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Chapter 1

Introduction

Sharing images is an essential experience. Be it a drawing carved in rock, a
painting exposed in a museum, or a photo capturing a special moment, it is
the sharing that relives the experience stored in the image. Several techno-
logical developments have spurred the sharing of images in unprecedented
volumes. The first is the ease with which images can be captured in a digital
format by cameras, cellphones and other wearable sensory devices. The sec-
ond is the Internet that allows transfer of digital image content to anyone,
anywhere in the world. Finally, and most recently, the sharing of digital
imagery has reached new heights by the massive adoption of social network
platforms. All of a sudden images came with tags, and tagging, comment-
ing, and rating of any digital image has become a common habit. The
sharing paradigm is lead by users interactions with each other, like forming
groups of shared interests, sharing messages that convey sentiments, and by
commenting the photos that have been shared. And consequently, in the
huge quantity of available media, some of these images are going to become
very popular, while others are going to be totally unnoticed and end up in
oblivion.

1.1 The goal

Our ultimate goal is to extract information from image collections in social
networks. In particular, we aim at obtaining tags, i.e. human interpretable
labels associated to the content at a global level. These can be related
to objective aspects such as the presence of things, properties and activi-
ties, or subjective ones such as the sentiments aroused in a viewer or the
attractiveness of an image.

Being able to extract this information can have a great impact in several
applications. First, the retrieval of images from collections can be improved.
Current image search engines (such as Google or Yahoo), that traditionally
rely on the associated text data, have recently exploited the visual content
to improve performance. Similarly, in social networks, they mostly rely
on user provided metadata in form of tags or textual description. Second,
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it can ease the browsing of large collections. For instance, through selec-
tion or summarization of the most attractive and significative photos. In
particular, sentiments aroused in the viewer can play a role in producing
significative output. Third, the distribution and enjoyment of contents can
be improved. Advertising and distribution of content can be more efficient
when matching content to user preferences. Moreover, to the aim of mini-
mizing storage costs, images may be replicated according to popularity and
still maintaining a low latency for unpopular content. For these reasons,
image retrieval and understanding receive a lot of attention from both the
scientific community and industry.

Machine understanding of media is still very poor. While their data pro-
cessing capabilities are continuously improving (e.g. Moore’s law (Moore,
1965)), stemming information from unannotated multimedia is a challeng-
ing task. The main hindrance is that machines are able to compute only low
level features of the data, hardly correlated to the semantics. Tasks such
as recognizing things, understanding the sentiment induced in the viewer
or predicting the expected attractiveness of an image, require high level
features. This is a well-known problem in the literature, formalized as the
semantic gap (Smeulders et al., 2000): “The semantic gap is the lack of
coincidence between the information that machines can extract from the
visual data and the interpretations the user may give to the data.”. Hence
the ensuing question is:

How can we fill the semantic gap for multimedia understanding?

We believe that Social Networks are promising frameworks
that can fill the gap. Comparing to the classic multimedia databases,
social networks provide a dilated context where the user is king. Users can
contribute by providing photos with attached metadata (such as tags, de-
scription, location) or by expressing interest in others content (e.g. likes,
comments). In Figures 1.1 and 1.2 we show two examples of such contribu-
tions in two different social networks.

Social network contributions are provided by common users. They of-
ten cannot meet high quality standards related to content association, in
particular for accurately describing objective aspects of the visual content
according to some expert’s opinion (Dodge et al., 2012). Moreover, when
subjective components are considered (e.g. sentiments), different users may
read images differently.

The most historically exploited pieces of metadata are the social tags
associated to the images. These tags tend to follow context, trends and
events in the real world. They are often used to describe both the situation
and the entity represented in the visual content. So tagging deviations
due to spatial and temporal correlation to external factors, including user

12

Figure 1.1: Example of a user generated content on social network Instagram. An image

of a bracelet is associated with a little description and several tags. Several users have

commented the content.

Figure 1.2: Example of a user generated content on social network Flickr. Tags are

associated to an image of a panoramic view of a mountain.
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influence, semantics of activity and relationships between tags, are common
phenomena. Social tags tend to be imprecise, ambiguous, incomplete and
biased towards personal perspectives (Golder and Huberman, 2006; Sen
et al., 2006; Sigurbjörnsson and van Zwol, 2008; Kennedy et al., 2006).

Quite a few researchers have proposed solutions for image annotation
and retrieval in social frameworks (Li et al., 2015), although the peculiarities
of this domain have been only partially addressed.

1.2 Contributions and Organization

In this thesis we show that the tagged images shared in social media plat-
forms are promising to resolve the semantic gap. In particular, we focus on
image annotation and provide a structured survey of methods in social net-
works with a thorough empirical evaluation of several key methods. Then
we describe four novel state-of-the-art methods for extracting information,
that explicitly take into account the social context.

Two themes can be highlighted. The first one is related to the task
of objective analysis of images (i.e. recognize things), while the second
one relates to the tasks of subjective analysis (i.e. recognize the sentiment
induced in viewers, predict the expected popularity of images). In spite
of the two themes, the underlying idea of our work is the exploitation of
social images through the design of features that comprises both the visual
observation and their tags. Learned or handcrafted, these features provide
a robust global representation of the content and context.

The thesis is organized as follows1. Considering the absence of a com-
prehensive review of annotation and retrieval in social networks, we start
in Chapter 2 with a structured survey of related work. Although image an-
notation and retrieval in social networks are a relatively recent direction of
research, several tasks have been addressed by the multimedia community.
We survey three linked semantic tasks (i.e. tag assignment, tag refinement
and tag-based image retrieval) that have seen the most contributions to
date. Figure 1.3 shows an example of tag refinement of an image and its
associated user tags. Recognizing a lack of a structured survey in the lit-
erature, we aimed at giving a reference contribution for future researchers
in this field. We organize the rich literature of tagging and retrieval in a
taxonomy to highlight the ingredients of the main works and recognize their
advantages and limitations. In particular, we structure our survey along the
line of understanding how a specific method constructs the underlying tag
relevance function.

Witnessing the absence of a thorough empirical comparison in the lit-

1Note that each chapter is written in a self-contained fashion and can be read on its own.
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Figure 1.3: An example of an image processed with an algorithm of tag refinement. Not

relevant tags are removed and additional relevant tags are added.

erature for the three semantic tasks, in Chapter 3 we establish a common
experimental protocol and successively exert it in the evaluation of key
methods. Our proposed protocol contains training data of varied scales
extracted from social frameworks. This permits to evaluate the methods
under analysis with data that reflect the specificity of the social domain.
We made the data and source code public so that new proposals for tag
assignment, tag refinement, and tag retrieval can be evaluated rigorously
and easily. Taken together with Chapter 2, these efforts should provide an
overview of the field’s past and foster progress for the near future.

Chapters 4 builds on ideas from the previous chapters to propose a novel
approach for tag assignment. By considering visual content and the tags
associated with an image, novel features are automatically learned. A cross-
model method is proposed to capture the intricate dependencies between
image content and annotations. We propose a learning procedure based
on Kernel Canonical Correlation Analysis which finds a mapping between
visual and textual words by projecting them into a latent meaning space.
The learned mapping is then used to annotate new images using advanced
nearest neighbor voting methods. We evaluate our approach on three pop-
ular datasets, and show clear improvements over several approaches relying
on more standard representations.

Chapter 5 gives an evaluation of the temporal information in web im-
ages. The idea is to use the temporal gist of annotations to improve tasks
such as annotation, indexing and retrieval. While visual content, text and
metadata, are typically used to improve these tasks, here we look at the
temporal aspect of social media production and tagging. The correlation
of the time series of the tags with Google searches shows that, for certain
concepts, web information sources may be beneficial to the annotation of

15
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social media.
Chapters 6 and 7 deal with the non semantic problems of image senti-

ment analysis and popularity prediction. In particular, Chapter 6 investi-
gate the use of a multimodal feature learning approach using neural network
based models such as Skip-gram and Denoising Autoencoders. The task is
to perform sentiment analysis of micro-blogging content, such as Twitter
short messages, that are composed by a short text and, possibly, an image.
A novel architecture that incorporates these models is proposed and tested
on several standard Twitter datasets. We show that the approach is efficient
and obtains good classification results.

By considering that attractiveness of images is related to popularity, in
Chapter 7 we propose to use visual sentiment features together with three
novel context features to predict a concise popularity score of social images.
Experiments on large scale datasets show the benefits of proposed features
on the performance of image popularity prediction. Moreover, exploiting
state-of-the-art sentiment features, we report a qualitative analysis of which
sentiments seem to be related to good or poor popularity.

Finally, Chapter 8 summarizes the contribution of the thesis and dis-
cusses avenues for future research. Notice also that the full-list of published
papers from this thesis is provided in Appendix A.
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Chapter 2

Literature review of Assignment, Refinement and Retrieval

This chapter gives an unified survey of related work on the three
closely linked problems of Tag Assignment, Tag Refinement and
Tag-based Image Retrieval. While existing works vary in terms of
their targeted tasks and methodology, they rely on the key func-
tionality of tag relevance, i.e., estimating the relevance of a spe-
cific tag with respect to the visual content of a given image and its
social context. A taxonomy is introduced to structure the growing
literature, understand the ingredients of the main works, clarify
their connections and difference, and recognize their merits and
limitations. 1

Excellent surveys on content-based image retrieval have been published
in the past. In their seminal work, Smeulders et al. review the early years up
to the year 2000 by focusing on what can be seen in an image and introducing
the main scientific problem of the field: the semantic gap as “the lack of
coincidence between the information that one can extract from the visual
data and the interpretation that the same data have for a user in a given
situation” (Smeulders et al., 2000). Datta et al. continue along this line and
describe the coming-of-age of the field, highlighting the key theoretical and
empirical contributions of recent years (Datta et al., 2008). These reviews
completely ignore social platforms and socially generated images, which is
not surprising as the phenomenon only became apparent after these reviews
were published.

In this chapter, we survey the state-of-the-art of content-based image
retrieval in the context of social image platforms, with a comprehensive
treatise of the closely linked problems of image tag assignment, image tag
refinement and tag-based image retrieval. Similar to (Smeulders et al., 2000)
and (Datta et al., 2008), the focus of this survey is on visual information,
but we explicitly take into account and quantify the value of social tagging.

1Parts of this chapter previously appeared in Li, X., Uricchio, T., Ballan, L., Bertini, M.,

Snoek, C. G. and Del Bimbo, A. (2016). “Socializing the semantic gap: A comparative survey on

image tag assignment, refinement, and retrieval”. ACM Computing Surveys (CSUR), 49(1), 14.

The publication is available at http://dx.doi.org/10.1145/2906152
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2.1 Problems and Tasks

Social tags are provided by common users. They often cannot meet high
quality standards related to content association, in particular for accurately
describing objective aspects of the visual content according to some expert’s
opinion (Dodge et al., 2012). Social tags tend to follow context, trends and
events in the real world. They are often used to describe both the situation
and the entity represented in the visual content. So tagging deviations
due to spatial and temporal correlation to external factors, including user
influence, semantics of activity and relationships between tags, are common
phenomena. Social tags tend to be imprecise, ambiguous, incomplete and
biased towards personal perspectives (Golder and Huberman, 2006; Sen
et al., 2006; Sigurbjörnsson and van Zwol, 2008; Kennedy et al., 2006).
Quite a few researchers have proposed solutions for image annotation and
retrieval in social frameworks, although the peculiarities of this domain
have been only partially addressed. We categorize existing works into three
different main tasks and structure our survey along these tasks:

• Tag Assignment. Given an unlabeled image, tag assignment strives
to assign a (fixed) number of tags related to the image content (Maka-
dia et al., 2010; Guillaumin et al., 2009; Verbeek et al., 2010; Tang
et al., 2011).

• Tag Refinement. Given an image associated with some initial tags,
tag refinement aims to remove irrelevant tags from the initial tag list
and enrich it with novel, yet relevant, tags (Liu et al., 2010; Wu et al.,
2013; Znaidia et al., 2013; Lin et al., 2013; Feng et al., 2014).

• Tag Retrieval. Given a tag and a collection of images labeled with
the tag (and possibly other tags), the goal of tag retrieval is to retrieve
images relevant with respect to the tag of interest (Li et al., 2009b;
Duan et al., 2011; Sun et al., 2011; Gao et al., 2013; Wu et al., 2013).

Other related tasks such as tag filtering (Zhu et al., 2010; Liu, Yan, Hua
and Zhang, 2011; Zhu et al., 2012) and tag suggestion (Sigurbjörnsson and
van Zwol, 2008; Li et al., 2009b; Wu et al., 2009) have also been studied.
As these tasks focus on either cleaning existing tags or expanding them, we
view them as variants of tag refinement.

2.2 Scope and Aims

Existing works in tag assignment, refinement, and retrieval vary in terms
of their targeted tasks and methodology, making it non-trivial to interpret
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them within a unified framework. Nonetheless, we reckon that all works
rely on the key functionality of tag relevance, i.e., estimating the relevance
of a specific tag with respect to the visual content of a given image and its
social context. In general terms, relevance should be evaluated considering
the complementarity of tags. They may be of low interest alone but become
interesting if in conjunction with others. However in the literature, only
few methods consider multi-tag relevance evaluation and only for the task
of multi-tag retrieval (Li et al., 2012; Nie et al., 2012; Borth et al., 2013).
Hence, we focus on methods that implement the unique-tag relevance model.

