating conditions, especially during
transient state caused by a wide variation of the solar radiation.

Table 6 illustrates both efficiency and Total Harmonic Distortion (THD) of
each MPPT technique. Note that efficiency was calculated by taking into
account the maximum theoretical power and the instantaneous provided power as
follows [36]:

η ¼ Pprovied

Pmax
(23)

As can be seen in Table 6, all tested MPPT techniques have an acceptable THD
(less than 5% regarding CEI 61727 standard) at 1000 and 800 W/m2. However,
when solar irradiation fluctuated between 600 and 400 W/m2 the FL-P&O
technique has a better THD than the other two MPPT techniques. For efficiency,

Figure 22.
Second control level remote microgrid results using fuzzy logic techniques: (a) active power sharing, (b) reactive
power sharing, (c) microgrid frequency and (d) DC-link voltage of PV system.
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presents the microgrid frequency. Lastly, the DC-link voltage of the PV system is
shown in Figure 22(d).

4.3 Scenario 3: performance evaluation of PV systems control: fixed-step P&O,
variable-step P&O (MPPT-FL) and inductance method

Several MPPT techniques have been proposed in the literature such as the
perturbation and observation (P&O) technique, incremental conductance tech-
nique, ripple correlation technique, short-circuit current technique, and open-
circuit voltage technique (OCV). These techniques vary in terms of complexity,
cost, speed of convergence, required sensors, hardware implementation and
efficiency [32–36].

Figure 21.
First control level remote microgrid results for wind speed and solar irradiation stepped profile: (a) solar
irradiation profile, (b) wind speed profile, (c) PV system power, (d) wind turbine active power, (e) active
power with dump load, (f) reactive power load, (g) Genset 1 active power and (h) Genset 2 active power.
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Due to the existence of numerous MPPT methods, various researches have
presented a comparative analysis of their performance. In fact, some articles pre-
sent a comparative study of just a fewmethods while others present a comparison of
multiple MPPT methods, based on simulations and from the standpoint of energy
production. The MPPT techniques are evaluated while taking into account both
solar irradiation and temperature variation and calculation of the total energy
provided by the PV solar system.

In this work, we will focus on the simulation of two MPPT techniques (pertur-
bation and observation, and incremental conductance) and compare their perfor-
mance regarding the proposed MPPT algorithm based on the fuzzy logic techniques
presented above. Both P&O and incremental conductance techniques used in this
paper are widely presented in the literature [36]. It should be noted that the most
significant feature among all MPPT techniques is convergence speed. Thus, any
improvement in convergence speed can increase the reliability and robustness of
the entire PV system. For this reason, we propose in this work to use a variable step
based on fuzzy logic techniques.

In order to achieve good characterization of the different MPPT techniques,
simulations were carried out using a Matlab/Simulink environment. The PV solar
system was simulated under different operating conditions, especially during
transient state caused by a wide variation of the solar radiation.

Table 6 illustrates both efficiency and Total Harmonic Distortion (THD) of
each MPPT technique. Note that efficiency was calculated by taking into
account the maximum theoretical power and the instantaneous provided power as
follows [36]:

η ¼ Pprovied

Pmax
(23)

As can be seen in Table 6, all tested MPPT techniques have an acceptable THD
(less than 5% regarding CEI 61727 standard) at 1000 and 800 W/m2. However,
when solar irradiation fluctuated between 600 and 400 W/m2 the FL-P&O
technique has a better THD than the other two MPPT techniques. For efficiency,

Figure 22.
Second control level remote microgrid results using fuzzy logic techniques: (a) active power sharing, (b) reactive
power sharing, (c) microgrid frequency and (d) DC-link voltage of PV system.
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notwithstanding the solar irradiance fluctuation, the FL P&O MPPT has better
performance compared to P&O and inductance conductance techniques.

As shown in Figure 23, FL-P&O technique has the highest rise time compared to
both P&O and incremental conductance techniques. In the steady state, the P&O
technique has the slowest convergence speed compared to the other two MPPT
techniques.

5. Conclusion

This article presented a novel power flow management algorithm for a remote
microgrid based on fuzzy logic. The objectives of this power management system
are improved microgrid reliability, improved renewable energy source (RES) inte-
gration and performance of active/reactive power control for remote microgrids
using artificial intelligence (AI) algorithms.

Sharing of the diesel genset’s active and reactive power has been based on AI
algorithms such as fuzzy logic. Two simulation scenarios are proposed. The first
scenario was used on a wind speed and solar irradiation stepped profile and the
second scenario was used on a wind speed and solar irradiation continuous profile.

Figure 23.
Performance comparison of three PV MPPT algorithms.

MPPT technique Efficiency [%] THD [%]

400
W/m2

600
W/m2

800
W/m2

1000
W/m2

400
W/m2

600
W/m2

800
W/m2

1000
W/m2

FL P&O 88.26 94.74 97.96 98.46 9.89 5.30 3.93 3.32

Conventional
P&O

87.29 94.08 97.61 98.21 12.28 5.80 4.08 3.40

Incremental
conductance

87.59 92.75 96.26 97.38 10.46 5.90 3.91 3.71

Table 6.
Performance of different MPPT techniques.
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The results of both scenarios are satisfactory. The stability and reliability of the
remote microgrid are demonstrated in the simulation. The active/reactive power
control algorithm responds quickly to different events on the remote microgrid,
especially to the voltage/frequency variations on the AC-link system. Lastly,
improvement to RES integration is demonstrated with the use of a new MPPT
algorithm for the PV control system. This MPPT algorithm is based on the P&O
method and used fuzzy logic techniques. The simulation results demonstrate the
easy adaptability, fast response and efficiency of PV control systems.
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At present, simple and classical tuned controllers are widely used in the power 
system load frequency control (LFC) application. Existing LFC system parameters 
are usually tuned based on experiences, classical methods, and trial and error 
approaches, and they are incapable of providing good dynamic performance over a 
wide range of operating conditions and various load scenarios. Therefore, the novel 
modeling and control approaches are strongly required, to obtain a new trade-off 
between efficiency and robustness. Thus, the proposed techniques in this chapter 
are referred to be an adaptive control technique based on new optimization meth-
ods such as Jaya, Practical Swarm Optimization Algorithm, etc., which are used to 
make an on-line tuning of the LFC parameters in order to face the previous chal-
lenges in LFC. The system under study is a small microgrid with a renewable energy 
source and variable demand load. Digital simulation results are discussed.

Keywords: load frequency control, power system, microgrid, adaptive control, 
optimization method

1. Introduction

A general power system is a complex electrical network that consists of genera-
tion networks, transmission networks, and distribution networks in addition to 
loads that are being distributed throughout the network over a large geographical 
area [1, 2]. In the power system, well-designed controllers are requested during the 
system variations to maintain the stability of the power system as well as guarantee 
its reliable operation.

The growth of the industries leads to increase the complexity of the power 
system. System frequency depends mainly on the active power, while system 
voltage depends on the reactive power. So, the control viewpoint of power systems 
can be classified into two independent issues. One is focusing on the control of 
the active power along with the frequency what is called load frequency control 
(LFC), while the other one is to deal with the reactive power along with the voltage 
regulation [3].

Load frequency control of an interconnected power system means the intercon-
nection of more than one control area through tie lines. Sudden load variation in 
any control area of an interconnected power system will lead to both frequency 
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change and tie line power deviation. Large frequency fluctuations may cause 
sometimes what is called system blackout [4].

The main objectives of load frequency control (LFC) are [5, 6] as follows: 
1—regulating frequency and tracking the load demands. 2—Ensuring zero 
steady-state error for frequency deviations. 3—Maintaining frequency and 
power interchanges with neighboring control areas at the specified values. 4—
Controlling the change in tie line power between control areas. 5—Maintaining 
acceptable overshoot and settling time on the frequency and tie line power 
deviations.

1.1 Reasons for limiting frequency deviations

Frequency deviations should be within restricted limits for some reasons [7]:

i. To keep the three phase AC machines, in which its running speed relates 
proportionally to the supply frequency.

ii. To keep the turbine’s blades that are designed to operate at a particular speed, 
but the change of supply frequency will cause variation in this speed. This 
speed change may cause damage of the turbine blades.

iii. When frequency goes below rated frequency at the case of constant system 
voltage, then the flux in the core increases, and then the transformer core 
goes into the saturation region.

iv. The frequency error may affect negatively on the digital storage and retrieval 
process.

1.2 Load frequency control (LFC) problems

If it’s not required to maintain the frequency constant, then the system fre-
quency and speed change with the characteristics of the governor as the load 
changes, and the operator is not required to change the setting of the generator. On 
the other hand, if constant frequency is required, the operator can adjust the veloc-
ity of the turbine by changing the characteristics of the governor.

Most published research in this field neglects uncertainties [8] and practical 
constraints [9] and furthermore, suggest complex control structures with impracti-
cal frameworks, which may have some difficulties when implementing in real-time 
applications [10].

As a result of considerable degree of interconnection, the presence of technical 
and economic constraints, and the traditional requirements of system reliability 
and security, operating the power system in the new environment will certainly be 
more complex than in the past. At present, simple and classical tuned controllers are 
widely used in the power system LFC task. Existing LFC system parameters are usu-
ally tuned based on experiences, classical methods, and trial and error approaches, 
and they are incapable of providing good dynamical performance over a wide range 
of operating conditions and various load scenarios. Therefore, the novel modeling 
and control approaches are strongly required, to obtain a new trade-off between 
efficiency and robustness.

Thus, this chapter presents an adaptive control technique that uses new 
optimization methods to make an on-line tuning of the LFC parameters to 
deal with both load demand changes and fluctuations resulted from renewable 
energy sources.
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2. System under study

Recently, remote off-grid MGs have been widely developed especially for rural 
and distant areas, in which providing electrical energy from the main utility grid is 
costly and has destructive environmental effects. There are many real MGs installed 
for providing the electrical energy for distant areas [11–14].

Low inertia and dynamic complexity are the most important challenges in the 
MGs. Therefore, if a mismatch between the load and power generation occurs, the 
MG frequency deviation is inevitable. Therefore, it seems that the robust control 
design strategies can be considered as powerful solutions to achieve robust perfor-
mance and stability [15–16]. Several optimization techniques have been proposed 
by researchers to tune the control parameters using simulation of the entire system 
and to damp the frequency fluctuation [17] such as optimization of controller 
parameters [18–19].

The system used in this chapter is a microgrid power system shown in Figure 1 
consisting of a 20 MW diesel generator and 17 MW load. The nominal parameters 
of the system are listed in Table 1. The simulation results have two scenarios.

The dynamic model of the proposed microgrid power system can be described 
in the following equations [5]:
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Figure 1. 
Block diagram of the system under study.

Ki D (pu/Hz) M (pu.sec) R (Hz/pu) ( )secgT ( )secdT

−0.3 0.015 0.08335 3 0.08 0.4

Table 1. 
Data of the microgrid power system [5].
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3. Optimization techniques

3.1 Particle swarm optimization (PSO)

PSO is one of the famous optimization techniques. It has been derived from the 
social-psychological theory. PSO has some features such as:

PSO is basically developed through simulation of the bird flocking in two-
dimensional space. The position of each particle is represented by XY axis position, 
and the velocity is represented by Vx and Vy. The position and velocity information 
will guide the modification of the particle position. Bird flocking optimizes a certain 
objective function. Each particle knows both of its XY position and its best value 
(Pbest). Each particle knows the best value so far in the group (gbest) among (Pbest).

This information is analogy of knowledge of how the other particles around 
them have performed. Namely, each particle tries to modify its position using the 
following information [20–22]:

• The distance between the current position and Pbest and the distance  
between the current position and gbest.

• The current positions (x, y) and the current velocities (Vx, Vy).

Velocity of each particle can be modified by the following equation:

 ( ) ( )+ = + ∗ − − ∗ −1
1 1 , 2 2 ,

k k k k k k
i i best i i best i iV wV c rand P s c rand g S   (4)

where

k
iS current position of particle i at iteration k
k

iV velocity of particle i at iteration k
,

k
best ip personal best of ith particle at iteration k

,
k
best ig global best of ith particle at iteration k.

c1, c2 social parameters
w the inertia weight used to accelerate the 

obtaining of the global best solution in the 
search space.

rand1, rand2 positive random numbers drawn form a 
uniform distribution between [0,1].

The inertia weighting function is utilized as follows:

 max min

max

w ww Iter
iter
−

= ×   (5)

where: 

maxw Initial velocity
minw Final velocity

maxiter Maximum iteration number
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Using Eq. (4) and Eq. (5), a certain velocity (which gradually gets close to (Pbest 
and gbest)) can be calculated, and the current position can be modified by the fol-
lowing equation:

 + += +1 1k k k
i i iS S V   (6)

Figure 2. 
PSO’s concept of searching point.

Figure 3. 
Flow chart of Jaya method [10].
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where
1k

iS + : modified position of particle i at iteration k.
1k

iV + : modified velocity of particle i at iteration k.
Figure 2 illustrates the modification concept of searching point by PSO.