We survey papers that learn from images tagged in social contexts. We
do not cover traditional image classification that is grounded on carefully
labeled data. For a state-of-the-art overview in that direction, we refer the
interested reader to (Everingham et al., 2015; Russakovsky et al., 2015).
Nonetheless, one may question the necessity of using socially tagged exam-
ples as training data, given that a number of labeled resources are already
publicly accessible. An exemplar of such resources is ImageNet (Deng et al.,
2009), providing crowd-sourced positive examples for over 20k classes. Since
ImageNet employs several web image search engines to obtain candidate im-
ages, its positive examples tend to be biased by the search results. As ob-
served by (Vreeswijk et al., 2012), the positive set of vehicles mainly consists
of car and buses, although vehicles can be tracks, watercraft and aircraft.
Moreover, controversial images are discarded upon vote disagreement dur-
ing the crowd sourcing. All this reduces diversity in visual appearance. We
empirically show in Chapter 3 the advantage of socially tagged examples
against ImageNet for tag relevance learning.

Reviews on social tagging exist. The work by Gupta et al. discusses
papers on why people tag, what influences the choice of tags, and how
to model the tagging process, but its discussion on content-based image
tagging is limited (Gupta et al., 2010). The focus of (Jabeen et al., 2015)
is on papers about adding semantics to tags by exploiting varied knowledge
sources such as Wikipedia, DBpedia, and WordNet. Again, it leaves the
visual information untouched.

Several reviews that consider socially tagged images have appeared re-
cently. In (Liu, Hua and Zhang, 2011), technical achievements in content-
based tag processing for social images are briefly surveyed. Sawant et
al. (Sawant et al., 2011), Wang et al. (Wang, Ni, Hua and Chua, 2012)
and Mei et al. (Mei et al., 2014) present extended reviews of particular
aspects, i.e., collaborative media annotation, assistive tagging, and visual
search re-ranking, respectively. In (Sawant et al., 2011), papers that propose
collaborative image labeling games and tagging in social media networks are
reviewed. In (Wang, Ni, Hua and Chua, 2012) the authors survey papers
where computers assist humans in tagging either by organizing data for
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manual labelling, improving quality of human-provided tags or recommend-
ing tags for manual selection, instead of applying purely automatic tagging.
In (Mei et al., 2014) the authors review techniques that aim for improving
initial search results, typically returned by a text based visual search engine,
by visual search re-ranking. These reviews offer resumes of the methods and
interesting insights on particular aspects of the domain, without giving an
experimental comparison between the varied methods.

We notice efforts in empirical evaluations of social media annotation and
retrieval (Sun et al., 2011; Uricchio et al., 2013; Ballan, Bertini, Uricchio
and Del Bimbo, 2014). In (Sun et al., 2011), the authors analyze different
dimensions to compute the relevance score between a tagged image and a
tag. They evaluate varied combinations of these dimensions for tag-based
image retrieval on NUS-WIDE, a leading benchmark set for social image
retrieval (Chua et al., 2009). However, their evaluation focuses only on tag-
based image ranking features, without comparing content-based methods.
Moreover, tag assignment and refinement are not covered. In (Uricchio
et al., 2013; Ballan, Bertini, Uricchio and Del Bimbo, 2014), the authors
compared three algorithms for tag refinement on the NUS-WIDE and MIR-
Flickr, a popular benchmark set for tag assignment and refinement (Huiskes
et al., 2010). However, the two reviews lack a thorough comparison between
different methods under the umbrella of a common experimental protocol.
Moreover, they fail to assess the high-level connection between image tag
assignment, refinement, and retrieval.

2.3 Foundations

Our key observation is that the essential component, which measures the
relevance between a given image and a specific tag, stands at the heart of
the three tasks. In order to describe this component in a more formal way,
we first introduce some notation.

We use x, t, and u to represent the three basic elements in social images,
namely image, tag, and user. An image x is shared on social media by
its user u. A user u can choose a specific tag t to label x. By sharing
and tagging images, a set of users U contribute a set of n socially tagged
images X , wherein Xt denotes the set of images tagged with t. Tags used
to describe the image set form a vocabulary of m tags V. The relationship
between images and tags can be represented by an image-tag association
matrix D ∈ {0, 1}n×m, where Dij = 1 means the i-th image is labeled with
the j-th tag, and 0 otherwise.

Given an image and a tag, we introduce a real-valued function that
computes the relevance between x and t based on the visual content and an
optional set of user information Θ associated with the image:
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fΦ(x, t; Θ)

We use Θ in a broad sense, making it refer to any type of social context
provided by or referring to the user like associated tags, where and when the
image was taken, personal profile, and contacts. The subscript Φ specifies
how the tag relevance function is constructed. We can easily interpret each
of the three tasks: assignment and refinement can be done by sorting V in
descending order by fΦ(x, t; Θ), while retrieval can be achieved by sorting
the labeled image set Xt in descending order in terms of fΦ(x, t; Θ). Note
that this formalization does not necessarily imply that the same implemen-
tation of tag relevance is applied for all the three tasks. For example, for
retrieval relevance is intended to obtain image ranking (Li, 2015) while tag
ranking for each single image is the goal of assignment (Wu et al., 2009)
and refinement (Qian et al., 2014).

Fig. 2.1 presents a unified framework, illustrating the main data flow
of varied approaches to tag relevance learning. Compared to traditional
methods that rely on expert-labeled examples, a novel characteristic of a
social media based method is its capability to learn from socially tagged
examples with unreliable annotations. Such a training media is marked as
S in the framework. Optionally, in order to obtain a refined training media
Ŝ, one might consider designing a filter to remove unwanted tags and images.
In addition, prior information such as tag statistics, tag correlations, and
image affinities in the training media are independent of a specific image-
tag pair. They can be precomputed for the sake of efficiency. As the filter
and the precomputation appear to be a choice of implementation, they are
positioned as auxiliary components in Fig. 2.1.

A number of implementations of the relevance function are described
and compared in Chapter 3, with regard to their use for tag assignment,
refinement and retrieval. Depending on how fΦ(x, t; Θ) is composed in-
ternally, we propose a taxonomy which organizes existing works along two
dimensions, namely media and learning. As shown in Table 2.1, the me-
dia dimension characterizes what essential information fΦ(x, t; Θ) exploits,
while the learning dimension depicts how such information is exploited. We
explore the taxonomy along the media dimension in Section 2.4 and the
learning dimension in Section 2.5, followed by a discussion on the two aux-
iliary components in Section 2.6.

2.4 Media for tag relevance

Different sources of information may play a role in determining the relevance
between an image and a social tag. For instance, the position of a tag
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Figure 2.1: Dataflow to structure the literature on tag relevance learning for

image tag assignment, refinement and retrieval. We follow the input data as it

flows through the process of the tag relevance function fΦ(x, t; Θ) to higher level tasks,

complete with common internal activities and surrounding auxiliary components. Dashed

lines indicate optional processes such as the auxiliary components and transduction-based

algorithms.

appearing in the tag list might reflect a user’s tagging priority to some extent
(Sun et al., 2011). Knowing what other tags are assigned to the image (Zhu
et al., 2012) or what other users label about similar images (Li et al., 2009b;
Kennedy et al., 2009) can also be helpful for judging whether the tag under
examination is appropriate or not. Depending on what modalities in S are
utilized, we divide existing works into the following three groups: 1) tag
based, 2) tag + image based and 3) tag + image + user information based,
ordered in light of the amount of information they utilize. Table 2.1 shows
this classification for several papers that appeared in the literature on the
subject.

2.4.1 Tag based

These methods build fΦ(x, t; Θ) purely based on tag information. Tag posi-
tion is considered in (Sun et al., 2011), where a tag appearing top in the tag
list is regarded as more relevant. To find tags that are semantically close
to the majority of the tags assigned to the test image, tag co-occurrence is
considered in (Sigurbjörnsson and van Zwol, 2008; Zhu et al., 2012), while
topic modeling is employed in (Xu et al., 2009). As the tag based methods
presume that the test image has been labeled with some initial tags, i.e. the
initial tags are taken as the user information Θ, they are inapplicable for
tag assignment.
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2.4.2 Tag + Image based

Works in this group develop fΦ(x, t; Θ) on the base of visual information
and associated tags. The main rationale behind them is visual consistency,
i.e. visually similar images shall be labeled with similar tags. Implemen-
tations of this intuition can be grouped in three conducts. One, leverage
images visually close to the test image (Li et al., 2009b; Li, Snoek and Wor-
ring, 2010; Verbeek et al., 2010; Ma et al., 2010; Wu et al., 2011; Feng et al.,
2012). Two, exploit relationships between images labeled with the same tag
(Liu, Hua, Yang, Wang and Zhang, 2009; Richter et al., 2012; Liu, Yan,
Hua and Zhang, 2011; Kuo et al., 2012; Gao et al., 2013). Three, learn
visual classifiers from socially tagged examples (Wang et al., 2009a; Chen
et al., 2012; Li and Snoek, 2013; Yang, Gao, Zhang, Shao and Chua, 2014).
By propagating tags based on the visual evidence, the above works exploit
the image modality and the tag modality in a sequential way. By contrast,
there are works that concurrently exploit the two modalities. This can be
approached by generating a common latent space upon the image-tag asso-
ciation (Srivastava and Salakhutdinov, 2014; Niu et al., 2014; Duan et al.,
2014), so that a cross media similarity can be computed between images and
tags (Zhuang and Hoi, 2011; Qi et al., 2012; Liu et al., 2013). In (Pereira
et al., 2014), the latent space is constructed by Canonical Correlation Anal-
ysis, finding two matrices which separately project feature vectors of image
and tag into the same subspace. In (Ma et al., 2010), a random walk model
is used on a unified graph composed from the fusion of an image similar-
ity graph with an image-tag connection graph. In (Wu et al., 2013; Xu
et al., 2014; Zhu et al., 2010), predefined image similarity and tag similarity
are used as two constraint terms to enforce that similarities induced from
the recovered image-tag association matrix will be consistent with the two
predefined similarities.

Although late fusion has been actively studied for multimedia data anal-
ysis (Atrey et al., 2010), improving tag relevance estimation by late fusion is
not much explored. There are some efforts in that direction, among which
interesting performance has been reported in (Qian et al., 2014) and more
recently in (Li, 2015).

2.4.3 Tag + Image + User information based

In addition to tags and images, this group of works exploit user information,
motivated from varied perspectives. With the hypothesis that a specific tag
chosen by many users to label visually similar images is more likely to be
relevant with respect to the visual content, (Li et al., 2009b) utilizes user
identities to ensure that learning examples come from distinct users. A sim-
ilar idea is reported in (Kennedy et al., 2009), finding visually similar image
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pairs with matching tags from different users. (Ginsca et al., 2014) improves
image retrieval by favoring images uploaded by users with good credibility
estimates. In (Sawant et al., 2010; Li, Gavves, Snoek, Worring and Smeul-
ders, 2011), personal tagging preference is considered in the form of tag
statistics computed from images a user has uploaded in the past. These
past images are used in (Liu et al., 2014) to learn a user-specific embedding
space. In (Sang, Xu and Liu, 2012), user affinities, measured in terms of
the number of common groups users are sharing, is considered in a tensor
analysis framework. Similarly, tensor based low-rank data reconstruction
is employed in (Qian et al., 2015) to discover latent associations between
users, images, and tags. Photo timestamps are exploited for time-sensitive
image retrieval (Kim and Xing, 2013), where the connection between image
occurrence and various temporal factors is modeled. In (McParlane et al.,
2013a), time-constrained tag co-occurrence statistics are considered to re-
fine the output of visual classifiers for tag assignment. In their follow-up
work (McParlane et al., 2013b), location-constrained tag co-occurrence com-
puted from images taken in a specific continent is further included. User
interactions in social networks are exploited in (Sawant et al., 2010), com-
puting local interaction networks from the comments left by other users.
Social-network metadata such as group memberships of images and con-
tacts of users is employed in (Wang et al., 2009b; McAuley and Leskovec,
2012; Johnson et al., 2015) for image classification.

Comparing the three groups, tag + image appears to be the mainstream,
as evidenced by the imbalanced distribution in Table 2.1. Intuitively, using
more media from S would typically increase the reliability of tag relevance
estimation. We attribute the imbalance among the groups, in particular the
relatively few works in the third group, to the following two reasons. First,
no publicly available dataset with expert annotations was built to gather
representative and adequate user information, e.g. MIRFlickr has nearly 10k
users for 25k images, while in NUS-WIDE only 6% of the users have at least
15 images. As a consequence, current works that leverage user information
are forced to use a minimal subset to alleviate sample insufficiency (Sang,
Xu and Liu, 2012; Sang, Xu and Lu, 2012) or homemade collections with
social tags as ground truth instead of benchmark sets (Sawant et al., 2010;
Li, Gavves, Snoek, Worring and Smeulders, 2011). Second, adding more
media often results in a substantial increase in terms of both computation
and memory, e.g. the cubic complexity for tensor factorization in (Sang, Xu
and Liu, 2012). As a trade-off, one has to use S of a much smaller scale.
The dilemma is whether one should use large data with less media or more
media but less data.

It is worth noting that the above groups are not exclusive. The output
of some methods can be used as a refined input of some other methods.
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In particular, we observe a frequent usage of tag-based methods by others
for their computational efficiency. For instance, tag relevance measured in
terms of tag similarity is used in (Zhuang and Hoi, 2011; Gao et al., 2013;
Li and Snoek, 2013) before applying more advanced analysis, while nearest
neighbor tag propagation is a pre-process used in (Zhu et al., 2010). The
number of tags per image is embedded into image retrieval functions in (Liu,
Hua, Yang, Wang and Zhang, 2009; Xu et al., 2009; Zhuang and Hoi, 2011;
Chen et al., 2012).

Given the varied sources of information one could leverage, the subse-
quent question is how the information is exactly utilized, which will be made
clear next.

2.5 Learning for tag relevance

This section presents the second dimension of the taxonomy, elaborating on
various algorithms for tag relevance learning. Depending on whether the
tag relevance learning process is transductive, i.e., producing tag relevance
scores without distinction as training and testing, we divide existing works
into transduction-based and induction-based. Since the latter produces rules
or models that are directly applicable to a novel instance (Michalski, 1983),
it has a better scalability for large-scale data compared to its transductive
counterpart. Depending on whether an explicit model, let it be discrimina-
tive or generative, is built, a further division for the induction-based meth-
ods can be made: instance-based algorithms and model-based algorithms.
Consequently, we divide existing works into the following three exclusive
groups: 1) instance-based, 2) model-based, and 3) transduction-based.

2.5.1 Instance-based

This class of methods does not perform explicit generalization but, instead,
compares new test images with training instances. It is called instance-based
because it constructs hypotheses directly from the training instances them-
selves. These methods are non parametric and the complexity of the learned
hypotheses grows as the amount of training data increases. The neighbor
voting algorithm (Li et al., 2009b) and its variants (Kennedy et al., 2009;
Li, Snoek and Worring, 2010; Truong et al., 2012; Lee et al., 2013; Zhu
et al., 2014) estimate the relevance of a tag t with respect to an image x by
counting the occurrence of t in annotations of the visual neighbors of x. The
visual neighborhood is created using features obtained from early-fusion of
global features (Li et al., 2009b), distance metric learning to combine local
and global features (Verbeek et al., 2010; Wu et al., 2011), cross modal learn-
ing of tags and image features (Qi et al., 2012; Ballan, Uricchio, Seidenari
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and Bimbo, 2014; Pereira et al., 2014), and fusion of multiple single-feature
learners (Li, Snoek and Worring, 2010). While the standard neighbor vot-
ing algorithm (Li et al., 2009b) simply let the neighbors vote equally, efforts
have been made to (heuristically) weight neighbors in terms of their impor-
tance. For instance, in (Truong et al., 2012; Lee et al., 2013) the visual
similarity is used as the weights. As an alternative to such a heuristic strat-
egy, (Zhu et al., 2014) models the relationships among the neighbors by
constructing a directed voting graph, wherein there is a directed edge from
image xi to image xj if xi is in the k nearest neighbors of xj. Subsequently
an adaptive random walk is conducted over the voting graph to estimate
the tag relevance. However, the performance gain obtained by these weight-
ing strategies appears to be limited (Zhu et al., 2014). The kernel density
estimation technique used in (Liu, Hua, Yang, Wang and Zhang, 2009) can
be viewed as another form of weighted voting, but the votes come from
images labeled with t instead of the visual neighbors. (Yang et al., 2011)
further considers the distance of the test image to images not labeled with t.
In order to eliminate semantically unrelated samples in the neighborhood,
sparse reconstruction from a k-nearest neighborhood is used in (Tang et al.,
2009, 2011). In (Lin et al., 2013), with intention of recovering missing tags
by matrix reconstruction, the image and tag modalities are separately ex-
ploited in parallel to produce a new candidate image-tag association matrix
each. Then, the two resultant tag relevance scores are linearly combined
to produce the final tag relevance scores. To address the incompleteness of
tags associated with the visual neighbors, (Znaidia et al., 2013) proposes
to enrich these tags by exploiting tag co-occurrence in advance to neighbor
voting.

2.5.2 Model-based

This class of tag relevance learning algorithms puts their foundations on
parameterized models learned from the training media. Notice that the
models can be tag-specific or holistic for all tags. As an example of holistic
modeling, a topic model approach is presented in (Wang, Zhou, Xu, Mei,
Hua and Li, 2014) for tag refinement, where a hidden topic layer is intro-
duced between images and tags. Consequently, the tag relevance function is
implemented as the dot product between the topic vector of the image and
the topic vector of the tag. In particular, the authors extend the Latent
Dirichlet Allocation model (Blei et al., 2003) to force images with similar
visual content to have similar topic distribution. According to their experi-
ments (Wang, Zhou, Xu, Mei, Hua and Li, 2014), however, the gain of such
a regularization appears to be marginal compared to the standard Latent
Dirichlet Allocation model. (Li, Liu and Lu, 2013) first finds embedding
vectors of training images and tags using the image-tag association matrix
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and Bimbo, 2014; Pereira et al., 2014), and fusion of multiple single-feature
learners (Li, Snoek and Worring, 2010). While the standard neighbor vot-
ing algorithm (Li et al., 2009b) simply let the neighbors vote equally, efforts
have been made to (heuristically) weight neighbors in terms of their impor-
tance. For instance, in (Truong et al., 2012; Lee et al., 2013) the visual
similarity is used as the weights. As an alternative to such a heuristic strat-
egy, (Zhu et al., 2014) models the relationships among the neighbors by
constructing a directed voting graph, wherein there is a directed edge from
image xi to image xj if xi is in the k nearest neighbors of xj. Subsequently
an adaptive random walk is conducted over the voting graph to estimate
the tag relevance. However, the performance gain obtained by these weight-
ing strategies appears to be limited (Zhu et al., 2014). The kernel density
estimation technique used in (Liu, Hua, Yang, Wang and Zhang, 2009) can
be viewed as another form of weighted voting, but the votes come from
images labeled with t instead of the visual neighbors. (Yang et al., 2011)
further considers the distance of the test image to images not labeled with t.
In order to eliminate semantically unrelated samples in the neighborhood,
sparse reconstruction from a k-nearest neighborhood is used in (Tang et al.,
2009, 2011). In (Lin et al., 2013), with intention of recovering missing tags
by matrix reconstruction, the image and tag modalities are separately ex-
ploited in parallel to produce a new candidate image-tag association matrix
each. Then, the two resultant tag relevance scores are linearly combined
to produce the final tag relevance scores. To address the incompleteness of
tags associated with the visual neighbors, (Znaidia et al., 2013) proposes
to enrich these tags by exploiting tag co-occurrence in advance to neighbor
voting.

2.5.2 Model-based

This class of tag relevance learning algorithms puts their foundations on
parameterized models learned from the training media. Notice that the
models can be tag-specific or holistic for all tags. As an example of holistic
modeling, a topic model approach is presented in (Wang, Zhou, Xu, Mei,
Hua and Li, 2014) for tag refinement, where a hidden topic layer is intro-
duced between images and tags. Consequently, the tag relevance function is
implemented as the dot product between the topic vector of the image and
the topic vector of the tag. In particular, the authors extend the Latent
Dirichlet Allocation model (Blei et al., 2003) to force images with similar
visual content to have similar topic distribution. According to their experi-
ments (Wang, Zhou, Xu, Mei, Hua and Li, 2014), however, the gain of such
a regularization appears to be marginal compared to the standard Latent
Dirichlet Allocation model. (Li, Liu and Lu, 2013) first finds embedding
vectors of training images and tags using the image-tag association matrix
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of S. The embedding vector of a test image is obtained by a convex com-
bination of the embedding vectors of its neighbors retrieved in the original
visual feature space. Consequently, the relevance score is computed in terms
of the Euclidean distance between the embedding vectors of the test image
and the tag.

For tag-specific modeling, linear SVM classifiers trained on features aug-
mented by pre-trained classifiers of popular tags are used in (Chen et al.,
2012) for tag retrieval. Fast intersection kernel SVMs trained on selected
relevant positive and negative examples are used in (Li and Snoek, 2013). A
bag-based image reranking framework is introduced in (Duan et al., 2011),
where pseudo relevant images retrieved by tag matching are partitioned into
clusters by using visual and textual features. Then, by treating each cluster
as a bag and images within the cluster as its instances, multiple instance
learning (Andrews et al., 2003) is employed to learn multiple-instance SVMs
per tag. Viewing the social tags of a test image as ground truth, a multi-
modal tag suggestion method based on both tags and visual correlation is
introduced in (Wu et al., 2009). Each modality is used to generate a rank-
ing feature, and the tag relevance function is a combination of these ranking
features, with the combination weights learned online by the RankBoost al-
gorithm (Freund et al., 2003). In (Guillaumin et al., 2009; Verbeek et al.,
2010), logistic regression models are built per tag to promote rare tags. In a
similar spirit to (Li and Snoek, 2013), (Zhou et al., 2015) learns an ensemble
of SVMs by treating tagged images as positive training examples and un-
tagged images as candidate negative training examples. Using the ensemble
to classify image regions generated by automated image segmentation, the
authors assign tags at the image level and the region level simultaneously.

2.5.3 Transduction-based

This class of methods consists in procedures that evaluate tag relevance
for a given image-tag pair of a set of images by minimizing some specific
cost function. Given an initial image-tag association matrix D, the output
of the procedure is a new matrix D̂ the elements of which are taken as
tag relevance scores. Due to this formulation, no explicit form of the tag
relevance function exists nor any distinction between training and test sets
(Joachims, 1999). If novel images are added to the initial set, minimization
of the cost function needs to be re-computed.

The majority of transduction-based approaches are founded on matrix
factorization (Zhu et al., 2010; Sang, Xu and Liu, 2012; Liu et al., 2013;
Wu et al., 2013; Kalayeh et al., 2014; Feng et al., 2014; Xu et al., 2014).
In (Zhuang and Hoi, 2011) the objective function is a linear combination of
the difference between D̂ and the matrix of image similarity, the distortion
between D̂ and the matrix of tag similarity, and the difference between D̂
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and D. A stochastic coordinate descent optimization is applied to a ran-
domly chosen row of D̂ per iteration. In (Zhu et al., 2010), considering the
fact that D is corrupted with noise derived by missing or over-personalized
tags, robust principal component analysis with laplacian regularization is
applied to recover D̂ as a low-rank matrix. In (Wu et al., 2013), D̂ is regu-
larized such that the image similarity induced from D̂ is consistent with the
image similarity computed in terms of low-level visual features, and the tag
similarity induced from D̂ is consistent with the tag correlation score com-
puted in terms of tag co-occurrence. In (Xu et al., 2014), it is proposed to
re-weight the penalty term of each image-tag pair by their relevance score,
which is estimated by a linear fusion of tag-based and content-based rele-
vance scores. To incorporate the user element, (Sang, Xu and Liu, 2012)
extends D to a three-way tensor with tag, image, and user as each of the
ways. A core tensor and three matrices representing the three media, ob-
tained by Tucker decomposition (Tucker, 1966), are multiplied to construct
D̂.

As an alternative approach, in (Feng et al., 2014) it is assumed that
the tags of an image are drawn independently from a fixed but unknown
multinomial distribution. Estimation of this distribution is implemented by
maximum likelihood with low-rank matrix recovery and laplacian regular-
ization like (Zhu et al., 2010).

Graph-based label propagation is another type of transduction-based
methods. In (Richter et al., 2012; Wang et al., 2010; Kuo et al., 2012),
the image-tag pairs are represented as a graph in which each node cor-
responds to a specific image and the edges are weighted according to a
multi-modal similarity measure. Viewing the top ranked examples in the
initial search results as positive instances, tag refinement is implemented as
a semi-supervised labeling process by propagating labels from the positive
instances to the remaining examples using random walk. While the edge
weights are fixed in the above works, (Gao et al., 2013) argues that fixing
the weights could be problematic, because tags found to be discriminative in
the learning process should adaptively contribute more to the edge weights.
In that regard, the hypergraph learning algorithm (Zhou et al., 2006) is ex-
ploited and weights are optimized by minimizing a joint loss function which
considers both the graph structure and the divergence between the initial
labels and the learned labels. In (Liu, Wu, Zhang, Shao and Zhuang, 2011),
the hypergraph is embedded into a lower-dimension space by hypergraph
Laplacian.