3.2 Jaya optimization method

In2015, Venkata Rao has presented as a new optimization algorithm. One 
of the main advantages of Jaya is that there is no need to tune of its param-
eters. There are similarities between Jaya and the Teaching-Learning-Based 
Optimization (TLBO) [22].

The idea of Jaya is pushing the problem to move towards the best solution and 
avoid moving towards the worst solution. The flowchart illustrated in Figure 3 
shows the work procedures of the Jaya algorithm.

The advantages of Jaya algorithm can be concluded as follows [23, 24]:

1. It does not contain the problem of the selection of algorithm-specific control 
parameters.

2. It can solve unconstraint and constraint problems.

3. It is suitable for discrete optimization problems.

4. Ease of solving.

5. Jaya algorithm has a victorious nature, and this leads it to be more powerful.

4. Simplified microgrid model for optimization methods

It will be more effective to build the objective function of the optimization 
algorithm, if the total transfer function of the controlled system is in standard 
second order form, so it will be easy to use the standard parameters such as natural 
frequency, settling time, and rise time , ,n s rT and Tω .

A simplified microgrid model shown in Figure 4 is applied to drive the standard 
second order transfer function

 ( )
( ) ( )2

2

2 2 2 . 1

.
in n

i

n
kS R S MM R

k
M

T F
S

S
ηω ω

ω
 + + + + + 

= =  (7)

From this transfer function, the parameters ω , ,n s rT and T  can be calculated. 
These parameters can be applied in the objective function of the optimization 
methods.

 n s rJ T Tω= + +  (8)
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5. Adaptive load frequency controller-based optimization techniques

Figure 5 illustrates the block diagram of an adaptive load frequency controller of 
micro-grid power system. In this technique, optimization methods such as Jaya and 
PSO are used to make on-line tuning of the gain of the area controller.

6. Simulation results

6.1 Adaptive LFC-based PSO

Figure 6 shows the system response of the system with adaptive LFC controller-
based PSO in case of step load demand ( Ä 0.02LP pu= . At t = 3 s). Both frequency 
and diesel power are illustrated in the figure. It can be noted clearly that the adap-
tive controller could improve the system responses compared with fixed parameters 
controller. Figure 7 shows the output of PSO.

6.2 Adaptive LFC-based Jaya algorithm

Figure 8 illustrates the system response of the system with adaptive LFC controller-
based Jaya algorithm in case of the same step load demand. The figure supported that 
the system with the adaptive controller gives more robust performance compared with 
the system with fixed parameters controller. Also, Figure 9 shows the output of Jaya.

Figure 5. 
Block diagram of the adaptive LFC system.

Figure 4. 
Block diagram of simplified microgrid model.
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6.3 Comparing Jaya algorithm with PSO

Table 2 presents a comparative performance analysis of Jaya algorithm with 
PSO. Each test function used the same number of iterations and population. PSO 
parameters are stated in Table 3. Table 2 shows that the Jaya technique can give 
good speed convergence characteristics as compared to PSO.

Figure 7. 
Tuned controller gain using PSO.

Figure 6. 
System response using adaptive LFC-based PSO (…… fixed parameters controller ــــــــــ adaptive  
controller-based PSO).
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Figure 9. 
Tuned controller gain using Jaya.

Figure 8. 
System response using adaptive LFC-based PSO (…… fixed parameters controller ــــــــــ adaptive  
controller-based Jaya).

Functions aD Search space Statistical values PSO Jaya

Ackley 5 [−10,10] Best 3.85e−05 2.70e−16

Worst 3.88e−05 2.70e−16

Sphere 5 [−10,10] Best 1.79e−08 4.77e−14

Worst 1.82e−08 4.77e−14

Table 2. 
Comparative performance indexes of different test functions.
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Tuned controller gain using Jaya.

Figure 8. 
System response using adaptive LFC-based PSO (…… fixed parameters controller ــــــــــ adaptive  
controller-based Jaya).

Functions aD Search space Statistical values PSO Jaya

Ackley 5 [−10,10] Best 3.85e−05 2.70e−16

Worst 3.88e−05 2.70e−16

Sphere 5 [−10,10] Best 1.79e−08 4.77e−14

Worst 1.82e−08 4.77e−14

Table 2. 
Comparative performance indexes of different test functions.
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Figure 10 shows the value of the objective function (Jmin) with the number of 
J-evaluation in case of using Matyas function for 50 population size. It can be noted 
that the Jaya technique converges relatively faster than PSO.

Figure 10. 
Convergence characteristics for Matyas function.

Figure 11. 
System response using adaptive LFC-based PSO (…… adaptive controller-based PSO ــــــــــ adaptive  
controller-based Jaya).

Parameters Values

Swarm size 50

Inertia weight (w) 1

Inertia weight damping ratio (wdamp) 0.99

Personal learning coefficient (C1) 1.5

Global learning coefficient (C2) 2.0

Table 3. 
Algorithm-specific parameters values for PSO.
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Figure 11 illustrates a comparison between Jaya and PSO using the proposed 
objective function presented in Eq. (8). The figure indicates that system with 
adaptive controller tuned by the Jaya optimization method gives good response 
compared with the system with adaptive controller tuned by PSO. It could minimize 
the overshoot and the settling time.

6.4 Case of presence of renewable energy source

In this case of study, the system with proposed controller has been tested under 
fluctuation resulted from renewable power generation such as power generated 
from wind turbine as shown in Figure 12. The simplified dynamic model of the 
wind turbine is presented in the following transfer function:

 1
1WTG wind

WT

P P
T S

 
∆ = ∆ + 

 (9)

Figure 12. 
Block diagram of the adaptive LFC system in the presence of a wind energy source.

Figure 13. 
Output power of the wind turbine.
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Figure 13 illustrates the power of the wind turbine.
The system with proposed controller tuned by Jaya algorithm has been com-

pared with the system with conventional fixed parameter controller, and the result 
is shown in Figure 14. this result supports the efficiency of the controller with 
Jaya optimization in dealing with frequency variation that resulted from the wind 
energy source.

7. Conclusions

This chapter presents an adaptive load frequency controller in a microgrid 
power system. The gain of the proposed controller is tuned by optimization 
techniques. The system under study consists of a microgrid with a 20 MW diesel 
generator and 17 MW demand load. PSO and Jaya optimization algorithms have 
been used to tune the gain of the system controller. The system with Jaya has been 
compared to the system with PSO and the system with fixed controller param-
eters in the case of step load change. Simulation results indicated that the system 
with Jaya optimization can give the best performance at the moment of step load 
demand. In addition, the system with Jaya algorithm has been compared to the 
system with a conventional controller in case of frequency fluctuations resulting 
from a wind energy source. Digital simulations supported the superiority of the 
Jaya optimization method.
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Figure 14. 
Frequency response in case of presence of the wind energy source (…… fixed parameters controller ــــــــــ adaptive 
controller-based Jaya).
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Chapter 11

Modeling the Hidden Risk of
Polyethylene Contaminants within
the Supply Chain
Gladys Bonilla-Enríquez, Patricia Cano-Olivos,
José-Luis Martínez-Flores, Diana Sánchez-Partida
and Santiago-Omar Caballero-Morales

Abstract

Inventory management is very important to support the supply chain of the
manufacturing and service industries. All inventories involve warehousing; how-
ever, most of the products and packages are associated to plastic which is the main
generator of polyethylene (phthalate) pollution in the air and water resources. In
fact, phthalate has been identified as the cause of serious health conditions and its
impact within the operation of logistic processes has not been studied. In this work,
we perform research on the generation of phthalate as the control on these emis-
sions is important to adjust the supply strategy to reduce the human risk exposure
and contamination of the environment. For this purpose, generation of phthalate is
modeled through the use of artificial neural networks (ANNs) and its impact on the
supply strategy is assessed through its integration within a stochastic inventory
control model. As presented, it is possible to adjust the supply strategy to reduce the
cumulative generation of phthalate within the warehouse and thus reduce its impact
on human health and environment sustainability.

Keywords: sustainability, phthalate contamination, inventory control,
supply strategy, artificial neural networks

1. Introduction

An important aspect to consider for sustainable proposals is the growth of the
world population, which is projected to increase from 7 to 9 billion people by the
year 2050 [1, 2]. This is a challenge for companies to comply with economic,
environmental, and social needs.

As presented in Figure 1, to address economic, environmental, and social issues,
companies must address multidisciplinary issues such as follows:

• sustainable development (SD) which emphasizes the balance between
economic well-being, natural resources, and society without compromising the
quality of life of the human population [3];

• supply chain (SC) management, which is focused on optimizing the flow of
goods and services through the supply chain, considering the procurement of
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raw materials, the distribution from suppliers to manufacturers, the
transformation into final products and warehousing operations, and the
distribution of final products from manufacturers to retailers. This to actively
streamline the company’s supply-side activities to maximize customer value
and gain a competitive advantage in the marketplace.

• inventory control and management, which is focused on determining the
appropriate inventory replenishment strategies to ensure efficient supply and
distribution of products when needed at the minimum cost.

Here, it is important to observe that different storage/warehousing is performed
through all the SC. Just in the last decade, health risk was identified for people who
work at storage facilities due to the presence of semi-volatile organic compound
pollutants (SVOC) and plastic contaminants which are generated by the stored
inventory [5–7]. In this regard, the most abundant SVOCs found among the 58
classified SVOCs are phthalates.

In general, there are six types of phthalate that have been found in outdoor and
indoor air and surfaces [6, 8]. Phthalates are distributed worldwide, having a global
presence ranging from the most remote regions in the Arctic to isolated rainforests
of the Amazon [8, 9]. On March 2019, the United States Environmental Protection
Agency (EPA) issued a priority list of 40 chemicals to determine if they are of high
or low risk for human health. Phthalates were considered within the “high priority”
list [6].

There are studies that have concluded that the pollution of phthalate in the air is
harmful to human health [8–12]. Also, it has been determined that humans are
exposed through ingestion, inhalation, and dermal exposure, even since intrauter-
ine development [13, 14].

Because phthalates, which are organic lipophilic compounds, are mainly used to
increase the flexibility of plastic polymers, they are frequently used in printing inks

Figure 1.
Interdisciplinary studies in sustainability (adapted and edited from Ref. [4]).
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and food packages [14, 15]. Thus, exposure to phthalates mainly occurs via food
ingestion [10, 14, 16–18].

Inhalation is the second route of exposure as phthalates degrade into particles
that diffuse through the air [10]. This can be the main route of exposure for
individuals who work in plasticizing processes [10] or in closed places where
products with phthalate are stored for long periods of time such as in warehouses.
Because phthalates are used as plasticizers in numerous consumer products,
commodities, and building materials, this compound has been found in offices,
work places, homes, bathrooms, gardens, and food containers. Table 1 presents an
overview of the places where people are more exposed to indoor phthalates.

As presented in Table 1, phthalates are found in human residential and
occupational environment in high concentrations, both in air and in dust [24].
Thus, we can consider the facilities of industries such as warehouses, productions
areas, and scrap areas, to be frequently contaminated with this compound.

In the case of products which are stored during long periods of time, there are
economic, environmental, and health implications on SD. If the product is not used
or moved (e.g., low inventory rotation), it may deteriorate and/or become obsolete,
leading to economic losses. Also, a deteriorating product may release other harmful
chemicals. Finally, in the social aspect, there is the health risk for employees who
are exposed to harmful chemicals generated by the stored products. If the manage-
ment fails to determine the optimal inventory levels and lots, the environmental,
social, and economic risks can affect all entities through the SC.

To extend on these findings, we perform an updated review of the presence of
phthalates and their effect on human health. Also, we extend on the adaptation of
supply strategies to reduce these effects through the SC and on the environment.
This is performed through the modeling of phthalate generation and integration
within a stochastic inventory control strategy.

2. Pollution related to phthalates

Phthalates are chemicals which are produced in high volumes, accounting for
70% of the world consumption of plasticizers in 2014. In this context, Asia, Western
Europe, and the USA accounted for 59, 14, and 16%, respectively, of the world
plasticizer consumption in 2014 [25].

More recently, phthalates accounted for 65% of the world consumption of
plasticizers in 2017. Figure 2 presents the main consumers of plasticizers in
2017. However, in 2005, this amount was higher (approximately 88%), and it
was forecasted to decrease to 60% by 2022. This decrease was defined to be
caused by [25]:

Country Place Work

Japan Home [19]

China Home/office [20]

Sweden Pre-school [21]

Canada Home [22]

USA (California) Child care facility [23]

Table 1.
Research works performed on indoor phthalate (taken from Ref. [8]).

219

Modeling the Hidden Risk of Polyethylene Contaminants within the Supply Chain
DOI: http://dx.doi.org/10.5772/intechopen.93623



raw materials, the distribution from suppliers to manufacturers, the
transformation into final products and warehousing operations, and the
distribution of final products from manufacturers to retailers. This to actively
streamline the company’s supply-side activities to maximize customer value
and gain a competitive advantage in the marketplace.