Comparing the three groups of methods for learning tag relevance, an
advantage of instance-based methods against the other two groups is their
flexibility to adapt to previously unseen images and tags. They may simply
add new training images into S or remove outdated ones. The advantage
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and D. A stochastic coordinate descent optimization is applied to a ran-
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the weights could be problematic, because tags found to be discriminative in
the learning process should adaptively contribute more to the edge weights.
In that regard, the hypergraph learning algorithm (Zhou et al., 2006) is ex-
ploited and weights are optimized by minimizing a joint loss function which
considers both the graph structure and the divergence between the initial
labels and the learned labels. In (Liu, Wu, Zhang, Shao and Zhuang, 2011),
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Comparing the three groups of methods for learning tag relevance, an
advantage of instance-based methods against the other two groups is their
flexibility to adapt to previously unseen images and tags. They may simply
add new training images into S or remove outdated ones. The advantage
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however comes with a price that S has to be maintained, a non-trivial task
given the increasing amount of training data available. Also, the computa-
tional complexity and memory footprint grow linearly with respect to the
size of S. In contrast, model-based methods could be more swift, especially
when linear classifiers are used, as the training data is compactly repre-
sented by a fixed number of models. As the imagery of a given tag may
evolve, re-training is required to keep the models up-to-date.

Different from instance-based and model-based learning where individ-
ual tags are considered independently, transduction-based learning methods
via matrix factorization can favorably exploit inter-tag and inter-image re-
lationships. However, their ability to deal with the extremely large number
of social images is a concern. For instance, the use of Laplacian graphs re-
sults in a memory complexity of O(|S|2). The accelerated proximal gradient
algorithm used in (Zhu et al., 2010) requires Singular Value Decomposition,
which is known to be an expensive operation. The Tucker decomposition
used in (Sang, Xu and Liu, 2012) has a cubic computational complexity with
respect to the number of training samples. We notice that some engineering
tricks have been considered in these works, which alleviate the scalability
issue to some extent. In (Zhuang and Hoi, 2011), for instance, clustering is
conducted in advance to divide S into much smaller subsets, and the algo-
rithm is applied to these subsets, separately. By making the Laplacian more
sparse by retaining only the k nearest neighbors (Zhu et al., 2010; Sang, Xu
and Liu, 2012), the memory footprint can be reduced to O(k · |S|), with the
cost of performance degeneration. Perhaps due to the scalability concern,
works resorting to matrix factorization tend to experiment with a dataset
of relatively small scale.

2.6 Auxiliary components

The Filter and the Precompute component are auxiliary components that
may sustain and improve tag relevance learning.

Filter. As social tags are known to be subjective and overly personal-
ized, removing personalized tags appears to be a natural and simple way
to improve the tagging quality. This is usually the first step performed in
the framework for tag relevance learning. Although there is a lack of golden
criteria to determine which tags are personalized, a popular strategy is to
exclude tags which cannot be found in the WordNet ontology (Zhu et al.,
2010; Li, Gavves, Snoek, Worring and Smeulders, 2011; Chen et al., 2012;
Zhu et al., 2012) or a Wikipedia thesaurus (Liu, Hua, Yang, Wang and
Zhang, 2009). Tags with rare occurrence, say appearing less than 50 times,
are discarded in (Verbeek et al., 2010; Zhu et al., 2010). For methods that
directly work on the image-tag association matrix (Zhu et al., 2010; Sang,
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Xu and Liu, 2012; Wu et al., 2013; Lin et al., 2013), reducing the size of the
vocabulary in terms of tag occurrence is an important prerequisite to keep
the matrix in a manageable scale. Observing that images tagged in a batch
manner are often nearly duplicate and of low tagging quality, batch-tagged
images are excluded in (Li et al., 2012). Since relevant tags may be missing
from user annotations, the negative tags that are semantically similar or
co-occurring with positive ones are discarded in (Sang, Xu and Liu, 2012).
As the above strategies do not take the visual content into account, they
cannot handle situations where an image is incorrectly labeled with a valid
and frequently used tag, say ‘dog’. In (Li et al., 2009a), tag relevance scores
are assigned to each image in S by running the neighbor voting algorithm
(Li et al., 2009b), while in (Li and Snoek, 2013), the semantic field algorithm
(Zhu et al., 2012) is further added to select relevant training examples. In
(Qian et al., 2015), the annotation of the training media is enriched by a
random walk.

Precompute. The precompute component is responsible for the genera-
tion of the prior information that is jointly used with the refined training
media Ŝ in learning. For instance, global statistics and external resources
can be used to synthesize new prior knowledge useful in learning. The prior
information commonly used is tag statistics in S, including tag occurrence
and tag co-occurrence. Tag occurrence is used in (Li et al., 2009b) as a
penalty to suppress overly frequent tags. Measuring the semantic simi-
larity between two tags is important for tag relevance learning algorithms
that exploit tag correlations. While linguistic metrics as those derived from
WordNet were used before the proliferation of social media (Jin et al., 2005;
Wang et al., 2006), they do not directly reflect how people tag images. For
instance, tag ‘sunset’ and tag ‘sea’ are weakly related according to the Word-
Net ontology, but they often appear together in social tagging as many of
the sunset photos are shot around seasides. Therefore, similarity measures
that are based on tag statistics computed from many socially tagged im-
ages are in dominant use. Sigurbjörnsson and van Zwol utilized the Jaccard
coefficient and a conditional tag probability in their tag suggestion system
(Sigurbjörnsson and van Zwol, 2008), while Liu et al. used normalized tag
co-occurrence (Liu et al., 2013). To better capture the visual relationship
between two tags, Wu et al. proposed the Flickr distance (Wu et al., 2008).
The authors represent each tag by a visual language model, trained on bag
of visual words features of images labeled with this tag. The Flickr distance
between two tags is computed as the Jensen-Shannon divergence between
the corresponding models. Later, Jiang et al. introduced the Flickr context
similarity, which also captures the visual relationship between two tags, but
without the need of the expensive visual modeling (Jiang et al., 2009). The
trick is to compute the Normalized Google Distance (Cilibrasi and Vitanyi,
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the corresponding models. Later, Jiang et al. introduced the Flickr context
similarity, which also captures the visual relationship between two tags, but
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2004) between two tags, but with tag statistics acquired from Flickr image
collections instead of Google indexed web pages. For its simplicity and ef-
fectiveness, we observe a prevalent use of the Flickr context similarity in the
literature (Liu, Hua, Yang, Wang and Zhang, 2009; Zhu et al., 2010; Wang
et al., 2010; Zhuang and Hoi, 2011; Zhu et al., 2012; Gao et al., 2013; Li
and Snoek, 2013; Qian et al., 2014).

2.7 Conclusions

We presented a survey on image tag assignment, refinement and retrieval,
with the hope of illustrating connections and difference between the many
methods and their applicabilities, and consequently helping the interested
audience to either pick up an existing method or devise a method of their
own given the data at hand. As the topics are being actively studied,
inevitably this survey will miss some papers. Nevertheless, it provides a
unified view of many existing works, and consequently eases the effort of
placing future works in a proper context, both theoretically and experimen-
tally. Based on the key observation that all works rely on tag relevance
learning as the common ingredient, exiting works, which vary in terms of
their methodologies and target tasks, are interpreted in a unified framework.
Consequently, a two-dimensional taxonomy has been developed, allowing us
to structure the growing literature in light of what information a specific
method exploits and how the information is leveraged in order to produce
their tag relevance scores.
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Chapter 3

A new Experimental Protocol

In this chapter we propose an evaluation test-bed for the three
linked tasks of Assignment, Refinement and Retrieval. Train-
ing sets of varying sizes and three test datasets are considered
to evaluate methods of varied learning complexity. A selected set
of eleven representative works have been implemented and eval-
uated. Several overall patterns are recognized. To highlight the
advantages of socially tagged training sets, an empirical evalua-
tion between ImageNet and the proposed Flickr-based training sets
is reported. 1

3.1 Introduction

In spite of the expanding literature, there is a lack of consensus on the
performance of the individual methods. This is largely due to the fact
that existing works either use homemade data, see (Liu, Hua, Yang, Wang
and Zhang, 2009; Wang et al., 2010; Chen et al., 2012; Gao et al., 2013),
which are not publicly accessible, or use selected subsets of benchmark data,
e.g. as in (Zhu et al., 2010; Sang, Xu and Liu, 2012; Feng et al., 2014). As
a consequence, the performance scores reported in the literature are not
comparable across the papers.

Benchmark data with manually verified labels is crucial for an objective
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Chapter 3

A new Experimental Protocol
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learning the underlying tag relevance function from the training part of a
chosen benchmark set, and evaluating it on the test part. Such a protocol
is inadequate given the dynamic nature of social media, which could easily
make an existing benchmark set outdated. For any method targeting at
social images, a cross-set evaluation is necessary to test its generalization
ability, which is however overlooked in the literature.

Another desirable property is the capability to learn from the increasing
amounts of socially tagged images. While existing works mostly use training
data of a fixed scale, this property has not been well evaluated.

Following these considerations, we present a new experimental proto-
col, wherein training and test data from distinct research groups are chosen
for evaluating a number of representative works in the cross-set scenario.
Training sets with their size ranging from 10k to one million images are con-
structed to evaluate methods of varied complexity. To the best of our knowl-
edge, such a comparison between many methods on varied scale datasets
with a common experimental setup has not been conducted before. For the
sake of experimental reproducibility, all data and code is made available
online at www.micc.unifi.it/tagsurvey/.

3.2 Datasets

We describe the training media S and the test media X as follows, with
basic data characteristics and their usage summarized in Table 3.1.

Training media S. We use a set of 1.2 million Flickr images collected by
the University of Amsterdam (Li et al., 2012), by using over 25,000 nouns in
WordNet as queries to uniformly sample images uploaded between 2006 and
2010. Based on our observation that batch-tagged images, namely those
labeled with the same tags by the same user, tend to be near duplicate,
we have excluded these images beforehand. Other than this, we do not
perform near-duplicate image removal. To meet with methods that cannot
handle large data, we created two random subsets from the entire training
sets, resulting in three training sets of varied sizes, termed as Train10k,
Train100k, and Train1m, respectively.

Test media X . We use MIRFlickr (Huiskes et al., 2010) and NUS-WIDE
(Chua et al., 2009) for tag assignment and refinement, as in (Verbeek et al.,
2010; Zhu et al., 2010; Uricchio et al., 2013) and (Tang et al., 2011; McAuley
and Leskovec, 2012; Zhu et al., 2010; Uricchio et al., 2013) respectively. We
use NUS-WIDE for evaluating tag retrieval as in (Sun et al., 2011; Li, Duan,
Xu and Tsang, 2011). In addition, for retrieval we collected another test set
namely Flickr51 contributed by Microsoft Research Asia (Wang et al., 2010;
Gao et al., 2013). The MIRFlickr set contains 25,000 images with ground
truth available for 14 tags. The NUS-WIDE set contains 259,233 images,

34

Table 3.1: Our proposed experimental protocol instantiates the Media and Tasks dimen-

sions of Fig. 2.1 with three training sets and three test sets for tag assignment, refinement

and retrieval. Note that the training sets are socially tagged, they have no ground truth

available for any tag.

Media characteristics Tasks

Media # images # tags # users # test tags assignment refinement retrieval

Training media S:

Train10k 10,000 41,253 9,249 – ✓ ✓ ✓
Train100k 100,000 214,666 68,215 – ✓ ✓ ✓
Train1m (Li et al., 2012) 1,198,818 1,127,139 347,369 – ✓ ✓ ✓

Test media X :

MIRFlickr (Huiskes et al., 2010) 25,000 67,389 9,862 14 ✓ ✓ –

Flickr51 (Wang et al., 2010) 81,541 66,900 20,886 51 – – ✓
NUS-WIDE (Chua et al., 2009) 259,233 355,913 51,645 81 ✓ ✓ ✓

Table 3.2: Data overlap between Train1M and the three test sets, measured in terms

of the number of shared images, tags, and users, respectively. Tag overlap is counted

on the top 1,000 most frequent tags. As the original photo ids of MIRFlickr have been

anonymized, we cannot check image overlap between this dataset and Train1M.

Overlap with Train1M

Test media # images # tags # users

MIRFlickr − 693 6,515

Flickr51 730 538 14,211

NUS-WIDE 7,975 718 38,481

with ground truth available for 81 tags. The Flickr51 set consists of 81,541
Flickr images with partial ground truth provided for 55 test tags. Among
the 55 tags, there are 4 tags which either have zero occurrence in our training
data or have no correspondence in WordNet, so we ignore them. Differently
from the binary judgments in NUS-WIDE, Flickr51 provides graded rele-
vance, with 0, 1, and 2 to indicate irrelevant, relevant, and very relevant,
respectively. Moreover, the set contains several ambiguous tags such as ‘ap-
ple’ and ‘jaguar’, where relevant instances could exhibit completely different
imagery, e.g., Apple computers versus fruit apples. Following the original
intention of the datasets, we use MIRFlickr and NUS-WIDE for evaluating
tag assignment and tag refinement, and Flickr51 and NUS-WIDE for tag
retrieval. For all the three test sets, we use the full dataset for testing.

Although the training and test media are all from Flickr, they were col-
lected independently, and consequently they have a relatively small amount
of images overlapped with each other, as shown in Table 3.2.
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3.3 Implementation and Evaluation

This section describes common implementations applicable to all the three
tasks, including the choice of visual features and tag preprocessing. Imple-
mentations that are applied uniquely to single tasks will be described in the
coming sections.

Visual features. Two types of features are extracted to provide insights
of the performance improvement achievable by appropriate feature selec-
tion: the classical bag of visual words (BoVW) and the current state of
the art deep learning based features extracted from Convolutional Neural
Networks (CNN). The BoVW feature is extracted by the color descriptor
software (van de Sande et al., 2010). SIFT descriptors are computed at
dense sampled points, at every 6 pixels for two scales. A codebook of size
1,024 is created by K-means clustering. The SIFTs are quantized by the
codebook using hard assignment, and aggregated by sum pooling. In addi-
tion, we extract a compact 64-d global feature (Li, 2007), combining a 44-d
color correlogram, a 14-d texture moment, and a 6-d RGB color moment, to
compensate the BoVW feature. The CNN feature is extracted by the pre-
trained VGGNet (Simonyan and Zisserman, 2015). In particular, we adopt
the 16-layer VGGNet, and take as feature vectors the last fully connected
layer of ReLU activation, resulting in a feature vector of 4,096 dimensions
per image. The BoVW feature is used with the l1 distance and the CNN
feature is used with the cosine distance for their good performance.

Vocabulary V. As what tags a person may use is meant to be open, the
need of specifying a tag vocabulary is merely an engineering convenience.
For a tag to be meaningfully modeled, there has to be a reasonable amount
of training images with respect to that tag. For methods where tags are
processed independently from the others, the size of the vocabulary has no
impact on the performance. In the other cases, in particular for transductive
methods that rely on the image-tag association matrix, the tag dimension
has to be constrained to make the methods runnable. In our case, for these
methods a three-step automatic cleaning procedure is performed on the
training datasets. First, all the tags are lemmatized to their base forms by
the NLTK software (Bird et al., 2009). Second, tags not defined in WordNet
are removed. Finally, in order to avoid insufficient sampling, we remove
tags that cannot meet a threshold on tag occurrence. The thresholds are
empirically set as 50, 250, and 750 for Train10k, Train100k, and Train1m,
respectively, in order to have a linear increase in vocabulary size versus a
logarithmic increase in the number of labeled images. This results in a final
vocabulary of 237, 419, and 1,549 tags, respectively, with all the test tags
included. Note that these numbers of tags are larger than the number of
tags that can be actually evaluated. This allows to build a unified learning
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method that is more handy for cross-dataset evaluation and exploit inter-tag
relationships.

3.3.1 Evaluating tag assignment

Evaluation criteria. A good method for tag assignment shall rank relevant
tags before irrelevant tags for a given test image. Moreover, with the as-
signed tags, relevant images shall be ranked before irrelevant images for a
given test tag. We therefore use the image-centric Mean image Average
Precision (MiAP) to measure the quality of tag ranking, and the tag-centric
Mean Average Precision (MAP) to measure the quality of image ranking.
Let mgt be the number of ground-truthed test tags, which is 14 for MIR-
Flickr and 81 for NUS-WIDE. The image-centric Average Precision of a
given test image x is computed as

iAP (x) :=
1

R

mgt∑
j=1

rj
j
δ(x, tj), (3.1)

where R is the number of relevant tags of the given image, rj is the number
of relevant tags in the top j ranked tags, and δ(xi, tj) = 1 if tag tj is
relevant and 0 otherwise. MiAP is obtained by averaging iAP (x) over the
test images.

The tag-centric Average Precision of a given test tag t is computed as

AP (t) :=
1

R

n∑
i=1

ri
i
δ(xi, t), (3.2)

where R is the number of relevant images for the given tag, and ri is the
number of relevant images in the top i ranked images. MAP is obtained by
averaging AP (t) over the test tags.

The two metrics are complementary to some extent. Since MiAP is aver-
aged over images, each test image contributes equally to MiAP, as opposed
to MAP where each tag contributes equally. Consequently, MiAP is biased
towards frequent tags, while MAP can be easily affected by the performance
of rare tags, especially when mgt is relatively small.

Baseline. Any method targeting at tag assignment shall be better than
a random guess, which simply returns a random set of tags. The Ran-
domGuess baseline is obtained by computing MiAP and MAP given the
random prediction, which is run 100 times with the resulting scores aver-
aged.

3.3.2 Evaluating tag refinement

Evaluation criteria. As tag refinement is also meant for improving tag
ranking and image ranking, it is evaluated by the same criteria, i.e., MiAP
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and MAP, as used for tag assignment.

Baseline. A natural baseline for tag refinement is the original user tags
assigned to an image, which we term as UserTags.

3.3.3 Evaluating tag retrieval

Evaluation criteria. To compare methods for tag retrieval, for each test tag
we first conduct tag-based image search to retrieve images labeled with that
tag, and then sort the images by the tag relevance scores. We use MAP
to measure the quality of the entire image ranking. As users often look at
the top ranked results and hardly go through the entire list, we also report
Normalized Discounted Cumulative Gain (NDCG), commonly used to eval-
uate the top few ranked results of an information retrieval system (Järvelin
and Kekäläinen, 2002). Given a test tag t, its NDCG at a particular rank
position h is defined as:

NDCGh(t) :=
DCGh(t)

IDCGh(t)
, (3.3)

DCGh(t) =
h∑

i=1

2reli − 1

log2(i+ 1)
, (3.4)

where reli is the graded relevance of the result at position i, and IDCGh

is the maximum possible DCG till position h. We set h to be 20, which
corresponds to a typical number of search results presented on the first two
pages of a web search engine. Similar to MAP, NDCG20 of a specific method
on a specific test set is averaged over the test tags of that test set.

Baselines. When searching for relevant images for a given tag, it is
natural to ask how much a specific method gains compared to a baseline
system which simply returns a random subset of images labeled with that
tag. Similar to the refinement baseline, we also denote this baseline as
UserTags, as both of them purely use the original user tags. For each test
tag, the test images labeled with this tag are sorted at random, and MAP
and NDCG20 are computed accordingly. The process is executed 100 times,
and the average score over the 100 runs is reported.

The number of tags per image is often included for image ranking in
previous works (Liu, Hua, Yang, Wang and Zhang, 2009; Xu et al., 2009).
Hence, we build another baseline system, denoted as TagNum, which sort
images in ascending order by the number of tags per image. The third base-
line, denoted as TagPosition, is from (Sun et al., 2011), where the relevance
score of a tag is determined by its position in the original tag list uploaded
by the user. More precisely, the score is computed as 1 − position(t)/l,
where l is the tag number.
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3.4 Methods under analysis

Despite the rich literature, most works do not provide code. An exhaustive
evaluation covering all published methods is impractical. We have to leave
out methods that do not show significant improvements or novelties w.r.t.
the seminal papers in the field, and methods that are difficult to replicate
with the same mathematical preciseness as intended by their developers. We
drive our choice by the intention to cover methods that aim for each of the
three tasks, exploiting varied modalities by distinct learning mechanisms.
Eventually we evaluate 11 representative methods. For each method we
analyze its scalability in terms of both computation and memory. Our
analysis leaves out operations that are independent of specific tags and thus
only need to be executed once in an offline manner, such as visual feature
extraction, tag preprocessing, prior information precomputing, and filtering.
Main properties of the methods are summarized in table 3.3. Concerning
the choices of parameters, we adopt what the original papers recommend.
When no recommendation is given for a specific method, we try a range of
values to our best understanding, and choose the parameters that yield the
best overall performance.

3.4.1 SemanticField

SemanticField (Zhu et al., 2012) measures tag relevance in terms of an
averaged semantic similarity between the tag and the other tags assigned
to the image:

fSemField(x, t) :=
1

lx

lx∑
i=1

sim(t, ti), (3.5)

where {t1, . . . , tlx} is a list of lx social tags assigned to the image x, and
sim(t, ti) denotes a semantic similarity between two tags. SemanticField
explicitly assumes that several tags are associated to visual data and their
coexistence is accounted in the evaluation of tag relevance. Following (Zhu
et al., 2012), the similarity is computed by combining the Flickr context
similarity and the WordNet Wu-Palmer similarity (Wu and Palmer, 1994).
The WordNet based similarity exploits path length in the WordNet hierar-
chy to infer tag relatedness. We make a small revision of (Zhu et al., 2012),
i.e. combining the two similarities by averaging instead of multiplication,
because the former strategy produces slightly better results. SemanticField
requires no training except for computing tag-wise similarity, which can be
computed offline and is thus omitted. Having all tag-wise similarities in
memory, applying Eq. (3.5) requires lx table lookups per tag. Hence, the
computational complexity is O(m · lx), and O(m2) for memory.
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on a specific test set is averaged over the test tags of that test set.

Baselines. When searching for relevant images for a given tag, it is
natural to ask how much a specific method gains compared to a baseline
system which simply returns a random subset of images labeled with that
tag. Similar to the refinement baseline, we also denote this baseline as
UserTags, as both of them purely use the original user tags. For each test
tag, the test images labeled with this tag are sorted at random, and MAP
and NDCG20 are computed accordingly. The process is executed 100 times,
and the average score over the 100 runs is reported.

The number of tags per image is often included for image ranking in
previous works (Liu, Hua, Yang, Wang and Zhang, 2009; Xu et al., 2009).
Hence, we build another baseline system, denoted as TagNum, which sort
images in ascending order by the number of tags per image. The third base-
line, denoted as TagPosition, is from (Sun et al., 2011), where the relevance
score of a tag is determined by its position in the original tag list uploaded
by the user. More precisely, the score is computed as 1 − position(t)/l,
where l is the tag number.
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3.4 Methods under analysis

Despite the rich literature, most works do not provide code. An exhaustive
evaluation covering all published methods is impractical. We have to leave
out methods that do not show significant improvements or novelties w.r.t.
the seminal papers in the field, and methods that are difficult to replicate
with the same mathematical preciseness as intended by their developers. We
drive our choice by the intention to cover methods that aim for each of the
three tasks, exploiting varied modalities by distinct learning mechanisms.
Eventually we evaluate 11 representative methods. For each method we
analyze its scalability in terms of both computation and memory. Our
analysis leaves out operations that are independent of specific tags and thus
only need to be executed once in an offline manner, such as visual feature
extraction, tag preprocessing, prior information precomputing, and filtering.
Main properties of the methods are summarized in table 3.3. Concerning
the choices of parameters, we adopt what the original papers recommend.
When no recommendation is given for a specific method, we try a range of
values to our best understanding, and choose the parameters that yield the
best overall performance.

3.4.1 SemanticField

SemanticField (Zhu et al., 2012) measures tag relevance in terms of an
averaged semantic similarity between the tag and the other tags assigned
to the image:

fSemField(x, t) :=
1

lx

lx∑
i=1

sim(t, ti), (3.5)

where {t1, . . . , tlx} is a list of lx social tags assigned to the image x, and
sim(t, ti) denotes a semantic similarity between two tags. SemanticField
explicitly assumes that several tags are associated to visual data and their
coexistence is accounted in the evaluation of tag relevance. Following (Zhu
et al., 2012), the similarity is computed by combining the Flickr context
similarity and the WordNet Wu-Palmer similarity (Wu and Palmer, 1994).
The WordNet based similarity exploits path length in the WordNet hierar-
chy to infer tag relatedness. We make a small revision of (Zhu et al., 2012),
i.e. combining the two similarities by averaging instead of multiplication,
because the former strategy produces slightly better results. SemanticField
requires no training except for computing tag-wise similarity, which can be
computed offline and is thus omitted. Having all tag-wise similarities in
memory, applying Eq. (3.5) requires lx table lookups per tag. Hence, the
computational complexity is O(m · lx), and O(m2) for memory.
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3.4.2 TagRanking

The tag ranking algorithm (Liu, Hua, Yang, Wang and Zhang, 2009) consists
of two steps. Given an image x and its tags, the first step produces an
initial tag relevance score for each of the tags, obtained by (Gaussian) kernel
density estimation on a set of n̄ = 1, 000 images labeled with each tag,
separately. Secondly, a random walk is performed on a tag graph where the
edges are weighted by a tag-wise similarity. We use the same similarity as
in SemanticField. Notice that when applied for tag retrieval, the algorithm
uses the rank of t instead of its score, i.e.,

fTagRanking(x, t) = −rank(t) +
1

lx
, (3.6)

where rank(t) returns the rank of t produced by the tag ranking algorithm.
The term 1

lx
is a tie-breaker when two images have the same tag rank.

Hence, for a given tag t, TagRanking cannot distinguish relevant images
from irrelevant images if t is the sole tag assigned to them. It explicitly ex-
ploits the coexistence of several tags per image. TagRanking has no learning
stage. To derive tag ranks for Eq. 3.6, the main computation is the kernel
density estimation on n̄ socially-tagged examples for each tag, followed by
an L iteration random walk on the tag graph of m nodes. All this results
in a computation cost of O(m · d · n̄ + L · m2) per test image. Because
the two steps are executed sequentially, the corresponding memory cost is
O(max(dn̄,m2)).

3.4.3 KNN

This algorithm (Makadia et al., 2010) estimates the relevance of a given
tag with respect to an image by first retrieving k nearest neighbors from
S based on a visual distance d, and then counting the tag occurrence in
associated tags of the neighborhood. In particular, KNN builds fΦ(x, t; Θ)
as:

fKNN(x, t) := kt, (3.7)

where kt is the number of images with t in the visual neighborhood of x.
The instance-based KNN requires no training. The main computation of
fKNN is to find k nearest neighbors from S, which has a complexity of
O(d · |S|+k · log |S|) per test image, and a memory footprint of O(d · |S|) to
store all the d-dimensional feature vectors. It is worth noting that these com-
plexities are drawn from a straightforward implementation of k-nn search,
and can be substantially reduced by employing more efficient search tech-
niques, c.f. (Jégou et al., 2011). Accelerating KNN by the product quanti-
zation technique (Jégou et al., 2011) imposes an extra training step, where
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one has to construct multiple vector quantizers by K-means clustering, and
further use the quantizers to compress the original feature vector into a few
codes.