• inventory control and management, which is focused on determining the
appropriate inventory replenishment strategies to ensure efficient supply and
distribution of products when needed at the minimum cost.

Here, it is important to observe that different storage/warehousing is performed
through all the SC. Just in the last decade, health risk was identified for people who
work at storage facilities due to the presence of semi-volatile organic compound
pollutants (SVOC) and plastic contaminants which are generated by the stored
inventory [5–7]. In this regard, the most abundant SVOCs found among the 58
classified SVOCs are phthalates.

In general, there are six types of phthalate that have been found in outdoor and
indoor air and surfaces [6, 8]. Phthalates are distributed worldwide, having a global
presence ranging from the most remote regions in the Arctic to isolated rainforests
of the Amazon [8, 9]. On March 2019, the United States Environmental Protection
Agency (EPA) issued a priority list of 40 chemicals to determine if they are of high
or low risk for human health. Phthalates were considered within the “high priority”
list [6].

There are studies that have concluded that the pollution of phthalate in the air is
harmful to human health [8–12]. Also, it has been determined that humans are
exposed through ingestion, inhalation, and dermal exposure, even since intrauter-
ine development [13, 14].

Because phthalates, which are organic lipophilic compounds, are mainly used to
increase the flexibility of plastic polymers, they are frequently used in printing inks

Figure 1.
Interdisciplinary studies in sustainability (adapted and edited from Ref. [4]).

218

AI and Learning Systems - Industrial Applications and Future Directions

and food packages [14, 15]. Thus, exposure to phthalates mainly occurs via food
ingestion [10, 14, 16–18].

Inhalation is the second route of exposure as phthalates degrade into particles
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products with phthalate are stored for long periods of time such as in warehouses.
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work places, homes, bathrooms, gardens, and food containers. Table 1 presents an
overview of the places where people are more exposed to indoor phthalates.

As presented in Table 1, phthalates are found in human residential and
occupational environment in high concentrations, both in air and in dust [24].
Thus, we can consider the facilities of industries such as warehouses, productions
areas, and scrap areas, to be frequently contaminated with this compound.
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phthalates and their effect on human health. Also, we extend on the adaptation of
supply strategies to reduce these effects through the SC and on the environment.
This is performed through the modeling of phthalate generation and integration
within a stochastic inventory control strategy.

2. Pollution related to phthalates

Phthalates are chemicals which are produced in high volumes, accounting for
70% of the world consumption of plasticizers in 2014. In this context, Asia, Western
Europe, and the USA accounted for 59, 14, and 16%, respectively, of the world
plasticizer consumption in 2014 [25].

More recently, phthalates accounted for 65% of the world consumption of
plasticizers in 2017. Figure 2 presents the main consumers of plasticizers in
2017. However, in 2005, this amount was higher (approximately 88%), and it
was forecasted to decrease to 60% by 2022. This decrease was defined to be
caused by [25]:

Country Place Work

Japan Home [19]

China Home/office [20]

Sweden Pre-school [21]

Canada Home [22]

USA (California) Child care facility [23]

Table 1.
Research works performed on indoor phthalate (taken from Ref. [8]).
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• rapid consumption growth of non-phthalate plasticizers, mainly
terephthalates, epoxy, aliphatics, and benzoates, as replacements for DEHP
and other phthalates such as DINP and BBP;

• continued growth of non-phthalates in different applications and markets; and

• ongoing pressure from retailers and consumers to limit the use of phthalates,
especially in developed regions.

However, consumption of phthalate plasticizers has been also forecasted to grow
at an average annual rate of 1.3% during 2017–2022. Today, phthalates are known
pollutants, which can affect human health. Human bio-monitoring studies from
2000 to 2015 have determined that exposure to phthalates can cause adverse health
outcomes like fertility problems, respiratory diseases, childhood obesity, and neu-
ropsychological disorders [9, 12, 15, 26]. Other studies found that it may disrupt
fetal testicular testosterone production [27, 28].

Although many studies have researched on the impact of outdoor pollution on
human health, few studies have investigated the impact of indoor pollution on the
human health. Because people spend most of their time indoors, it is crucial to
understand how an indoor pollutant, including household dust, affects human
health [19, 29].

Indoor pollution is largely influenced by outdoor sources, but indoor activities
(e.g., cooking, cleaning, and the use of consumer products and building materials)
are also sources of indoor pollution [5, 11, 20, 23, 30, 31]. Phthalate levels build up
over time in indoor environments where their main sources like children’s toys,
cosmetics, flexible PVC flooring, and cable insulation among others are found
[8, 31].

Consequently, six phthalates, namely, dimethyl phthalate (DMP), diethyl
phthalate (DEP), di-n-butyl phthalate (DBP), butyl-benzyl phthalate (BBP), di(2-
ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP) have been identi-
fied as priority pollutants by the United States Environmental Protection Agency

Figure 2.
World consumption of plasticizers 2017 (adapted and edited from Ref. [25]).
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(US EPA) and the European Union (EU). Usage of DEHP, DBP, BBP and DnOP has
been limited to ≤0.1% in toys and childcare articles by EU (Directive 2005/84/EC),
US (CPSIA—Consumer Product Safety Improvement Act of 2008), China (China
National Standard GB 6675, 2014), India (BIS, 2011), and Japan (Japan Toy Safety
Standard ST-2002 Part 3, 2011). Recently in 2015, DEHP, DBP, and BBP were
classified as reproductive toxicant category 1B and completely banned from any
application without prior approval in the EU.

To compare two exposure scenarios, different dust particle fractions were ana-
lyzed: inhaled (<5 μm) and ingested (<75 μm) fraction sizes. Results showed that
the daily intake of dust-contaminated phthalate was 2 to 12 times (inhalation and
ingestion, respectively) higher for 2-year-old children than for adults [11].

However, phthalate exposure (phthalate metabolite levels in urine) among
countries indicates the highest exposure for people living in Europe (2.1 � 102 μg/l)
closely followed by USA (2.0 � 102 μg/l) and least in Asia (1.3 � 102 μg/l) [26]. In
this context, there are reported discrepancies between trends of industrial con-
sumption and human exposure [8, 14, 18].

The highest concentrations of phthalates in different items have been found in
the range of 300–461 g/kg for DEHP, 283–345 g/kg for DBP, 150 g/kg for DnOP,
and 20–33 g/kg for BBP in floorings, shower curtains, gloves, plastic sandals, plastic
balls, and soap packaging [8, 18].

Particularly in Latin America, a phthalate presence study was carried out on
beverages, where the results brought that the bottles contained average 2.62 g/kg of
diethylhexyl (FDEH) [10, 32].

Increased phthalate levels have been found in the presence of temperature
changes (i.e., bottled water exposed to higher than 35°C or sunlight) [31, 33–35].
Elevated temperatures considered in various studies do not represent ambient tem-
perature but become important in case of heating of for example food in products
containing phthalates. However, the influence of temperature on phthalate emis-
sions in dust requires further investigation.

Also, higher relative humidity has been reported to increase hydrolysis of
phthalates, which results in a gradual decrease in concentration of phthalates in the
source and a sink [8]. An increase in temperature increases the emission rates of
non-covalently bound phthalates from their polymer matrices resulting in a higher
concentration in warmer months [30]. In good agreement, studies have found
higher phthalate levels in summer in indoor as well as outdoor surfaces [8, 9].

These studies have been carried out in houses, kinder gardens, and offices in
places where cleaning is regular [8, 15]. Hence, in closed places where products with
this chemical are stored, the toxicity risk is even higher. Thus, there is a necessity to
reduce the effect of this chemical by storing just the optimal lots.

3. Where the phthalates are within logistic facilities and what can
we do?

Within all industries, management is focused on solving the essential decision-
making associated to product design/placement, organization, picking operations,
facility layout, and distribution. These operations take place within spaces or logis-
tic facilities such as offices, workshops, and warehouses, where workers spend
most of their time (40–60 hours per week). In these closed places, airflow
distributes many impurities, including phthalates which can be ingested or inhaled
[9, 14, 15, 32].

The importance of airflow has been studied when designing the warehouses
because phthalates are not chemically bound to the plastics and they can leach into
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the daily intake of dust-contaminated phthalate was 2 to 12 times (inhalation and
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the range of 300–461 g/kg for DEHP, 283–345 g/kg for DBP, 150 g/kg for DnOP,
and 20–33 g/kg for BBP in floorings, shower curtains, gloves, plastic sandals, plastic
balls, and soap packaging [8, 18].

Particularly in Latin America, a phthalate presence study was carried out on
beverages, where the results brought that the bottles contained average 2.62 g/kg of
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Increased phthalate levels have been found in the presence of temperature
changes (i.e., bottled water exposed to higher than 35°C or sunlight) [31, 33–35].
Elevated temperatures considered in various studies do not represent ambient tem-
perature but become important in case of heating of for example food in products
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sions in dust requires further investigation.

Also, higher relative humidity has been reported to increase hydrolysis of
phthalates, which results in a gradual decrease in concentration of phthalates in the
source and a sink [8]. An increase in temperature increases the emission rates of
non-covalently bound phthalates from their polymer matrices resulting in a higher
concentration in warmer months [30]. In good agreement, studies have found
higher phthalate levels in summer in indoor as well as outdoor surfaces [8, 9].

These studies have been carried out in houses, kinder gardens, and offices in
places where cleaning is regular [8, 15]. Hence, in closed places where products with
this chemical are stored, the toxicity risk is even higher. Thus, there is a necessity to
reduce the effect of this chemical by storing just the optimal lots.

3. Where the phthalates are within logistic facilities and what can
we do?

Within all industries, management is focused on solving the essential decision-
making associated to product design/placement, organization, picking operations,
facility layout, and distribution. These operations take place within spaces or logis-
tic facilities such as offices, workshops, and warehouses, where workers spend
most of their time (40–60 hours per week). In these closed places, airflow
distributes many impurities, including phthalates which can be ingested or inhaled
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because phthalates are not chemically bound to the plastics and they can leach into
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water, indoor dust, and air, resulting in cyclic exposure [14, 36]. In these closed
spaces, the stored products can spread out this pollutant which may be increased
based on temperature conditions. In this situation, co-workers inhale phthalates
during labor time [14, 15] and contamination by phthalates (more than 100 mg/l)
has been reported to be common in heavily industrialized areas.

Additional to airflow, inventory movement is another aspect to contribute to
phthalate accumulation. As inventory commonly stores packaged products (bottles,
bags, paper and board packaging, etc.) if it remains static, it can generate more dust
and particles [9–11, 32]. Based on this information, Figure 3 presents the theoretical
cycle of emission of phthalate within the facilities present in the SC.

From this cycle of emission, we can identify that inventory movement through
the facilities is dependent of the inventory turnover, which can be optimized through
the use of proper supply strategies. This task requires consideration of real market
conditions which are characterized by demand of products with large variability.

Thus, stochastic demand patterns are a main aspect to consider within the strate-
gies to reduce phthalate accumulation/emission and improve inventory turnover.

4. Modeling the phthalate emission within the supply strategy

Within logistic management of inventories, there are strategies to improve
inventory turnover and reduce static inventory and inventory levels. As an exam-
ple, consider the cost equation of the continuous review strategy to determine the
optimal lot size Q of inventory to reduce operational costs [37]:

E Cð Þ ¼ DCo

Q
þ ChQ

2
þ Ch R� μLT þ σLTL zð Þ½ � þ pAD

Q
, (1)

where Co is the order cost per lot, Ch is the holding cost per unit within Q , p is
the unit stock-out cost, D is the cumulative demand through a planning horizon,
μLT and σLT are the mean and standard deviation of the demand during the lead
time, L(z) is the standard loss function with z = Φ�1(1 � (QCh)/(pD)), and A is the
expected stock-out units per inventory cycle (=σLT L(z)).

As emission of phthalates is associated to the size of the warehoused lot (i.e., Q),
this aspect can be integrated into this strategy to determine a more appropriate lot
size. For this purpose, consider that f(t) is the general emission function of phthal-
ate through time t per stored unit and H is the maximum safety level of phthalate

Figure 3.
Theoretical exposure of phthalates through the air (own work).
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within a closed space. In this case, the cumulative generation of phthalate through
time associated to the average stored lot Q then can be estimated as follows:

Q
2

ðt
0
f tð Þ: (2)

To determine the optimal lot size considering the minimization of phthalate, the
following mathematical formulation can be defined:

Minimize E Cð Þ ¼ DCo

Q
þ ChQ

2
þ Ch R� μLT þ σLTL zð Þ½ � þ pAD

Q
(3)

Subject to:

Q
2

ðt
0
f tð Þ≤H, (4)

Q ∈ℜþ, (5)

where (3) is the objective function, (4) is the restriction to ensure that the lot
size does not lead to increase the cumulative phthalate over a permissible limit H,
and (5) is the restriction over Q to consist of real positive values.

Additionally, periodic surface cleaning and handwashing has been identified as
appropriate measures to reduce accumulation and exposure to phthalate [38].
Particularly for co-workers, the use of protective wear within warehouses is highly
recommended.