3.4.4 TagVote

The TagVote (Li et al., 2009b) algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social
annotations of the visual neighbors of x. Differently from KNN, TagVote
exploits the user element in the social framework and introduces a unique-
user constraint on the neighbor set to make the voting result more objective.
Each user has at most one image in the neighbor set. Moreover, TagVote
also takes into account tag prior frequency to suppress over frequent tags.
In particular, the TagVote algorithm builds fΦ(x, t; Θ) as

fTagV ote(x, t) := kt − k
nt

|S|
, (3.8)

where nt is the number of images labeled with t in S. Following (Li et al.,
2009b), we set k to be 1,000 for both KNN and TagVote. TagVote has the
same order of complexity as KNN.

3.4.5 TagProp

TagProp (Guillaumin et al., 2009; Verbeek et al., 2010) employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed
where the probability of using images in the neighborhood is defined based
on rank or distance-based weights. TagProp builds fΦ(x, t; Θ) as:

fTagProp(x, t) :=
k∑
j

πj · I(xj, t), (3.9)

where πj is a non-negative weight indicating the importance of the j-th
neighbor xj, and I(xj , t) returns 1 if xj is labeled with t, and 0 otherwise.
Following (Verbeek et al., 2010), we use k = 1, 000 and the rank-based
weights, which showed similar performance to the distance-based weights.
Differently from TagVote that uses tag prior to penalize frequent tags, Tag-
Prop promotes rare tags and penalizes frequent ones by training a logistic
model per tag upon fTagProp(x, t). The use of the logistic model makes
TagProp a model-based method. In contrast to KNN and TagVote wherein
visual neighbors are treated equally, TagProp employs distance metric learn-
ing to re-weight the neighbors, yielding a learning complexity of O(l ·m · k)
where l is the number of gradient descent iterations it needs (typically less
than 10). TagProp maintains 2m extra parameters for the logistic mod-
els, though their storage cost is ignorable compared to the visual features.
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Therefore, running Eq. (3.9) has the same order of complexity as KNN and
TagVote.

3.4.6 TagCooccur

While both SemanticField and TagCooccur are tag-based, the main differ-
ence lies in how they compute the contribution of a specific tag to the test
tag’s relevance score. Different from SemanticField which uses tag similar-
ities, TagCooccur (Sigurbjörnsson and van Zwol, 2008) uses the test tag’s
rank in the tag ranking list created by sorting all tags in terms of their
co-occurrence frequency with the tag in a social framework. In addition,
TagCooccur takes into account the stability of the tag, measured by its
frequency. The method is implemented as

ftagcooccur(x, t) = descript(t)
lx∑
i=1

vote(ti, t) · rank-promo(ti, t) · stability(ti),

(3.10)
where descript(t) is to damp the contribution of tags with a very high-
frequency, rank-promo(ti, t) measures the rank-based contribution of ti to
t, stability(ti) for promoting tags for which the statistics are more stable,
and vote(ti, t) is 1 if t is among the top 25 ranked tags of ti, and 0 otherwise.
TagCooccur has the same order of complexity as SemanticField.

3.4.7 TagCooccur+

TagCooccur+ (Li et al., 2009b) is proposed to improve TagCooccur by
adding the visual content. This is achieved by multiplying ftagcooccur(x, t)
with a content-based term, i.e.,

ftagcooccur+(x, t) = ftagcooccur(x, t) ·
kc

kc + rc(t)− 1
, (3.11)

where rc(t) is the rank of t when sorting the vocabulary by fTagV ote(x, t)
in descending order, and kc is a positive weighting parameter, which is
empirically set to 1. While TagCooccur+ is grounded on TagCooccur and
TagVote, the complexity of the former is ignorable compared to the latter,
so the complexity of TagCooccurs+ is the same as KNN.

3.4.8 TagFeature

The basic idea of TagFeature (Chen et al., 2012) is to enrich image features
by adding an extra tag feature. It thus relies on the possible presence of
several tags per image in the training set. In particular, a tag vocabulary
that consists of d′ most frequent tags in S is constructed first. Then, for
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each tag a two-class linear SVM classifier is trained using LIBLINEAR (Fan
et al., 2008). The positive training set consists of p images labeled with the
tag in S, and the same amount of negative training examples are randomly
sampled from images not labeled with the tag. The probabilistic output of
the classifier, obtained by the Platt’s scaling (Lin et al., 2007), corresponds
to a specific dimension in the tag feature. By concatenating the tag and
visual features, an augmented feature of d + d′ dimension is obtained. For
a test tag t, its tag relevance function fTagFeature(x, t) is obtained by re-
training an SVM classifier using the augmented feature. The linear property
of the classifier allows us to first sum up all the support vectors into a single
vector and consequently to classify a test image by the inner product with
this vector. That is,

fTagFeature(x, t) := b+ < xt, x >, (3.12)

where xt is the weighted sum of all support vectors and b the intercept.
To build meaningful classifiers, we use tags that have at least 100 positive
examples. While d′ is chosen to be 400 in (Chen et al., 2012), the two
smaller training sets, namely Train10k and Train100k, have 76 and 396
tags satisfying the above requirement. We empirically set p to 500, and
do a random down-sampling if the amount of images for a tag exceeds this
number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d+ d′)p) in computation and
O((d+d′)p) in memory (Fan et al., 2008). Running Eq. (3.12) for all the m
tags and n images needs O(nm(d + d′)) in computation and O(m(d + d′))
in memory.

3.4.9 RelExample

Different from TagFeature (Chen et al., 2012) that learns from tagged im-
ages, RelExample (Li and Snoek, 2013) exploits positive and negative train-
ing examples which are deemed to be more relevant with respect to the test
tag t. In particular, relevant positive examples are selected from S by
combining SemanticField and TagVote in a late fusion manner. For neg-
ative training example acquisition, they leverage Negative Bootstrap (Li,
Snoek, Worring, Koelma and Smeulders, 2013), a negative sampling algo-
rithm which iteratively selects negative examples deemed most relevant for
improving classification. A T -iteration Negative Bootstrap will produce T
meta classifiers. The corresponding tag relevance function is written as

fRelExample(x, t) :=
1

T

T∑
l=1

(bl +
nl∑
j=1

αl,j · yl,j · K(x, xl,j)), (3.13)

where αl,j is a positive coefficient of support vector xl,j , yl,j ∈ {−1, 1} is
class label, and nl the number of support vectors in the l-th classifier. For
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the sake of efficiency, the kernel function K is instantiated with the fast
intersection kernel (Maji et al., 2008). RelExample uses the same amount
of positive training examples as TagFeature. The number of iterations T
is empirically set to 10. For the SVM classifiers used in TagFeature and
RelExample, the Platt’s scaling (Lin et al., 2007) is employed to convert
prediction scores into probabilistic output. In RelExample, for each tag
learning a histogram intersection kernel SVM has a computation cost of
O(dp2) per iteration, and O(Tdp2) for T iterations. By jointly using the
fast intersection kernel with a quantization factor of q (Maji et al., 2008)
and model compression (Li, Snoek, Worring, Koelma and Smeulders, 2013),
an order of O(dq) is needed to keep all learned meta classifiers in memory.
Since learning a new classifier needs a memory of O(dp), the overall memory
cost for training RelExample is O(dp+dq). For each tag, model compression
is applied to its learned ensemble in advance to running Eq. (3.13). As a
consequence, the compressed classifier can be cached in an order of O(dq)
and executed in an order of O(d).

3.4.10 RobustPCA

RobustPCA (Zhu et al., 2010) has been explicitly modeled to deal with
a social framework, including noisy tags and several tags per image. On
the base of robust principal component analysis (Candès et al., 2011), it
factorizes the image-tag matrix D by a low rank decomposition with error
sparsity. That is,

D = D̂ + E, (3.14)

where the reconstructed D̂ has a low rank constraint based on the nuclear
norm, and E is an error matrix with a ℓ1-norm sparsity constraint. Notice
that the decomposition is not unique. So for a better solution, the decom-
position process takes into account image affinities and tag affinities, by
adding two extra penalties with respect to a Laplacian matrix Li from the
image affinity graph and another Laplacian matrix Lt from the tag affinity
graph. Consequently, two hyper-parameters λ1 and λ2 are introduced to
balance the error sparsity and the two Laplacian strengths. We follow the
original paper and set the two parameters by performing a grid search on
the very same proposed range. As user tags are usually missing, the authors
proposed a pre-processing step where D is reinitialized by a weighted KNN
propagation based on the visual similarity. RobustPCA requires an itera-
tive procedure based on the accelerated proximal gradient method with a
quadratic convergence rate (Zhu et al., 2010). Each iteration spends the ma-
jority of the required time performing Singular Value Decomposition that,
according to (Golub and Van Loan, 2012), has a well known complexity
of O(cm2n + c′n3) where c, c′ are constants. Regarding memory, it has a

44

requirement of O(cn ·m + c′ · (n2 +m2)) as it needs to process a full copy
of D and Laplacians of images and labels.

3.4.11 TensorAnalysis

This method (Sang, Xu and Liu, 2012) has been explicitly designed for social
frameworks. It explicitly considers ternary relationships between images,
tags and user. User relationships are exploited by extending the image-tag
association matrix to a binary user-image-tag tensor F ∈ {0, 1}|X |×|V|×|U|.
The tensor is factorized by Tucker decomposition into a dense core C and
three low rank matrices U , I, T , which correspond to the user, image, and
tag modalities, respectively:

F = C ×u U ×i I ×t T, (3.15)

Here ×k is the tensor product between a tensor and a matrix along di-
mension k. The idea is that C contains the interactions between modal-
ities, while each low rank matrix represent the main components of each
modality. Every modality has to be sized manually or by energy reten-
tion, adding three needed parameters R = (rI , rT , rU). The eventual tag
relevance function is obtained after the optimization process by computing
D̂ = C ×i I ×t T ×u 1ru . Similar to RobustPCA, the decomposition in
Eq. (3.15) is not unique and a better solution may be found regularizing
the problem with a Laplacian built on a similarity graph for each modality,
i.e., Li, Lt, and Lu, and a ℓ2 regularizer on each factor i.e. C, U , I and
T . For TensorAnalysis, the complexity is O(|P1| · (rT · m2 + rU · rI · rT )),
proportional to the number P1 of tags asserted in D and the dimension of
low rank rU , rI , rT factors. The memory required is O(n2+m2+u2) because
of Laplacians of images, tags and users.

3.4.12 Considerations

An overview of the methods analyzed is given Table 3.3. Among them,
SemanticField, counting solely on the tag modality, has the best scalability
with respect to both computation and memory. Among the instance-based
methods, TagRanking, which works on selected subsets of S rather than
the entire collection, has the lowest memory request. When the number
of tags to be modeled m is substantially smaller than the size of S, the
model-based methods require less memory and run faster in the test stage,
but at the expense of SVM model learning in the training stage. The two
transduction-based methods have limited scalability, and can operate only
on small sized S.
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where the reconstructed D̂ has a low rank constraint based on the nuclear
norm, and E is an error matrix with a ℓ1-norm sparsity constraint. Notice
that the decomposition is not unique. So for a better solution, the decom-
position process takes into account image affinities and tag affinities, by
adding two extra penalties with respect to a Laplacian matrix Li from the
image affinity graph and another Laplacian matrix Lt from the tag affinity
graph. Consequently, two hyper-parameters λ1 and λ2 are introduced to
balance the error sparsity and the two Laplacian strengths. We follow the
original paper and set the two parameters by performing a grid search on
the very same proposed range. As user tags are usually missing, the authors
proposed a pre-processing step where D is reinitialized by a weighted KNN
propagation based on the visual similarity. RobustPCA requires an itera-
tive procedure based on the accelerated proximal gradient method with a
quadratic convergence rate (Zhu et al., 2010). Each iteration spends the ma-
jority of the required time performing Singular Value Decomposition that,
according to (Golub and Van Loan, 2012), has a well known complexity
of O(cm2n + c′n3) where c, c′ are constants. Regarding memory, it has a
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requirement of O(cn ·m + c′ · (n2 +m2)) as it needs to process a full copy
of D and Laplacians of images and labels.

3.4.11 TensorAnalysis

This method (Sang, Xu and Liu, 2012) has been explicitly designed for social
frameworks. It explicitly considers ternary relationships between images,
tags and user. User relationships are exploited by extending the image-tag
association matrix to a binary user-image-tag tensor F ∈ {0, 1}|X |×|V|×|U|.
The tensor is factorized by Tucker decomposition into a dense core C and
three low rank matrices U , I, T , which correspond to the user, image, and
tag modalities, respectively:

F = C ×u U ×i I ×t T, (3.15)

Here ×k is the tensor product between a tensor and a matrix along di-
mension k. The idea is that C contains the interactions between modal-
ities, while each low rank matrix represent the main components of each
modality. Every modality has to be sized manually or by energy reten-
tion, adding three needed parameters R = (rI , rT , rU). The eventual tag
relevance function is obtained after the optimization process by computing
D̂ = C ×i I ×t T ×u 1ru . Similar to RobustPCA, the decomposition in
Eq. (3.15) is not unique and a better solution may be found regularizing
the problem with a Laplacian built on a similarity graph for each modality,
i.e., Li, Lt, and Lu, and a ℓ2 regularizer on each factor i.e. C, U , I and
T . For TensorAnalysis, the complexity is O(|P1| · (rT · m2 + rU · rI · rT )),
proportional to the number P1 of tags asserted in D and the dimension of
low rank rU , rI , rT factors. The memory required is O(n2+m2+u2) because
of Laplacians of images, tags and users.

3.4.12 Considerations

An overview of the methods analyzed is given Table 3.3. Among them,
SemanticField, counting solely on the tag modality, has the best scalability
with respect to both computation and memory. Among the instance-based
methods, TagRanking, which works on selected subsets of S rather than
the entire collection, has the lowest memory request. When the number
of tags to be modeled m is substantially smaller than the size of S, the
model-based methods require less memory and run faster in the test stage,
but at the expense of SVM model learning in the training stage. The two
transduction-based methods have limited scalability, and can operate only
on small sized S.
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Table 3.3: Main properties of the eleven methods evaluated in this survey following the

dimensions of Fig. 2.1. The computational and memory complexity of each method is

based on processing n test images and m test tags by exploiting the training set S.

Learning

Methods Test Media Task Train Computation Test Computation Train Memory Test Memory

Instance-based:

SemanticField tag Retrieval – O(nmlx) – O(m2)

TagCooccur tag
Refinement

Retrieval
– O(nmlx) – O(m2)

TagRanking tag + image Retrieval – O(n(mdn̄+ Lm2)) – O(max(dn̄,m2))

KNN tag + image
Assignment

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

TagVote tag + image
Assignment

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

TagCooccur+ tag + image
Refinement

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

Model-based:

TagProp tag + image
Assignment

Retrieval
O(l ·m · k) O(n(d|S|+ k log |S|)) O(d|S|+ 2m) O(d|S|+ 2m)

TagFeature tag + image
Assignment

Retrieval
O(m(d+ d′)p) O(nm(d+ d′)) O((d+ d′)p) O(m(d+ d′))

RelExample tag + image
Assignment

Retrieval
O(mTdp2) O(dp+ dq) O(nmd) O(mdq)

Transduction-based:

RobustPCA tag + image
Refinement

Retrieval
O(cm2n+ c′n3) O(cnm+ c′ · (n2 +m2))

TensorAnalysis
tag + image

+ user
Refinement O(|P1| · (rT ·m2 + rU · rI · rT )) O(n2 +m2 + u2)
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3.5 Evaluation

This section presents our evaluation of the 11 methods according to their ap-
plicability to the three tasks using the proposed experimental protocol, that
is, KNN, TagVote, TagProp, TagFeature and RelExample for tag assign-
ment (Section 3.5.1), TagCooccur, TagCooccur+, RobustPCA, and Tensor-
Analysis for tag refinement (Section 3.5.2), and all for tag retrieval (Section
3.5.3). For TensorAnalysis we were able to evaluate only tag refinement with
BovW features on MIRFlickr with Train10k and Train100k. The reason for
this exception is that our implementation of TensorAnalysis performs worse
than the baseline. Consequently, the results of TensorAnalysis were kindly
provided by the authors in the form of tag ranks. Since the provided tag
ranks cannot be converted to image ranks, we could not compute MAP
scores. Finally a comparison between our Flickr based training data and
ImageNet is given in Section 3.5.4.

3.5.1 Tag assignment

Table 3.4 shows the tag assignment performance of KNN, TagVote, Tag-
Prop, TagFeature and RelExample. Their superior performance against
the RandomGuess baseline shows that learning purely from social media is
meaningful. TagVote and TagProp are the two best performing methods on
both test sets. Substituting CNN for BovW consistently brings improve-
ments for all methods.

In more detail, the following considerations hold. TagProp has higher
MAP performance than KNN and TagVote in almost all the cases under
analysis. As discussed in Section 3.4.5, TagProp is built upon KNN, but
it weights the neighbor images by rank and applies a logistic model per
tag. Since the logistic model does not affect the image ranking, the superior
performance of TagProp should be ascribed to rank-based neighbor weight-
ing. A per-tag comparison on MIRFlickr is given in Fig. 3.1. TagProp is
almost always ahead of KNN and TagVote. Concerning TagVote and KNN,
recall that their main difference is that TagVote applies the unique-user
constraint on the neighborhood and it employs tag prior as a penalty term.
The fact that the training data contains no batch-tagged images minimizes
the influence of the unique-user constraint. While the penalty term does
not affect image ranking for a given tag, it affects tag ranking for a given
image. This explains why KNN and TagVote have mostly the same MAP.
Also, the result suggests that the tag prior based penalty is helpful for doing
tag assignment by neighbor voting.

We observe that RelExample has a better MAP than TagFeature in ev-
ery case. The absence of a filtering component makes TagFeature more likely
to overfit to training examples irrelevant to the test tags. For the other two
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3.5 Evaluation

This section presents our evaluation of the 11 methods according to their ap-
plicability to the three tasks using the proposed experimental protocol, that
is, KNN, TagVote, TagProp, TagFeature and RelExample for tag assign-
ment (Section 3.5.1), TagCooccur, TagCooccur+, RobustPCA, and Tensor-
Analysis for tag refinement (Section 3.5.2), and all for tag retrieval (Section
3.5.3). For TensorAnalysis we were able to evaluate only tag refinement with
BovW features on MIRFlickr with Train10k and Train100k. The reason for
this exception is that our implementation of TensorAnalysis performs worse
than the baseline. Consequently, the results of TensorAnalysis were kindly
provided by the authors in the form of tag ranks. Since the provided tag
ranks cannot be converted to image ranks, we could not compute MAP
scores. Finally a comparison between our Flickr based training data and
ImageNet is given in Section 3.5.4.

3.5.1 Tag assignment

Table 3.4 shows the tag assignment performance of KNN, TagVote, Tag-
Prop, TagFeature and RelExample. Their superior performance against
the RandomGuess baseline shows that learning purely from social media is
meaningful. TagVote and TagProp are the two best performing methods on
both test sets. Substituting CNN for BovW consistently brings improve-
ments for all methods.

In more detail, the following considerations hold. TagProp has higher
MAP performance than KNN and TagVote in almost all the cases under
analysis. As discussed in Section 3.4.5, TagProp is built upon KNN, but
it weights the neighbor images by rank and applies a logistic model per
tag. Since the logistic model does not affect the image ranking, the superior
performance of TagProp should be ascribed to rank-based neighbor weight-
ing. A per-tag comparison on MIRFlickr is given in Fig. 3.1. TagProp is
almost always ahead of KNN and TagVote. Concerning TagVote and KNN,
recall that their main difference is that TagVote applies the unique-user
constraint on the neighborhood and it employs tag prior as a penalty term.
The fact that the training data contains no batch-tagged images minimizes
the influence of the unique-user constraint. While the penalty term does
not affect image ranking for a given tag, it affects tag ranking for a given
image. This explains why KNN and TagVote have mostly the same MAP.
Also, the result suggests that the tag prior based penalty is helpful for doing
tag assignment by neighbor voting.

We observe that RelExample has a better MAP than TagFeature in ev-
ery case. The absence of a filtering component makes TagFeature more likely
to overfit to training examples irrelevant to the test tags. For the other two
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Table 3.4: Evaluating methods for tag assignment. Given the same feature, bold values

indicate top performers on individual test sets.

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

RandomGuess 0.147 0.147 0.147 0.061 0.061 0.061

BovW + KNN 0.232 0.286 0.312 0.171 0.217 0.248

BovW + TagVote 0.276 0.310 0.328 0.183 0.231 0.259

BovW + TagProp 0.276 0.299 0.314 0.230 0.249 0.268

BovW + TagFeature 0.278 0.294 0.298 0.244 0.221 0.214

BovW + RelExample 0.284 0.309 0.303 0.257 0.233 0.245

CNN + KNN 0.326 0.366 0.379 0.315 0.343 0.376

CNN + TagVote 0.355 0.378 0.389 0.340 0.370 0.396

CNN + TagProp 0.373 0.384 0.392 0.366 0.376 0.380

CNN + TagFeature 0.359 0.378 0.383 0.367 0.338 0.373

CNN + RelExample 0.309 0.385 0.373 0.365 0.354 0.388

MAP scores:

RandomGuess 0.072 0.072 0.072 0.023 0.023 0.023

BovW + KNN 0.231 0.282 0.336 0.094 0.139 0.185

BovW + TagVote 0.228 0.280 0.334 0.093 0.137 0.184

BovW + TagProp 0.245 0.293 0.342 0.102 0.149 0.193

BovW + TagFeature 0.200 0.199 0.201 0.090 0.096 0.098

BovW + RelExample 0.284 0.303 0.310 0.119 0.155 0.172

CNN + KNN 0.564 0.613 0.639 0.271 0.356 0.400

CNN + TagVote 0.561 0.613 0.638 0.257 0.358 0.402

CNN + TagProp 0.586 0.619 0.641 0.305 0.376 0.397

CNN + TagFeature 0.444 0.554 0.563 0.262 0.310 0.326

CNN + RelExample 0.538 0.603 0.584 0.300 0.346 0.373
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Figure 3.1: Per-tag comparison of methods for tag assignment on MIRFlickr,

trained on Train1m. The colors identify the features used: blue for BovW, red for

CNN. The test tags have been sorted in descending order by the performance of CNN +

TagProp.

model-based methods, the overfit issue is alleviated by different strategies:
RelExample employs a filtering component to select more relevant training
examples, while TagProp has less parameters to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3.2. The test
images are put into disjoint groups so that images within the same group
have the same number of ground truth tags. For each group, the area
of the colored bars is proportional to the number of images on which the
corresponding methods score best. The first group, i.e., images containing
only one ground-truth tag, has the most noticeable change as the training set
grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats
KNN, TagVote, and TagProp for this frequent label. This explains the
leading position of RelExample in the first group. The result also confirms
our earlier discussion in Section 3.3.1 that MiAP is likely to be biased by
frequent tags.

In summary, as long as enough training examples are provided, instance-
based methods are on par with model-based methods for tag assignment.
Model-based methods are more suited when the training data is of limited
availability. However, they are less resilient to noise, and consequently a
proper filtering strategy for refining the training data becomes essential.

3.5.2 Tag refinement

Table 3.5 shows the performance of different methods for tag refinement.
We were unable to complete the table. In particular, RobustPCA could not
go over 350k images due to its high demand in both CPU time and memory
(see Table 3.3), while TensorAnalysis was provided by the authors only on
MIRFlickr with Train10k, Train100k, and the BovW feature.
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Table 3.4: Evaluating methods for tag assignment. Given the same feature, bold values

indicate top performers on individual test sets.
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Figure 3.1: Per-tag comparison of methods for tag assignment on MIRFlickr,

trained on Train1m. The colors identify the features used: blue for BovW, red for

CNN. The test tags have been sorted in descending order by the performance of CNN +

TagProp.

model-based methods, the overfit issue is alleviated by different strategies:
RelExample employs a filtering component to select more relevant training
examples, while TagProp has less parameters to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3.2. The test
images are put into disjoint groups so that images within the same group
have the same number of ground truth tags. For each group, the area
of the colored bars is proportional to the number of images on which the
corresponding methods score best. The first group, i.e., images containing
only one ground-truth tag, has the most noticeable change as the training set
grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats
KNN, TagVote, and TagProp for this frequent label. This explains the
leading position of RelExample in the first group. The result also confirms
our earlier discussion in Section 3.3.1 that MiAP is likely to be biased by
frequent tags.

In summary, as long as enough training examples are provided, instance-
based methods are on par with model-based methods for tag assignment.
Model-based methods are more suited when the training data is of limited
availability. However, they are less resilient to noise, and consequently a
proper filtering strategy for refining the training data becomes essential.

3.5.2 Tag refinement

Table 3.5 shows the performance of different methods for tag refinement.
We were unable to complete the table. In particular, RobustPCA could not
go over 350k images due to its high demand in both CPU time and memory
(see Table 3.3), while TensorAnalysis was provided by the authors only on
MIRFlickr with Train10k, Train100k, and the BovW feature.
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Table 3.5: Evaluating methods for tag refinement. The asterisk (*) indicates results

provided by the authors of the corresponding methods, while the dash (–) means we were

unable to produce results. Given the same feature, bold values indicate top performers

on individual test sets per performance metric.