Research performed to model f(t) has led to different proposals and values.
This is understandable due to the different considered environments and
contexts (i.e., home, office, plants, etc.). As we are concerned regarding the
applicability of the model in the supply strategy, we propose a general emission
model that can be adapted to different contexts by the use of artificial neural
networks (ANNs).

The advantage of ANNs to model data when compared to standard regression
approaches is that regression only performs well if the regression equation fits very
closely the considered data. By contrast, the use of hidden neuron layers provides
ANNs with more flexibility to fit any data pattern.

As input data for modeling, we considered the estimations presented by Afshari
et al. and Liang et al. [39, 40] regarding phthalate concentrations (μg/m3) generated
by PVC and different materials in indoor spaces. Figure 4 presents a review of the
approximate concentration values reported in Refs. [39, 40].

As presented in Figure 4, significant differences are found depending on the
considered material and environment. For assessment purposes of the proposed
model, we consider an average concentration which is also presented in Figure 4.

For modeling through ANNs, it was important to match the concentration data
based on m3 to stored units in the warehouse. To accomplish this task, the following
variables are considered:

VQ = volume (m3) associated to each product unit and Et = cumulative emission
per m3 associated to a product unit at a time t.

Thus, (4) can be represented as:

Q
2

ðt
0
f tð Þ≤H ➔

Q
2
� VQ � Et ≤H, (6)

where Et is obtained through the regression achieved with ANNs.
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within a closed space. In this case, the cumulative generation of phthalate through
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where (3) is the objective function, (4) is the restriction to ensure that the lot
size does not lead to increase the cumulative phthalate over a permissible limit H,
and (5) is the restriction over Q to consist of real positive values.
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For this purpose, we considered the nonlinear autoregressive with external
(exogenous) input (NARX) [41] time series ANN. For time series modeling, the
NARX ANN can associate the current value of a time series to (a) past values of the
same series and (b) current and past values of an external series that influences the
series of interest [42]. Thus, it can predict a series y(t) given n past values of y(t)
and another series z(t). This is leads to more accurate modeling when compared to
nonlinear input-output ANNs.

In this case, z(t) is the time series (in days) and y(t) is the cumulative average
concentration (μg/m3). Implementation of the NARX ANN was performed with the
MATLAB R2016a software on a DELL laptop computer with Intel i7 CPU at
2.06 GHz and 8 MB RAM. Table 2 and Figure 5 present the details of the ANN and
the training algorithm.

Figure 6 presents the comparison of the performance of the ANN for
t = 0:360 days and the original average data with t = 0:150 (as presented in

Hidden layers 2

Neurons 10

Training method Levenberg-Marquardt

Table 2.
Training details of the NARX ANN.

Figure 5.
Structure details of the NARX ANN.

Figure 4.
Review of concentration patterns through time on different indoor spaces and materials (own work based on
data reported in Refs. [39, 40]).
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Figure 4). It can be observed that the prediction of the ANN closely resembles the
available data used for training within the period from t = 0:150 days.

With the estimated concentrations, we can proceed to assess the model
described by (3)–(6) with a supply example. This assessment considers two scenar-
ios: (a) scenario with no control on the phthalate concentrations and (b) scenario
with restriction H on the phthalate concentration per inventory cycle. These details
of this assessment are presented in the following section.

5. The economic and environmental impacts of phthalate emission
control within the supply strategy

In the previous section, we provided the means for phthalate concentration
modeling through ANNs and its integration within an inventory supply strategy. To
address the impact of this strategy, we proceed to quantitatively evaluate the eco-
nomic and environmental results on an inventory supply case.

Table 3 presents the numerical data of the considered supply case (this is, the set
of values for (3)–(6)). This case considers the supply strategy over a 5-year period
(1800 days with a cumulative demand of 60,000 units). Each unit of product is
assumed to have a standard size of 0.50 m � 0.50 m � 0.50 m = 0.125 m3. At
t = 250 days, the cumulative concentration is expected to be at 0.61 μg/m3 and an
estimate of H = 50.0 μg/m3 is considered as a safety limit.

Figure 6.
Performance of the NARX ANN for extended time periods.

Planning horizon = 1800 days D = 60,000 units

Co = 340 USD Daily demand = D/1800 = 60,000/1800 = 34 units

Ch = 12 USD Daily standard deviation = 8 units

Lead time = 180 days p = 45 USD

VQ = 0.125 m3 t = 250 days

H = 50.0 μg/m3 E250 = 0.61 μg/m3

Table 3.
Assessment data for the integrated model with phthalate emission.
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Figure 4). It can be observed that the prediction of the ANN closely resembles the
available data used for training within the period from t = 0:150 days.

With the estimated concentrations, we can proceed to assess the model
described by (3)–(6) with a supply example. This assessment considers two scenar-
ios: (a) scenario with no control on the phthalate concentrations and (b) scenario
with restriction H on the phthalate concentration per inventory cycle. These details
of this assessment are presented in the following section.

5. The economic and environmental impacts of phthalate emission
control within the supply strategy

In the previous section, we provided the means for phthalate concentration
modeling through ANNs and its integration within an inventory supply strategy. To
address the impact of this strategy, we proceed to quantitatively evaluate the eco-
nomic and environmental results on an inventory supply case.

Table 3 presents the numerical data of the considered supply case (this is, the set
of values for (3)–(6)). This case considers the supply strategy over a 5-year period
(1800 days with a cumulative demand of 60,000 units). Each unit of product is
assumed to have a standard size of 0.50 m � 0.50 m � 0.50 m = 0.125 m3. At
t = 250 days, the cumulative concentration is expected to be at 0.61 μg/m3 and an
estimate of H = 50.0 μg/m3 is considered as a safety limit.

Figure 6.
Performance of the NARX ANN for extended time periods.

Planning horizon = 1800 days D = 60,000 units

Co = 340 USD Daily demand = D/1800 = 60,000/1800 = 34 units

Ch = 12 USD Daily standard deviation = 8 units

Lead time = 180 days p = 45 USD

VQ = 0.125 m3 t = 250 days

H = 50.0 μg/m3 E250 = 0.61 μg/m3

Table 3.
Assessment data for the integrated model with phthalate emission.
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With these data, we proceed to evaluate two scenarios:

a. Scenario 1: determination of the supply lot size Q is performed based only on
the economic aspects of (3) without the phthalate emission factor.

b. Scenario 2: determination of the supply lot size Q is performed based on the
economic aspects of (3) and considering the phthalate emission factor defined
by (4) and (6).

Both scenarios were solved with the Solver Tool ® of MS Excel. The results
which were obtained are presented in Table 4.

If no restriction on the concentration of phthalate is considered, then large
lots can be ordered (Q = 1880 units). This minimizes the overall operating costs
(E(C) = 25,646). Also, these large lots can lead to cumulative phthalate concentra-
tion up to 71.66 μg/m3.

If the restriction on the cumulative phthalate is considered, a reduction of
30.22% can be obtained (50.00 μg/m3). However, as this is dependent of the lot
size, smaller lot sizes are required (Q = 1312 units). As consequence, this can lead to
an increase in operational costs up to 5.62% (E(C) = 27,088).

These findings are very important to establish strategies to balance economic
and environmental/health benefits. Particularly within the supply chain, suppliers,
manufacturers, and distributors are continuously exposed to phthalates and thus
represent health risks in the long term.

6. Conclusions

Minimizing the exposure to phthalate is an important task within all contexts in
our society. These chemicals are present in office buildings, schools, homes, vehi-
cles, food packaging, and warehouses, among others. The sources of phthalates
which are used in building materials are more permanent in nature and their
removal requires regulatory intervention, while other sources such as plastic mate-
rials and foam mattresses are easier to be replaced or removed [8].

In manufacturing, where inventories are the main resource for production,
supply, and distribution, phthalates are continuously present. However, determin-
ing the possible risk based on phthalate concentration through time in warehousing
facilities is not widely studied.

In this work, we explored on this aspect and proposed an integrated inventory
control model with phthalate emission factor. Also, we addressed phthalate

Scenario 1 2

Objective function Minimize E Cð Þ ¼ DCo
Q þ ChQ

2 þ Ch R� μLT þ σLTL zð Þ½ � þ pAD
Q

Restrictions Q > 0 Q > 0
Q
2 � VQ � Et ≤H

Q 1880 1312

R 6257 6271

E(C) 25,646 27,088

Q
2 � VQ � Et 71.66 μg/m3 50.00 μg/m3

Table 4.
Results of the integrated model with the assessment data.
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emission through the use of ANNs to estimate concentrations for different time
periods where are commonly considered during inventory control strategies.

As presented, if phthalate concentrations are not considered, these can be
increased in the presence of large lots, which frequently decrease operational costs
associated to inventory ordering/re-supply.

If considering the phthalate concentration restriction to a certain permissible
level, this can lead to reduce the ordering lots and, thus, to increase the operational
costs. Nevertheless, the cost increase may be minimal in comparison to the reduc-
tion in phthalate concentration.

Thus, the proposed model can be used to support measures to control the
presence of phthalate while keeping also under control the operational costs. Also,
the model can be used as a basis for extended or alternative models considering the
costs of cleaning tasks and the risk of specific health complications in certain
environments/contexts.
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economic aspects of (3) and considering the phthalate emission factor defined
by (4) and (6).
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an increase in operational costs up to 5.62% (E(C) = 27,088).

These findings are very important to establish strategies to balance economic
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cles, food packaging, and warehouses, among others. The sources of phthalates
which are used in building materials are more permanent in nature and their
removal requires regulatory intervention, while other sources such as plastic mate-
rials and foam mattresses are easier to be replaced or removed [8].

In manufacturing, where inventories are the main resource for production,
supply, and distribution, phthalates are continuously present. However, determin-
ing the possible risk based on phthalate concentration through time in warehousing
facilities is not widely studied.

In this work, we explored on this aspect and proposed an integrated inventory
control model with phthalate emission factor. Also, we addressed phthalate
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emission through the use of ANNs to estimate concentrations for different time
periods where are commonly considered during inventory control strategies.

As presented, if phthalate concentrations are not considered, these can be
increased in the presence of large lots, which frequently decrease operational costs
associated to inventory ordering/re-supply.

If considering the phthalate concentration restriction to a certain permissible
level, this can lead to reduce the ordering lots and, thus, to increase the operational
costs. Nevertheless, the cost increase may be minimal in comparison to the reduc-
tion in phthalate concentration.

Thus, the proposed model can be used to support measures to control the
presence of phthalate while keeping also under control the operational costs. Also,
the model can be used as a basis for extended or alternative models considering the
costs of cleaning tasks and the risk of specific health complications in certain
environments/contexts.
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Abstract

Institutional buildings need smart techniques to predict the energy consumption 
in a smart grids’ framework. Here, the importance of dynamic load forecasting as 
a tool to support the decision in smart grids is addressed. In addition, it is reviewed 
the energy consumption patterns of institutional buildings and the state-of-the-art 
of load forecast modeling using artificial neural networks. The discussion is sup-
ported by historical data from energy consumption in a university building. These 
data are used to develop a reliable model for the prediction of the electric load in a 
campus. A neural network model was developed, which can forecast the load with 
an average error of 6.5%, and this model can also be used as a decision tool to assess 
the convenience of supplying this load with a set of renewable energy sources. 
Statistical data that measure the availability of the local renewable sources can be 
compared with a load model in order to assess how well these energy sources match 
the energy needs of buildings. This novel application of load models was applied 
to the campus where a good correlation (Pearson coefficient of 0.803) was found 
between energy demand and the availability of the solar resource in the campus.
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1. Introduction

Institutional buildings present similar patterns in their occupancy level and 
therefore in their energy consumption. Examples of this type of buildings are 
museums, hospitals, libraries, schools (secondary and University), non-profit 
foundations, governmental administrative offices, and prisons. Sometimes, as in 
the case of administrative and hospital complexes or University campuses, a set of 
buildings are grouped within a vast area reaching the energy consumption level of 
a small city. They all offer opportunities for energy improvement [1] which reflect 
in the saving of public money. Moreover, due to their similar characteristics, these 
buildings can share a similar energy-efficiency approach [2, 3].

There is a growing interest in technologies to perform effective management of 
these buildings, leading them to the transition into energy efficient smart buildings. 
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a tool to support the decision in smart grids is addressed. In addition, it is reviewed 
the energy consumption patterns of institutional buildings and the state-of-the-art 
of load forecast modeling using artificial neural networks. The discussion is sup-
ported by historical data from energy consumption in a university building. These 
data are used to develop a reliable model for the prediction of the electric load in a 
campus. A neural network model was developed, which can forecast the load with 
an average error of 6.5%, and this model can also be used as a decision tool to assess 
the convenience of supplying this load with a set of renewable energy sources. 
Statistical data that measure the availability of the local renewable sources can be 
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Institutional buildings present similar patterns in their occupancy level and 
therefore in their energy consumption. Examples of this type of buildings are 
museums, hospitals, libraries, schools (secondary and University), non-profit 
foundations, governmental administrative offices, and prisons. Sometimes, as in 
the case of administrative and hospital complexes or University campuses, a set of 
buildings are grouped within a vast area reaching the energy consumption level of 
a small city. They all offer opportunities for energy improvement [1] which reflect 
in the saving of public money. Moreover, due to their similar characteristics, these 
buildings can share a similar energy-efficiency approach [2, 3].

There is a growing interest in technologies to perform effective management of 
these buildings, leading them to the transition into energy efficient smart buildings. 
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Among the research trends, two are assessed in this paper. The first one refers to 
smart techniques to predict the energy consumption in a smart grids’ framework. 
In particular, it will be discussed the importance of dynamic load forecasting as a 
decision support system for a smart grid. The smart grid concept can be defined 
as an electrical grid that utilizes advanced control and telecommunication in order 
to optimize the energy generation, distribution, and consumption. This concept 
will be discussed and applied to the small electric network of a University Campus. 
After a review of load forecast models using artificial neural networks, a case-study 
using real data from a University building is presented. The main objectives of this 
work are:

• Offer an insight about the importance of load forecasting in smart grids;

• Apply the smart grid concept to a complex of institutional buildings;

• Review the state-of-the-art of load forecast modeling using artificial neural 
networks;

• To detail and develop an accurate model for the prediction of the load demand 
in a University campus.

In addition, a second research trend will be assessed in this paper. Future institu-
tional buildings and smart campuses will also have an increasing level of self-supply 
through renewable energy sources. Therefore, it is presented a new approach that, 
to our knowledge, has not been done previously: To use the load forecast model for 
studying the correlation between the energy demand and the availability of renew-
able energy sources in the campus (solar and wind power).

We hope readers will appreciate this novelty. Overall, this work aims to contrib-
ute to the interesting topic that is the development of smart grids in institutional 
buildings.

2. The smart grid concept and the importance of load forecasting

The graphical representation of the demand of energy in a power system is 
called a load curve or load profile. Therefore, a load curve is a graph that illustrates 
the variation in demand/electrical load over a specific time, typically cycles of 24 h 
(daily load curve), 7 days, and 12 months (yearly load curve).

Load curves are determined based on the historical records of energy consump-
tion of the system. Available data can be obtained from direct metering or other 
means: transformers’ readings, utility meter load profilers and smart-grid automatic 
meters, or even customer billing [4]. Other influential parameters can be added to 
these energy consumption data in order to develop an energy demand model capable 
of forecasting the variation of the electric load. These models consider the weight of 
each type of consumer (residential, commercial, and industrial) in the system, their 
behavior and variables such as temperature variation or seasonal holydays.

Reliable and dynamic energy demand models are crucial elements of any smart 
grid [5–7]. They allow a better management of an electric system, so power sup-
ply can match demand in a more efficient way. The energy demand of a region 
is constituted by the sum of the effect of residential, commercial, and industrial 
loads and can vary greatly within a short period of time (hours). Power generation 
must fit this demand in an effective way or otherwise imports/exports of energy 
should be needed, if available. Nuclear or coal thermal plants lack the flexibility of 
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varying their output and thus constitute the baseline of power generation. Based on 
load forecasts, the power output of the most flexible generation units (such as gas 
thermal plants) can be scheduled according to daily and seasonal cycles. Typically, 
gas power plants work at their maximum to supply daily peaks of load and have 
their output reduced during low demand hours. Hydroelectric power plants have 
also some capacity of power regulation and, in the case of pumped-storage hydro-
electricity, can absorb the excess of power generated during night time and return it 
during peak times. Renewable energy, in particular wind power, arises as a destabi-
lizing source of the system due to its intermittent and unpredictable characteristics. 
Its effective integration in the electric system is one of the main technical challenges 
for smart grids. Also, in demand-side management (demand response), daily load 
curves are used to set up electric tariffs in order to influence demand. Better prices 
of energy during low-demand hours encourage some consumers to move their 
activity to those hours and thus reduce the intensity of load peaks.

When talking about a much smaller system, such as a University campus or a 
small village, the situation is quite different, but knowing the local load profile can 
also lead to optimum operation as well as important energy savings.

In such a small system, the generation capacity would be represented by local 
distributed generation systems, such as roof-top solar systems or small wind 
turbines. Biomass boilers could also make use of neighboring agricultural residues, 
woods, or pruning waste. The latter resource should not be neglected as several 
institutional buildings such as University campuses, administrative and hospital 
complexes or prisons count with vast green areas in their surroundings. Diesel-
fueled generators are present in many on-grid electric systems. In the case of com-
mercial buildings, depending on the energy tariffs, it could be economic to switch 
off the building from the grid during peak hours and supply its own power demand 
burning diesel or other fuel. In the case of some institutional buildings such as hos-
pitals and prisons, or some administrative buildings with data-centers, emergency 
generators are generally mandatory. Besides the use of diesel generators to supply 
power during peak times, some big commercial buildings resort to co-generation. 
In those buildings where HVAC systems are responsible for most of the power 
demand, it may be profitable the use of gas engines for the combined generation of 
electric power and heat. The latter can be transformed into refrigeration through 
thermal-chemical or other absorption system.

In addition, diesel generators can be coupled with energy systems that make use 
of local renewable resources conforming hybrid systems (mixture of PV solar, wind 
turbines, and biomass). Hybrid systems are a convenient option to gain reliability 
and diminish the intermittency problem of renewable sources, especially when cou-
pled with batteries and are widely used in small isolated off-grid systems [8]. For 
small-scale systems, batteries are practically the only available form of energy stor-
age. They can be big battery packs made from sodium-sulfur, vanadium-redox flow 
batteries, or other materials, grouped in “battery farms,” or the smaller lithium-ion 
batteries from electric cars plugged to the system. Gónzalez et al. assessed the infra-
structure needed for enabling the transition to a smart grid in a University campus, 
and in particular peak shaving of load with battery storage, concluding that for such 
case it is only economically feasible with limited battery sizes, and only when there 
are renewable energy sources available on-site [9]. Besides batteries for electricity 
storage, a building complex could also have thermal storage for its HVAC needs. In 
such case, thermal storage would influence the load profile and should be included 
in the load forecasting models [10]. Whatever the case, energy storage is one of the 
main components to be considered in a smart grid, as shown in Figure 1.

As can be observed in the previous figure, distributed or embedded genera-
tion (either from intermittent renewable sources or from diesel/gas generators) 
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load forecasts, the power output of the most flexible generation units (such as gas 
thermal plants) can be scheduled according to daily and seasonal cycles. Typically, 
gas power plants work at their maximum to supply daily peaks of load and have 
their output reduced during low demand hours. Hydroelectric power plants have 
also some capacity of power regulation and, in the case of pumped-storage hydro-
electricity, can absorb the excess of power generated during night time and return it 
during peak times. Renewable energy, in particular wind power, arises as a destabi-
lizing source of the system due to its intermittent and unpredictable characteristics. 
Its effective integration in the electric system is one of the main technical challenges 
for smart grids. Also, in demand-side management (demand response), daily load 
curves are used to set up electric tariffs in order to influence demand. Better prices 
of energy during low-demand hours encourage some consumers to move their 
activity to those hours and thus reduce the intensity of load peaks.

When talking about a much smaller system, such as a University campus or a 
small village, the situation is quite different, but knowing the local load profile can 
also lead to optimum operation as well as important energy savings.

In such a small system, the generation capacity would be represented by local 
distributed generation systems, such as roof-top solar systems or small wind 
turbines. Biomass boilers could also make use of neighboring agricultural residues, 
woods, or pruning waste. The latter resource should not be neglected as several 
institutional buildings such as University campuses, administrative and hospital 
complexes or prisons count with vast green areas in their surroundings. Diesel-
fueled generators are present in many on-grid electric systems. In the case of com-
mercial buildings, depending on the energy tariffs, it could be economic to switch 
off the building from the grid during peak hours and supply its own power demand 
burning diesel or other fuel. In the case of some institutional buildings such as hos-
pitals and prisons, or some administrative buildings with data-centers, emergency 
generators are generally mandatory. Besides the use of diesel generators to supply 
power during peak times, some big commercial buildings resort to co-generation. 
In those buildings where HVAC systems are responsible for most of the power 
demand, it may be profitable the use of gas engines for the combined generation of 
electric power and heat. The latter can be transformed into refrigeration through 
thermal-chemical or other absorption system.

In addition, diesel generators can be coupled with energy systems that make use 
of local renewable resources conforming hybrid systems (mixture of PV solar, wind 
turbines, and biomass). Hybrid systems are a convenient option to gain reliability 
and diminish the intermittency problem of renewable sources, especially when cou-
pled with batteries and are widely used in small isolated off-grid systems [8]. For 
small-scale systems, batteries are practically the only available form of energy stor-
age. They can be big battery packs made from sodium-sulfur, vanadium-redox flow 
batteries, or other materials, grouped in “battery farms,” or the smaller lithium-ion 
batteries from electric cars plugged to the system. Gónzalez et al. assessed the infra-
structure needed for enabling the transition to a smart grid in a University campus, 
and in particular peak shaving of load with battery storage, concluding that for such 
case it is only economically feasible with limited battery sizes, and only when there 
are renewable energy sources available on-site [9]. Besides batteries for electricity 
storage, a building complex could also have thermal storage for its HVAC needs. In 
such case, thermal storage would influence the load profile and should be included 
in the load forecasting models [10]. Whatever the case, energy storage is one of the 
main components to be considered in a smart grid, as shown in Figure 1.

As can be observed in the previous figure, distributed or embedded genera-
tion (either from intermittent renewable sources or from diesel/gas generators) 
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plays an important role in the design and operation of smart grids. The generation 
capacity could temporarily excess the local demand and then it would be neces-
sary to either sell the excess power to the main grid or shut down the system if this 
option is not feasible (if local wind turbines are the ones to be turned off then it 
is called wind curtailment). When talking about the smart grid concept, a third 
option must be considered: to store that temporary surplus of energy. This can be 
done through the use of battery banks, as above-mentioned, or by increasing the 
energy consumption of a few selected utilities. Some examples: the HVAC system 
(cooling chillers, electric heaters, and heat pumps) could ramp its refrigeration/
heat production and store the excess in a tank insulation system. Similarly, the 
local water/wastewater system could increase the consumption of pumps (switch-
ing them on or increasing their rotation through variable-frequency drives) 
to absorb a part of the excess of energy. The concept is similar to that of a load 
balancer in smart telecommunication grids, which distributes workloads across 
multiple computing resources [11, 12]. Another option usually considered in 
smart grids is the use of electric vehicles. In the case of institutional buildings with 
charging/discharging infrastructure for electric vehicles, those are more prone to 
act as a load to supply than as a source that can return the stored energy if needed. 
The reason is that in this type of buildings, the majority of the vehicles remain 
parked within the facilities only during workday while the charging time for 
electric vehicles currently requires periods of some hours. Therefore, the use of the 
vehicle’s batteries by the local grid could leave them inoperative during some hours 
that could be coincident with the time that those vehicles are required.

There must be a system controller (an automated controller supervised by 
humans) that decides what to do, in each moment, to overcome a temporary surplus 
or deficit of energy forecasted for a close period of time. This controller has to deal 
with a number of input variables such as the state of the batteries (available storage 
capacity) or the number of electric vehicles plugged, as well as with short-term 

Figure 1. 
Concept of a smart energy grid for a set of institutional buildings.
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forecasts: predictions of weather (including solar and wind power), water and 
HVAC demand, and of course the forecasted electric load [13]. Therefore, the 
operation of a smart grid consists of an iterative process that considers the dynamic 
modeling of the load using a series of variables, with the aim of anticipating a situ-
ation through short-term predictions. Then, it uses this load forecast for the control 
process of the smart grid system and obtains feed-back through smart meters in the 
buildings facilities. Finally, it recalculates the load model and elaborates a new load 
prediction starting the control process again. Figure 2 shows a diagram that sche-
matizes the control process of a smart grid.

As shown in Figure 2, the advanced dynamic load model uses a historical 
database that is constantly refreshed with real-time measurements of energy 
demands [6]. Smart energy meters, deployed over the set of buildings and facili-
ties, are thus a central part of the system. Those smart meters and sensors must 
transmit data to the control system through radio frequencies, Ethernet, Bluetooth, 
Wi-Fi, 6LoWPAN, Z-Wave or other technologies [14]. ZigBee wireless technology 
is the option chosen for the smart grid in the Illinois Institute of Technology main 
campus, which aims to reduce 20% of energy and 10% of gas consumption each 
year during a 5 years’ period of time [15]. Other examples of smart grid design and 
concept applied in University campuses can be found in [9, 16].

Besides the smart grid concept, the use of data-driven analytical insights is 
widely used for a better energy management in buildings and in the power systems 
that supply them. Overall, the forecasting of energy demand in a building can lead 
to the following benefits:

1. To choose the most suitable tariff (contract power purchases);

2. Utilities and power system operators can respond quickly and confidently to 
forecasts and can improve performance for planning horizons that range from 
very short-term to very long-term. Forecasting peaks of energy demand is 
crucial to avoid black-outs, outages, and system failures;

3. Provides solid background to optimize the calculation of the power system 
components of the building. The most useful information is the maximum 

Figure 2. 
Use of the dynamic load modeling for the control of a smart grid.
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forecasts: predictions of weather (including solar and wind power), water and 
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operation of a smart grid consists of an iterative process that considers the dynamic 
modeling of the load using a series of variables, with the aim of anticipating a situ-
ation through short-term predictions. Then, it uses this load forecast for the control 
process of the smart grid system and obtains feed-back through smart meters in the 
buildings facilities. Finally, it recalculates the load model and elaborates a new load 
prediction starting the control process again. Figure 2 shows a diagram that sche-
matizes the control process of a smart grid.

As shown in Figure 2, the advanced dynamic load model uses a historical 
database that is constantly refreshed with real-time measurements of energy 
demands [6]. Smart energy meters, deployed over the set of buildings and facili-
ties, are thus a central part of the system. Those smart meters and sensors must 
transmit data to the control system through radio frequencies, Ethernet, Bluetooth, 
Wi-Fi, 6LoWPAN, Z-Wave or other technologies [14]. ZigBee wireless technology 
is the option chosen for the smart grid in the Illinois Institute of Technology main 
campus, which aims to reduce 20% of energy and 10% of gas consumption each 
year during a 5 years’ period of time [15]. Other examples of smart grid design and 
concept applied in University campuses can be found in [9, 16].

Besides the smart grid concept, the use of data-driven analytical insights is 
widely used for a better energy management in buildings and in the power systems 
that supply them. Overall, the forecasting of energy demand in a building can lead 
to the following benefits:

1. To choose the most suitable tariff (contract power purchases);

2. Utilities and power system operators can respond quickly and confidently to 
forecasts and can improve performance for planning horizons that range from 
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crucial to avoid black-outs, outages, and system failures;

3. Provides solid background to optimize the calculation of the power system 
components of the building. The most useful information is the maximum 

Figure 2. 
Use of the dynamic load modeling for the control of a smart grid.
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daily peak. Knowing the maximum expected current under normal conditions 
is crucial to calculate the transformers capacity and the size of conductors, as 
well as the power system protections. The hourly forecast of load is used in the 
calculation of either thermal or energy storage capacity;

4. Allows to define normal values of daily consumption and to compare different 
buildings of the same type that should present similar load profile. This is of 
particular interest for energy conservation programs in public, institutional 
buildings;

5. As highlighted by Dong et al. [17], the prediction of building energy con-
sumption is increasingly important for building energy baseline model 
development and for performance Measurement and Verification Protocol 
(MVP). Having a computational model that models the energy consump-
tion of a building along time is useful to verify savings after implementing 
energy conservation measures. Through calibrated simulation, any energy 
demand model can be tested and refined until it matches the actual energy 
performance measured in the facility with a high accuracy. Such a model may 
be valid for similar buildings of the same type and reliable in determining the 
savings of an energy efficiency project or calculating the energy consumption 
during the building life-time;

6. Energy consumption prediction for Building Energy Management systems 
(BEMS) allows building owners to optimize energy usage. In a similar way 
as the one described for smart grids, a smart building can vary its operation 
issues to respond to the demand signals from its sensors. Some authors agree 
that BEMS can be considered as one of the key factors in the success of energy 
saving measures in modern building operation [18].

3. State-of-the-art of load forecasting in buildings

Several computational models are used to forecast the demand of energy of 
different electric systems, ranging from small buildings and households [19] to 
big markets composed of several interconnected regions [20]. Multiple regression 
models are used, in which combinations of variables are tested sequentially for 
model improvement. Examples of these models are genetic algorithms [21], particle 
swarm optimization [22, 23], ant colony optimization [24], Fourier series [25], 
Support Vector Regression (SVR) [26–30], Support Vector Machine (SVM) [31], 
Autoregressive Integrated Moving Average (ARIMA) [20, 27, 28, 32–35], multiple 
linear regression [20, 26, 36, 37], Fuzzy logic [20, 38, 39], case-based reasoning 
[40], decision trees [41], and other data-driven forecasting algorithms [42–49], 
with special highlights to artificial neural networks [50]. For short-term load fore-
casting (daily demand profiles), exponential smoothing [51], least-square regres-
sion [52], and other methods may be more suitable while for a very short-term 
prediction, such as the prediction period of 1 hour, some authors have proposed a 
simple adaptive time-series model that considers the measurement history together 
with weather data [53]. Some complete reviews of buildings energy prediction 
techniques may be viewed at [54, 55].

This manuscript has the focus on load demand forecasting using artificial neural 
networks (ANN). Many readers are already familiar with these machine learning 
models that mimic a human neural system.
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Among the Artificial Intelligence techniques, the ANN can be highlighted by 
its ability to track relationships between data groups. Their capacity to extract 
important information from data makes the ANNs an important tool in several 
fields. The overall structure of a ANN is composed by an input layer (where 
the data are presented to the model), hidden layers (where the extracted infor-
mation is stored), and output layer where the response is given, as shown in 
Figure 3.

ANN can be used for forecasting water [56], gas [57–59], steam [60], and 
electricity demand in a set of buildings. They have also been proposed as a tool for 
evaluating energy performance of buildings and grant the correspondent energy 
performance certificates [61]. ANNs can model parameters that greatly influence 
the energy consumption of buildings such as HVAC performance [62, 63] or solar 
radiation [64, 65] and can also be used to accurately control and predict the perfor-
mance of wind and solar energy systems [66–69].

Generally, the number of input variables would determine the complexity 
of the model. The three shown in Figure 3 are the most common among the 
models found in the available literature. The “calendar” group of variables con-
siders working days, holydays, and working hours. This type of variables has a 
great impact on office, administrative or University buildings as it determines 
the occupation level of the building, which is linked to its energy demand. The 
number of light hours per day, which affect the lighting needs of the building, can 
be modeled for each day of the year and therefore can be considered as a “calen-
dar” variable. Sometimes there may be strikes or unexpected events, but their 
effect in the load prediction can be minimized with the use of the second group 
of variables: the load from the previous hours. The “weather conditions” type of 
variables directly influences the consumption of the HVAC systems. Some authors 
propose to develop an indicator of whether a building is likely to be weather sensi-
tive (which measures the degree to which building loads are driven directly by 
local weather), for instance by using a Spearman Rank Order Correlation function 
[70]. Examples of this type of variables are dry bulb outdoor/indoor tempera-
ture and humidity. Ideally, these variables are measured in real time by wireless 
sensors and their variation trend is taken as an input for the model. If real-time 

Figure 3. 
Example of the architecture of an ANN that forecasts load in a building using three inputs.
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daily peak. Knowing the maximum expected current under normal conditions 
is crucial to calculate the transformers capacity and the size of conductors, as 
well as the power system protections. The hourly forecast of load is used in the 
calculation of either thermal or energy storage capacity;

4. Allows to define normal values of daily consumption and to compare different 
buildings of the same type that should present similar load profile. This is of 
particular interest for energy conservation programs in public, institutional 
buildings;

5. As highlighted by Dong et al. [17], the prediction of building energy con-
sumption is increasingly important for building energy baseline model 
development and for performance Measurement and Verification Protocol 
(MVP). Having a computational model that models the energy consump-
tion of a building along time is useful to verify savings after implementing 
energy conservation measures. Through calibrated simulation, any energy 
demand model can be tested and refined until it matches the actual energy 
performance measured in the facility with a high accuracy. Such a model may 
be valid for similar buildings of the same type and reliable in determining the 
savings of an energy efficiency project or calculating the energy consumption 
during the building life-time;

6. Energy consumption prediction for Building Energy Management systems 
(BEMS) allows building owners to optimize energy usage. In a similar way 
as the one described for smart grids, a smart building can vary its operation 
issues to respond to the demand signals from its sensors. Some authors agree 
that BEMS can be considered as one of the key factors in the success of energy 
saving measures in modern building operation [18].

3. State-of-the-art of load forecasting in buildings

Several computational models are used to forecast the demand of energy of 
different electric systems, ranging from small buildings and households [19] to 
big markets composed of several interconnected regions [20]. Multiple regression 
models are used, in which combinations of variables are tested sequentially for 
model improvement. Examples of these models are genetic algorithms [21], particle 
swarm optimization [22, 23], ant colony optimization [24], Fourier series [25], 
Support Vector Regression (SVR) [26–30], Support Vector Machine (SVM) [31], 
Autoregressive Integrated Moving Average (ARIMA) [20, 27, 28, 32–35], multiple 
linear regression [20, 26, 36, 37], Fuzzy logic [20, 38, 39], case-based reasoning 
[40], decision trees [41], and other data-driven forecasting algorithms [42–49], 
with special highlights to artificial neural networks [50]. For short-term load fore-
casting (daily demand profiles), exponential smoothing [51], least-square regres-
sion [52], and other methods may be more suitable while for a very short-term 
prediction, such as the prediction period of 1 hour, some authors have proposed a 
simple adaptive time-series model that considers the measurement history together 
with weather data [53]. Some complete reviews of buildings energy prediction 
techniques may be viewed at [54, 55].

This manuscript has the focus on load demand forecasting using artificial neural 
networks (ANN). Many readers are already familiar with these machine learning 
models that mimic a human neural system.
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Among the Artificial Intelligence techniques, the ANN can be highlighted by 
its ability to track relationships between data groups. Their capacity to extract 
important information from data makes the ANNs an important tool in several 
fields. The overall structure of a ANN is composed by an input layer (where 
the data are presented to the model), hidden layers (where the extracted infor-
mation is stored), and output layer where the response is given, as shown in 
Figure 3.

ANN can be used for forecasting water [56], gas [57–59], steam [60], and 
electricity demand in a set of buildings. They have also been proposed as a tool for 
evaluating energy performance of buildings and grant the correspondent energy 
performance certificates [61]. ANNs can model parameters that greatly influence 
the energy consumption of buildings such as HVAC performance [62, 63] or solar 
radiation [64, 65] and can also be used to accurately control and predict the perfor-
mance of wind and solar energy systems [66–69].

Generally, the number of input variables would determine the complexity 
of the model. The three shown in Figure 3 are the most common among the 
models found in the available literature. The “calendar” group of variables con-
siders working days, holydays, and working hours. This type of variables has a 
great impact on office, administrative or University buildings as it determines 
the occupation level of the building, which is linked to its energy demand. The 
number of light hours per day, which affect the lighting needs of the building, can 
be modeled for each day of the year and therefore can be considered as a “calen-
dar” variable. Sometimes there may be strikes or unexpected events, but their 
effect in the load prediction can be minimized with the use of the second group 
of variables: the load from the previous hours. The “weather conditions” type of 
variables directly influences the consumption of the HVAC systems. Some authors 
propose to develop an indicator of whether a building is likely to be weather sensi-
tive (which measures the degree to which building loads are driven directly by 
local weather), for instance by using a Spearman Rank Order Correlation function 
[70]. Examples of this type of variables are dry bulb outdoor/indoor tempera-
ture and humidity. Ideally, these variables are measured in real time by wireless 
sensors and their variation trend is taken as an input for the model. If real-time 
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Example of the architecture of an ANN that forecasts load in a building using three inputs.
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measurement is not available, the input can be approximated with annual profiles 
from local historical data. Let us remember that, in addition to energy demand, 
“weather conditions” would have a great impact in solar and wind power produc-
tion (the first one more predictable than the latter) so the monitoring of variables 
such as solar irradiation or wind speed/intensity would also be valuable for the 
forecast of the renewable energy generation of the building that aims to supply a 
part of the load.

The end-use approach aims to forecast separately the load demand of each of 
the main sub-systems that conform the building. In that approach, there is an ANN 
model for the HVAC system, another one for the water pumps, another one for the 
lighting needs, and so on. The final forecasted load will be the sum of the outputs of 
the set of models.

Other models may consider as inputs the state of the batteries or thermal 
tanks (available energy storage capacity) or the number of electric vehicles 
plugged.

The inputs presented to an ANN are weighted by parameters known as “weights.” 
Moreover, each neuron will have a bias, which is another structure parameter. The 
product between the weights and inputs plus the bias will form the input argument 
of the so-called activation function. The output of the activation function will be the 
input of the subsequent layer and the final output of the model. In order to estimate 
the structure parameters, a train group is necessary, which will contain known inputs 
and outputs that is wanted to be tracked. Thus, the ANN prediction is compared 
to the known output for a given input. This “comparison” constitutes the objective 
function of the model training. Mean absolute percentage deviation (MAPE) and 
the coefficient of variation (CV) are usually used to evaluate the model performance 
during the training. In the present case, this error is function of consumption and 
the ANN prediction, given by:

 ( )
1

1 100 %
n

t t

t t

C FMAPE
n C=

−
= ∑ 

 (1)

where tC  is the actual value (the measured consumption in the instant t) and tF  
is the forecast value for that instant. The difference between tC  and tF  is divided 
by the actual value tC  again and the absolute value of the resulting division is 
summed for every forecasted point and divided by the number of fitted points n .

Meanwhile, the coefficient of variation (CV), also known as relative standard 
deviation (RSD), is a standardized measure of dispersion of a probability (fre-
quency) distribution. As in the case of MAPE, it is often expressed as a percentage. 
It is defined as the ratio of the standard deviation to the mean or to the absolute 
value of the mean (Eq. (3)):

 ( )100 %CV σ
µ

= 

 (2)

where σ  is the standard deviation and µ  is the mean.
A comprehensive review of applications of ANNs in the predictions of building’s 

energy demand can be found in [71]. Following, in Table 1, a selected literature 
review is offered with the aim to offer a wide insight of the strategies and architec-
tures used for load prediction using ANNs.
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measurement is not available, the input can be approximated with annual profiles 
from local historical data. Let us remember that, in addition to energy demand, 
“weather conditions” would have a great impact in solar and wind power produc-
tion (the first one more predictable than the latter) so the monitoring of variables 
such as solar irradiation or wind speed/intensity would also be valuable for the 
forecast of the renewable energy generation of the building that aims to supply a 
part of the load.

The end-use approach aims to forecast separately the load demand of each of 
the main sub-systems that conform the building. In that approach, there is an ANN 
model for the HVAC system, another one for the water pumps, another one for the 
lighting needs, and so on. The final forecasted load will be the sum of the outputs of 
the set of models.

Other models may consider as inputs the state of the batteries or thermal 
tanks (available energy storage capacity) or the number of electric vehicles 
plugged.

The inputs presented to an ANN are weighted by parameters known as “weights.” 
Moreover, each neuron will have a bias, which is another structure parameter. The 
product between the weights and inputs plus the bias will form the input argument 
of the so-called activation function. The output of the activation function will be the 
input of the subsequent layer and the final output of the model. In order to estimate 
the structure parameters, a train group is necessary, which will contain known inputs 
and outputs that is wanted to be tracked. Thus, the ANN prediction is compared 
to the known output for a given input. This “comparison” constitutes the objective 
function of the model training. Mean absolute percentage deviation (MAPE) and 
the coefficient of variation (CV) are usually used to evaluate the model performance 
during the training. In the present case, this error is function of consumption and 
the ANN prediction, given by:

 ( )
1

1 100 %
n

t t

t t

C FMAPE
n C=

−
= ∑ 

 (1)

where tC  is the actual value (the measured consumption in the instant t) and tF  
is the forecast value for that instant. The difference between tC  and tF  is divided 
by the actual value tC  again and the absolute value of the resulting division is 
summed for every forecasted point and divided by the number of fitted points n .

Meanwhile, the coefficient of variation (CV), also known as relative standard 
deviation (RSD), is a standardized measure of dispersion of a probability (fre-
quency) distribution. As in the case of MAPE, it is often expressed as a percentage. 
It is defined as the ratio of the standard deviation to the mean or to the absolute 
value of the mean (Eq. (3)):

 ( )100 %CV σ
µ

= 

 (2)

where σ  is the standard deviation and µ  is the mean.
A comprehensive review of applications of ANNs in the predictions of building’s 

energy demand can be found in [71]. Following, in Table 1, a selected literature 
review is offered with the aim to offer a wide insight of the strategies and architec-
tures used for load prediction using ANNs.
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4. Energy profile and characteristics of the studied campus

This section presents an analysis of the characteristics that influence the load 
profile of the studied institutional building. The behavior of this building can be 
taken as representative for the set of buildings that compose the whole University 
campus in which it is inserted. Not surprisingly, all the buildings present the same 
occupation profile concentrated during working hours and workdays. In addition, 
almost all the buildings are of the same age and materials. The campus is located in 
the coast of Northeast Brazil, within a humid tropical region at 12° 58′ 16″ Latitude. 
In these conditions, the thermal comfort zone can be achieved through natural 
ventilation and several buildings were designed in that way, but as the University 
expanded the buildings ended up closing their indoor spaces in detriment of natural 
ventilation. Nowadays they are characterized by bad thermal insulation and by the 
massive use of small-size air-conditioning units instead of more efficient central-
ized units composed by chillers and cooling towers. This peculiarity, common in 
the majority of the Brazilian campuses and institutional buildings, is reflected in 
high energy consumption for cooling needs as well as a high dependence of the load 
curve with temperature. In other words, the building’s load presents high weather 
sensitivity. Typically, the maximum load demand of the year occurs during the 
central hours of hot summer days.

The region is characterized by abundant renewable energy resources [97] but with 
water and energy supply problems [98]. Energy and water conservation are of crucial 
importance for both the region and the University institution. A great part of the bud-
get of the campus is dedicated to water and energy. In this context, campus managers 
and researchers are considering options such as rainwater harvesting [99], water and 
energy conservation programs [100], and the transition into a smart grid [101, 102].

This campus has 15 university units within an area of almost 50 ha, providing ser-
vices for approximately 15,000 students. Among these units, the Polytechnic School is 
composed of a main building and ancillary laboratories. Daily, almost 6,000 students 
as well as the correspondent University staff work and study at this particular facility.

The Polytechnic School presents mixed occupancies, which means that it may 
have multiple occupancies mainly educational, administrative, laboratory, and 
storage uses, as well as areas intended for food and drink consumption. The average 
energy consumption on a high-occupancy day is 462 kWh. The main end uses for 
energy are air conditioning (46.1%), lighting (30.9%), and electronic equipment 
(18.2%) as shown in Figure 4.

The rest of uses speak for almost 5% of the energy consumption of the building. 
Elevator and escalators typically represent from 3–8% of the energy used in most build-
ings [101]. However, during the period studied (years 2013 and 2014), the four elevators 
of the building were removed due to a reform. Besides the removal of the elevators, the 
reform did not have any other significant impact on the energy consumption.

The two following graphs illustrate very well the two main afore-mentioned 
variables that drive the load of the building. Figure 5 shows the typical behavior of 
a daily load (period of 24 consecutive hours) for a working and a non-working day.

As can be observed in Figure 5, the daily profile of the load is directly dependent 
on the occupancy level of the building. Between 23 and 5 h, the energy demand 
remains at its minimum as the only load is outdoor lighting. On a working day 
(blue line), the load curve starts to ramp abruptly at 6 h and reaches a maximum 
at 9 h 30. There is a slight decrease in the load at lunch time, between 12 and 13 h, 
and then the load continues at its highest level until 18 h when it starts to decrease. 
Differently, on a non-working day (red line), the building remains unoccupied and 
the consumption continues at its lowest level, even with a slight decrease during the 
day as the outdoor lighting is automatically switched off.
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4. Energy profile and characteristics of the studied campus

This section presents an analysis of the characteristics that influence the load 
profile of the studied institutional building. The behavior of this building can be 
taken as representative for the set of buildings that compose the whole University 
campus in which it is inserted. Not surprisingly, all the buildings present the same 
occupation profile concentrated during working hours and workdays. In addition, 
almost all the buildings are of the same age and materials. The campus is located in 
the coast of Northeast Brazil, within a humid tropical region at 12° 58′ 16″ Latitude. 
In these conditions, the thermal comfort zone can be achieved through natural 
ventilation and several buildings were designed in that way, but as the University 
expanded the buildings ended up closing their indoor spaces in detriment of natural 
ventilation. Nowadays they are characterized by bad thermal insulation and by the 
massive use of small-size air-conditioning units instead of more efficient central-
ized units composed by chillers and cooling towers. This peculiarity, common in 
the majority of the Brazilian campuses and institutional buildings, is reflected in 
high energy consumption for cooling needs as well as a high dependence of the load 
curve with temperature. In other words, the building’s load presents high weather 
sensitivity. Typically, the maximum load demand of the year occurs during the 
central hours of hot summer days.

The region is characterized by abundant renewable energy resources [97] but with 
water and energy supply problems [98]. Energy and water conservation are of crucial 
importance for both the region and the University institution. A great part of the bud-
get of the campus is dedicated to water and energy. In this context, campus managers 
and researchers are considering options such as rainwater harvesting [99], water and 
energy conservation programs [100], and the transition into a smart grid [101, 102].

This campus has 15 university units within an area of almost 50 ha, providing ser-
vices for approximately 15,000 students. Among these units, the Polytechnic School is 
composed of a main building and ancillary laboratories. Daily, almost 6,000 students 
as well as the correspondent University staff work and study at this particular facility.

The Polytechnic School presents mixed occupancies, which means that it may 
have multiple occupancies mainly educational, administrative, laboratory, and 
storage uses, as well as areas intended for food and drink consumption. The average 
energy consumption on a high-occupancy day is 462 kWh. The main end uses for 
energy are air conditioning (46.1%), lighting (30.9%), and electronic equipment 
(18.2%) as shown in Figure 4.

The rest of uses speak for almost 5% of the energy consumption of the building. 
Elevator and escalators typically represent from 3–8% of the energy used in most build-
ings [101]. However, during the period studied (years 2013 and 2014), the four elevators 
of the building were removed due to a reform. Besides the removal of the elevators, the 
reform did not have any other significant impact on the energy consumption.

The two following graphs illustrate very well the two main afore-mentioned 
variables that drive the load of the building. Figure 5 shows the typical behavior of 
a daily load (period of 24 consecutive hours) for a working and a non-working day.

As can be observed in Figure 5, the daily profile of the load is directly dependent 
on the occupancy level of the building. Between 23 and 5 h, the energy demand 
remains at its minimum as the only load is outdoor lighting. On a working day 
(blue line), the load curve starts to ramp abruptly at 6 h and reaches a maximum 
at 9 h 30. There is a slight decrease in the load at lunch time, between 12 and 13 h, 
and then the load continues at its highest level until 18 h when it starts to decrease. 
Differently, on a non-working day (red line), the building remains unoccupied and 
the consumption continues at its lowest level, even with a slight decrease during the 
day as the outdoor lighting is automatically switched off.



AI and Learning Systems - Industrial Applications and Future Directions

242

Figure 6. 
Average curve of energy consumption in the building during years 2013/2014.

Figure 4. 
Final uses of electric energy in the building (kWh/day).

Figure 5. 
Average daily load profiles of the building in both a working and a non-working day.
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Figure 6 shows that the average daily consumption of energy in the building can 
vary ±30% because of the combined effects of temperature and calendar. The local 
temperature ranges from a minimum of 21.2°C in August to a maximum of 37.1°C in 
December.

5. Methodology

As historical data, it was used a database [102] containing energy consumption 
records from the building during more than 300 consecutive days. These data will 
serve as the foundation for a model that has to reflect as accurately as possible the 
effect of occupancy and temperature patterns in the load of any building in the 
campus, disregarding other effects in which the energy demand does not depend on.

When considering historical series of electric energy demand, especially in 
big electric networks, we must take into account that there is a rising tendency 
due to the influence of economic and population growth. This tendency must be 
extracted and modeled separately, typically as a constant rate related to the annual 
economic growth rate. It can also be modeled using ANN and regression models 
[103]. What remains is the fluctuation caused by the difference in demand from 
month to month, which depends among other factors on the seasonal variation of 
temperature. This fluctuation generates the annual load curve and must be modeled 
separately. After doing so, both effects can be summed up to obtain the series fore-
casting for upcoming months or years. The result is a more accurate model, achiev-
ing in some cases (with neural networks) values of the mean absolute percentage 
error (MAPE) of around 2% [73].

University buildings and campuses are within a much smaller scale. The only 
possible ways they can present the aforementioned growing trend in their energy 
consumption is due to:

• the use of new technologies and equipment, the implementation of new activi-
ties or the increase of existing ones, all of the above having a significant (and 
constant) impact on the energy consumption.

• an increase in the number of building occupants (alumni and workers).

Conversely, the energy consumption can present a constant decreasing trend, 
due to a decrease in the number of building occupants and – more frequently – due 
to the effects of energy conservation measures. In both cases, it is important to 
quantify and separate these rising/decreasing trends from the consumption pattern 
that it is intended to model.

However, this is not the case of the studied campus. During the one-year period 
of historical data, the energy consumption per capita has been constant. No major 
breakthroughs have occurred during that year, as was the case in some previous 
years thanks to, for example, the replacing of incandescent light bulbs with energy-
efficient light bulbs, which produced a significant decrease in the load demand for 
the same occupation pattern. Moreover, the number of occupants in the building 
during that period (students and workers) also remained constant.

In addition, as pointed out by [90], the load in institutional buildings is also sub-
jected to unpredictable factors: there are factors that may affect the consumption 
such as a failure of the HVAC system, strikes, etc. These events should be detected, 
and data must be filtered from the historical records in order to build a more reliable 
model. Those outliers were identified and removed prior to the development of the 
ANN model that is detailed from this point on.
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The daily consumption is directly related to the period of the year and the day of 
the week. For this reason, the model structure may be a simple feed-forward as the 
one that was shown in Figure 3. However, the demand at any day may present some 
correlation with the one from the previous day. In order to take into consideration 
possible correlations between the daily demands, it is proposed a more evolved 
structure: a non-linear autoregressive exogenous model (NARX). Such structure 
consists basically in the feedback of the ANN using as part of its inputs the past 
outputs [104–107], as presented in Eq. (3):

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 ,,,,,, 2 ,,,,,, ,,,,,, ,,,,,, 1 ,,,,,, 2 ,,,,,,ty tuy t f y t y t y t n U t U t U t n= − − … − − − −   (3)

where, y  is the output values, u  is the process input values, ,ty tun n  the number 
of past values. The final structure of the ANN can thus be represented as shown in 
Figure 7.

After selecting the model structure, it is necessary for the overall architecture, 
which can be listed as: activation functions, number of hidden layers, and optimal 
number neurons. It is well known that one single layer is enough for a ANN model 
be able to approximate any function with relative precision [109]. The activation 
function is related to the dynamics of the systems being modeled, for example, 
pattern recognition case, where step functions are commonly used. To perform the 
training, usually the backpropagation method is employed [110–113]. The training 
is done until an acceptable MAPE is reached. The main point while identifying 
a ANN model is a careful selection of the optimal number of neurons, which is 
strictly correlated to the total number of parameters to be estimated. Thus, an 
excessive number of neurons might lead to a well-known problem, the overfit-
ting. On the other hand, a small number might compromise the model prediction. 
In 1996, Schenker and Agarwal [114] proposed a method to identify the optimal 
number of neurons when few data are available, the dynamic cross-validation. The 
method consists in the usage of three data set, for example, set A, B, and C. The 
set A and B are employed in the training step, which will generate two different 
networks, for each neuron number. After the training, the network developed using 

Figure 7. 
Chosen structure for the neural network model: non-linear autoregressive exogenous model [108].

245

Sustainable Energy Management of Institutional Buildings through Load Prediction Models…
DOI: http://dx.doi.org/10.5772/intechopen.93425

set A is validated using set B and the MAPE is calculated. The process continues up 
to a maximum number of neurons, which in the present work was 40 neurons. The 
optimal number of neurons is the one with lowest MAPE. The validation error is 
presented in Figure 8 with its correspondent number of neurons. For the present 
case, the optimal number of neurons found was 5.

Finally, another network was trained using the optimal number of neurons. In 
order to avoid the overfitting, the early stopping criteria were employed [114–116]. 
This criterion consists in stop the training after a determined number of iteration 
where the validation error increased. The training of the final network was done 
with sets A and B, while the validation was done using set C. The general definitions 
of the final model are shown in Table 2.

Figure 8. 
Dynamic cross-validation for the selection of the optimal number of neurons of the hidden layer: validation 
errors for different number of neurons.

ANN model parameters

Input Database containing the energy consumption records of previous 
days

Output Daily energy consumption

Total number of neurons evaluated 40

Total number of trainees done 40

Optimal number of neurons 5

Total iteration in training step 300

Minimum gradient 10−6

Early stopping criteria 30

Transfer function in the first layer Hyperbolic tangent sigmoid

Transfer function in the output 
layer

Linear function

Final model MAPE 6.54%

Table 2. 
Characteristics of the proposed ANN model.
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6. Results and discussion

6.1 Load demand model

In order to assess the generalization quality of the model, Figure 9 shows the 
predicted data together with the validation data (real data).

As can be observed in the figure above, there are sudden variations in the 
daily consumption of energy, which repeat periodically in cycles of about 7 days. 
This refers to the load variation between workdays and weekends, with Saturdays 
presenting an intermediate value between a typical working day and the minimum 
consumption of Sundays. Overall, this type of curve can be taken as representative 
for an institutional building. Its variation depends directly on the occupation pat-
tern of the University campus and, to a lesser extent, in the effect of temperature. 
The model developed using neural networks follows these consumption trends that 
were identified in Figure 5 (working day versus non-working day) and Figure 6 
(seasonal variation of occupation and temperature).

The quality of the prediction was evaluated according to the MAPE, which was 
6.54% for the final model. This means that through the proposed model, the cam-
pus managers can predict the electric consumption of any given day with an average 
error less than or equal to 6.54%. The average error is surprisingly similar to the 
ones achieved by different models for other university buildings (see the literature 
review in Table 1).

The error distribution, shown in Figure 10, revealed a slight trend of the model 
to underestimate the daily energy consumption.

The resulting set of errors showed a distribution with a high standard deviation. 
The standard deviation indicates how close the data points tend to be the mean  
of the set of errors. For the set of errors produced by this model, the standard devia-
tion (sigma) is 20.75%. However, the model made some gross errors of up to −145% 
and + 85% at some points.

The CV depends on the standard deviation and on the mean of the forecast 
model data, as was shown in Eq. (2). Thus, the values calculated by the model 
showed a CV of 317%. This significant value of CV is due to the great variation 
between the load in working and in non-working days, typically between weekend 
and workweek. Together with the histogram of errors, Figure 10 depicts the normal 
(or Gaussian) distribution of errors. This function is symmetric around the point 

Figure 9. 
Validation of the model with the demand data of the building from 300 consecutive days.
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−6.54 (mean value of the error). Within a normal distribution, the 3-sigma rule 
establishes that 68% of values are within one standard deviation away from the 
mean; about 95% of the values lie within two standard deviations; and about 99.7% 
are within three standard deviations. Therefore, it can be stated that by using the 
proposed ANN model, 68% of the forecasted values have an error of between −27.29 
and +14.21% (MAPE ≤ 20.75%); 95% of the forecasted values have an error of 
between −48.04 and +34.96% (MAPE ≤ 41.50%); and about 99.7% of the forecasted 
values have an error of between −68.77 and +55.71% (MAPE ≤ 62.25%).

6.2  Correlation between the seasonal variation of load demand, solar, and wind 
energy availability

The proposed mathematical model can be taken as representative for the load 
profile of the campus where the building is inserted with an accuracy of 6.54%. This 
allows us to compare the load demand with the renewable energy availability in the 
campus. More precisely, allows the comparison of the seasonal variation of energy 
consumption versus the seasonal variation of the following meteorological param-
eters: wind speed and solar irradiation. There is a weather station in the campus 
that measures and records, among other parameters, global solar irradiation on a 
horizontal surface (MJ/m2) and wind speed at 10 m height (m/s). The uncertainties 
of the measurements are ±5% for the solar pyranometer and ±1.5% for the wind 
anemometer [97]. Through this database, average values of wind speed and solar 
irradiation can be calculated for each day of the year, in order to build average 
curves that represent the seasonal variation of these two renewable sources. Then, 
these values can be compared with the load demand model, which yields the average 
value for energy consumption in the campus. To make this comparison, the Pearson 
product-moment correlation coefficient (hereafter Pearson correlation coefficient) 
will be used. This coefficient compares two sets of data and varies between −1 and 
1. A value of 1 implies that a linear equation describes the relationship between 
the two compared variables perfectly, with all data points lying on a line for which 

Figure 10. 
Distribution of the errors made by the model.
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one increases as the other one increases. A value of −1 implies that all data points 
lie on a line for which one variable decreases as the other increases. A value of 0 
for the coefficient implies that there is no linear correlation between the variables. 
The Pearson coefficient has proven to be useful in previous research in identify-
ing which environmental variables (temperature and other weather conditions) 
correlate best (that is, have the greatest influence) in the energy consumption of 
buildings [117]. In our case, we are using the Pearson coefficient to assess the con-
venience of using some renewable energy sources by comparing its availability with 
the load of the campus. Three variables will be compared, namely “Solar,” “Wind,” 
and “Load demand.” The Pearson correlation coefficient will indicate the strength 
of a linear relationship between them. As said, “Load demand” depends on the 
calendar but also on temperature, and thus may have some relationship with “Solar.” 
“Solar” varies from a maximum in December to a minimum in August. “Wind” is 
the most intermittent and unpredictable, however tends to vary from a maximum 
in August to a minimum in March [97]. The Pearson correlation coefficient was 
calculated using the Statistical software Minitab® 16.2.1 and their resulting values 
are shown in Table 3.

Table 3 shows interesting results. “Solar” and “Wind” values show almost no 
relationship among them. When compared with the load demand of the campus, 
it was found that in the months were the load demand is higher the availability of 
wind resources tends to be lower and vice versa. The solar resource, meanwhile, 
showed a good correlation with the “Load demand.” This is not surprising as the 
“Load demand” variable depends on temperature, which is related to solar irradi-
ance. This correlation level means that in the months of high energy consumption, 
there is a higher availability of solar resource and vice versa. In other words, the 
variation of the solar resource matches very well the variation of the energy needs 
of the campus. When considering the daily variation of the load (as shown in 
Figure 5), the solar energy option gets reinforced, as most of the period with high 
load coincides with the peak of solar irradiation that occurs during the central hours 
of the day. Solar power is, therefore, the most convenient renewable energy source 
for this campus as is the one that best matches with the seasonal and daily variation 
of load demand.

7. Conclusion and future work

A reliable mathematical model was developed for the prediction of the electric 
load in a University campus. The neural network model was capable of forecasting 
the load with average error of 6.54%. The high standard deviation of the errors is 
the main weakness of this particular model. Load forecast models such as the one 
that is detailed in this article play an interesting role in the energy management 
of institutional buildings. First, as a powerful tool for the control of a smart grid 
that supplies either a single building or several of them grouped in a campus or a 

Solar Wind Load demand

Solar 1 −0.008 0.803

Wind −0.008 1 −0.505

Load demand 0.803 −0.505 1

Table 3. 
Correlation (Pearson coefficient) between the seasonal variation of renewable energy resources and energy 
demand in the campus.
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complex. Secondly, as a decision tool to assess the convenience of a set of renewable 
energy sources tend to vary seasonally. As was demonstrated in this study, statistical 
data that measure the availability of the local renewable sources can be compared 
with a load model in order to assess how well these energy sources match the varia-
tion of the energy needs of buildings. As future work the authors propose:

I. Applying calibration techniques to further reduce the error committed by 
the model;

II. Overcoming the high deviation of the errors by allowing the model to 
quickly recognize if a day is working-day or holiday;

III. Installing smart energy meters in the building with the aim to develop on-
line building energy prediction using adaptive ANNs.
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one increases as the other one increases. A value of −1 implies that all data points 
lie on a line for which one variable decreases as the other increases. A value of 0 
for the coefficient implies that there is no linear correlation between the variables. 
The Pearson coefficient has proven to be useful in previous research in identify-
ing which environmental variables (temperature and other weather conditions) 
correlate best (that is, have the greatest influence) in the energy consumption of 
buildings [117]. In our case, we are using the Pearson coefficient to assess the con-
venience of using some renewable energy sources by comparing its availability with 
the load of the campus. Three variables will be compared, namely “Solar,” “Wind,” 
and “Load demand.” The Pearson correlation coefficient will indicate the strength 
of a linear relationship between them. As said, “Load demand” depends on the 
calendar but also on temperature, and thus may have some relationship with “Solar.” 
“Solar” varies from a maximum in December to a minimum in August. “Wind” is 
the most intermittent and unpredictable, however tends to vary from a maximum 
in August to a minimum in March [97]. The Pearson correlation coefficient was 
calculated using the Statistical software Minitab® 16.2.1 and their resulting values 
are shown in Table 3.

Table 3 shows interesting results. “Solar” and “Wind” values show almost no 
relationship among them. When compared with the load demand of the campus, 
it was found that in the months were the load demand is higher the availability of 
wind resources tends to be lower and vice versa. The solar resource, meanwhile, 
showed a good correlation with the “Load demand.” This is not surprising as the 
“Load demand” variable depends on temperature, which is related to solar irradi-
ance. This correlation level means that in the months of high energy consumption, 
there is a higher availability of solar resource and vice versa. In other words, the 
variation of the solar resource matches very well the variation of the energy needs 
of the campus. When considering the daily variation of the load (as shown in 
Figure 5), the solar energy option gets reinforced, as most of the period with high 
load coincides with the peak of solar irradiation that occurs during the central hours 
of the day. Solar power is, therefore, the most convenient renewable energy source 
for this campus as is the one that best matches with the seasonal and daily variation 
of load demand.

7. Conclusion and future work

A reliable mathematical model was developed for the prediction of the electric 
load in a University campus. The neural network model was capable of forecasting 
the load with average error of 6.54%. The high standard deviation of the errors is 
the main weakness of this particular model. Load forecast models such as the one 
that is detailed in this article play an interesting role in the energy management 
of institutional buildings. First, as a powerful tool for the control of a smart grid 
that supplies either a single building or several of them grouped in a campus or a 

Solar Wind Load demand

Solar 1 −0.008 0.803

Wind −0.008 1 −0.505

Load demand 0.803 −0.505 1

Table 3. 
Correlation (Pearson coefficient) between the seasonal variation of renewable energy resources and energy 
demand in the campus.
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