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

UserTags 0.204 0.204 0.204 0.255 0.255 0.255

TagCooccur 0.213 0.242 0.253 0.269 0.305 0.317

BovW + TagCooccur+ 0.217 0.262 0.286 0.245 0.297 0.324

BovW + RobustPCA 0.271 0.310 – 0.332 0.323 –

BovW + TensorAnalysis *0.298 *0.297 – – – –

CNN + TagCooccur+ 0.234 0.277 0.310 0.305 0.359 0.387

CNN + RobustPCA 0.368 0.376 – 0.424 0.419 –

CNN + TensorAnalysis – – – – – –

MAP scores:

UserTags 0.263 0.263 0.263 0.338 0.338 0.338

TagCooccur 0.266 0.298 0.313 0.223 0.321 0.308

BovW + TagCooccur+ 0.294 0.343 0.377 0.231 0.345 0.353

BovW + RobustPCA 0.225 0.337 – 0.229 0.234 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.330 0.381 0.420 0.264 0.391 0.406

CNN + RobustPCA 0.566 0.627 – 0.439 0.440 –

CNN + TensorAnalysis – – – – – –
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Figure 3.2: Per-image comparison of methods for tag assignment on NUS-

WIDE. Test images are grouped in terms of their number of ground truth tags. The area

of a colored bar is proportional to the number of images that the corresponding method

scores best.

RobustPCA outperforms the competitors on both test sets, when pro-
vided with the CNN feature. Fig. 3.3 presents a per-tag comparison on
MIRFlickr. RobustPCA has the best scores for 9 out of the 14 tags with
BovW, and wins all the tags when CNN is used.

Concerning the influence of the media dimension, the tag + image based
methods (RobustPCA and TagCooccur+) are in general better than the tag
based method (TagCooccur). As shown in Fig. 3.3, except for 3 out of 14
MIRFlickr test tags with BovW, using the image media is beneficial. As in
the tag assignment task, the use of the CNN feature strongly improves the
performance.

Concerning the learning methods, TensorAnalysis has the potential to
leverage tag, image, and user simultaneously. However, due to its rela-
tively poor scalability, we were able to run this method only with Train10k
and Train100k on MIRFlickr. For Train10k, TensorAnalysis yielded higher
MiAP than RobustPCA, probably thanks to its capability of modeling user
correlations. It is outperformed by RobustPCA when more training data is
used.

As more training data is used, the performance of TagCooccur, Tag-
Cooccur+, and RobustPCA on MIRFlickr consistently improves. Since
these three methods rely on data-driven tag affinity, image affinity, or tag
and image affinity, a small set of 10k images is generally inadequate to com-
pute these affinities. The effect of increasing the training set size is clearly
visible if we compare scores corresponding to Train10k and Train100k. The
results on NUS-WIDE show some inconsistency. For TagCooccur, MiAP
improves from Train100k to Train1m, while MAP drops. This is presum-
ably due to the fact that in the experiments we used the parameters recom-
mended in the original paper, appropriately selected to optimize tag ranking.
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Table 3.5: Evaluating methods for tag refinement. The asterisk (*) indicates results
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Figure 3.2: Per-image comparison of methods for tag assignment on NUS-

WIDE. Test images are grouped in terms of their number of ground truth tags. The area

of a colored bar is proportional to the number of images that the corresponding method

scores best.

RobustPCA outperforms the competitors on both test sets, when pro-
vided with the CNN feature. Fig. 3.3 presents a per-tag comparison on
MIRFlickr. RobustPCA has the best scores for 9 out of the 14 tags with
BovW, and wins all the tags when CNN is used.

Concerning the influence of the media dimension, the tag + image based
methods (RobustPCA and TagCooccur+) are in general better than the tag
based method (TagCooccur). As shown in Fig. 3.3, except for 3 out of 14
MIRFlickr test tags with BovW, using the image media is beneficial. As in
the tag assignment task, the use of the CNN feature strongly improves the
performance.

Concerning the learning methods, TensorAnalysis has the potential to
leverage tag, image, and user simultaneously. However, due to its rela-
tively poor scalability, we were able to run this method only with Train10k
and Train100k on MIRFlickr. For Train10k, TensorAnalysis yielded higher
MiAP than RobustPCA, probably thanks to its capability of modeling user
correlations. It is outperformed by RobustPCA when more training data is
used.

As more training data is used, the performance of TagCooccur, Tag-
Cooccur+, and RobustPCA on MIRFlickr consistently improves. Since
these three methods rely on data-driven tag affinity, image affinity, or tag
and image affinity, a small set of 10k images is generally inadequate to com-
pute these affinities. The effect of increasing the training set size is clearly
visible if we compare scores corresponding to Train10k and Train100k. The
results on NUS-WIDE show some inconsistency. For TagCooccur, MiAP
improves from Train100k to Train1m, while MAP drops. This is presum-
ably due to the fact that in the experiments we used the parameters recom-
mended in the original paper, appropriately selected to optimize tag ranking.
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Figure 3.3: Per-tag comparison of methods for tag refinement on MIRFlickr,

trained on Train100k. The colors identify the features used: blue for BovW, red for

CNN. The test tags have been sorted in descending order by the performance of CNN +

RobustPCA.

Hence, they might be suboptimal for image ranking. BovW + RobustPCA
scores a lower MAP than BovW + TagCooccur+. This is probably due
to the fact that the low-rank matrix factorization technique, while being
able to jointly exploit tag and image information, is more sensitive to the
content-based representation.

A per-image comparison is given in Fig. 3.4. As for tag assignment, the
test images have been grouped according to the number of ground truth
tags associated. The size of the colored areas is proportional to the number
of images where the corresponding method scores best. For the majority of
test image, the three tag refinement methods have higher average precision
than UserTags. This means more relevant tags are added, so the tags are
refined. It should be noted that the success of tag refinement depends much
on the quality of the original tags assigned to the test images. Examples are
shown in Table 3.7: in row 6, although the tag ‘earthquake’ is irrelevant to
the image content, it is ranked at the top by RobustPCA. To what extent
a tag refinement method shall count on the existing tags is tricky.

To summarize, the tag + image based methods outperform the tag based
method for tag refinement. RobustPCA is the best, and improves as more
training data is employed. Nonetheless, implementing RobustPCA is chal-
lenging for both computation and memory footprint. In contrast, TagCooc-
cur+ is more scalable and it can learn from large-scale data.

3.5.3 Tag retrieval

Tables 3.8 and 3.9 show the performance of different methods for tag re-
trieval. Recall that when retrieving images for a specific test tag, we con-
sider only images that are labeled with this tag. Hence, MAP scores here
are higher than their counterpart in Table 3.5.
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Figure 3.4: Per-image comparison of methods for tag refinement on NUS-

WIDE. Test images are grouped in terms of their number of ground truth tags. The

area of a colored bar is proportional to the number of images that the corresponding

method scores best.
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Figure 3.3: Per-tag comparison of methods for tag refinement on MIRFlickr,

trained on Train100k. The colors identify the features used: blue for BovW, red for

CNN. The test tags have been sorted in descending order by the performance of CNN +

RobustPCA.

Hence, they might be suboptimal for image ranking. BovW + RobustPCA
scores a lower MAP than BovW + TagCooccur+. This is probably due
to the fact that the low-rank matrix factorization technique, while being
able to jointly exploit tag and image information, is more sensitive to the
content-based representation.

A per-image comparison is given in Fig. 3.4. As for tag assignment, the
test images have been grouped according to the number of ground truth
tags associated. The size of the colored areas is proportional to the number
of images where the corresponding method scores best. For the majority of
test image, the three tag refinement methods have higher average precision
than UserTags. This means more relevant tags are added, so the tags are
refined. It should be noted that the success of tag refinement depends much
on the quality of the original tags assigned to the test images. Examples are
shown in Table 3.7: in row 6, although the tag ‘earthquake’ is irrelevant to
the image content, it is ranked at the top by RobustPCA. To what extent
a tag refinement method shall count on the existing tags is tricky.

To summarize, the tag + image based methods outperform the tag based
method for tag refinement. RobustPCA is the best, and improves as more
training data is employed. Nonetheless, implementing RobustPCA is chal-
lenging for both computation and memory footprint. In contrast, TagCooc-
cur+ is more scalable and it can learn from large-scale data.

3.5.3 Tag retrieval

Tables 3.8 and 3.9 show the performance of different methods for tag re-
trieval. Recall that when retrieving images for a specific test tag, we con-
sider only images that are labeled with this tag. Hence, MAP scores here
are higher than their counterpart in Table 3.5.
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Figure 3.4: Per-image comparison of methods for tag refinement on NUS-

WIDE. Test images are grouped in terms of their number of ground truth tags. The

area of a colored bar is proportional to the number of images that the corresponding

method scores best.
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Table 3.6: Selected tag assignment results on NUS-WIDE. Visual feature: BovW. The

top five ranked tags are shown, with correct prediction marked by the bold italic font.

Tag assignment

Test image Ground truth User tags KNN TagVote TagProp RelExample
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Table 3.7: Selected tag refinement results on NUS-WIDE. Visual feature: BovW. The top

five ranked tags are shown, with correct prediction marked by the bold italic font.

Tag refinement

Test image Ground truth User tags TagCooccur TagCooccur+ RobustPCA
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Table 3.6: Selected tag assignment results on NUS-WIDE. Visual feature: BovW. The

top five ranked tags are shown, with correct prediction marked by the bold italic font.

Tag assignment

Test image Ground truth User tags KNN TagVote TagProp RelExample
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Table 3.7: Selected tag refinement results on NUS-WIDE. Visual feature: BovW. The top

five ranked tags are shown, with correct prediction marked by the bold italic font.

Tag refinement

Test image Ground truth User tags TagCooccur TagCooccur+ RobustPCA
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We start our analysis by comparing the three baselines, namely UserTags,
TagNum, and TagPosition, which retrieve images simply by the original
tags. As it can be noticed, TagNum and TagPosition are more effective
than UserTags, TagNum outperforms TagPosition on Flickr51, and the lat-
ter has better scores on NUS-WIDE. The effectiveness of such metadata
based features depend much on datasets, and are unreliable for tag retrieval.

All the methods considered have higher MAP than the three baselines.
All the methods have better performance than the baselines on Flickr51 and
performance increases with the size of the training set. On NUS-WIDE,
SemanticField, TagCooccur, and TagRanking, are less effective than Tag-
Position. We attribute this result to the fact that, for these methods, the
tag relevance functions favor images with fewer tags. So they closely follow
similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image based
methods (KNN, TagVote, TagProp, TagCooccur+, TagFeature, Robust-
PCA, RelExample) are in general better than the tag based method (Se-
manticField and TagCooccur). Fig. 3.5 shows the per-tag retrieval perfor-
mance on Flickr51. For 33 out of the 51 test tags, RelExample exhibits
average precision higher than 0.9. By examining the top retrieved images,
we observe that the results produced by tag + image based methods and tag
based methods are complementary to some extent. For example, consider
‘military’, one of the test tags of NUS-WIDE. RelExample retrieves images
with strong visual patterns such as military vehicles, while SemanticField
returns images of military personnel. Since the visual content is ignored,
the results of SemanticField tend to be visually different, so making it pos-
sible to handle tags with visual ambiguity. This fact can be observed in
Fig. 3.6, which shows the top 10 ranked images of ‘jaguar’ by TagPosition,
SemanticField, BovW + RelExample, and CNN + RelExample. Although
their results are all correct, RelExample finds jaguar-brand cars only, while
SemanticField covers both cars and animals. However, for a complete eval-
uation of the capability of managing ambiguous tags, fine-grained ground
truth beyond what we currently have is required.

Concerning the learning methods, TagVote consistently performs well
as in the tag assignment experiment. KNN is comparable to TagVote, due
to the reason we have discussed in Section 3.5.1. Given the CNN feature,
the two methods even outperform their model-based variant TagProp. Sim-
ilar to the tag refinement experiment, the effectiveness of RobustPCA for
tag retrieval is sensitive to the choice of visual features. While BovW +
RobustPCA is worse than the majority on Flickrt51, the performance of
CNN + RobustPCA is more stable, and performs well. For TagFeature, its
gain from using larger training data is relatively limited due to the absence
of denoising. In contrast, RelExample, by jointly using SemanticField and
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Table 3.8: Evaluating methods for tag retrieval, MAP scores. Given the same feature,

bold values indicate top performers on individual test sets per performance metric.

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MAP scores:

UserTags 0.595 0.595 0.595 0.489 0.489 0.489

TagNum 0.664 0.664 0.664 0.520 0.520 0.520

TagPosition 0.640 0.640 0.640 0.557 0.557 0.557

SemanticField 0.687 0.707 0.713 0.565 0.584 0.584

TagCooccur 0.625 0.679 0.704 0.534 0.576 0.588

BovW + TagCooccur+ 0.640 0.732 0.764 0.560 0.622 0.643

BovW + TagRanking 0.685 0.686 0.708 0.557 0.574 0.578

BovW + KNN 0.678 0.742 0.770 0.587 0.632 0.658

BovW + TagVote 0.678 0.741 0.769 0.587 0.632 0.659

BovW + TagProp 0.671 0.748 0.772 0.585 0.636 0.657

BovW + TagFeature 0.689 0.726 0.737 0.589 0.602 0.606

BovW + RelExample 0.706 0.756 0.783 0.609 0.645 0.663

BovW + RobustPCA 0.697 0.701 – 0.650 0.650 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.654 0.781 0.821 0.572 0.653 0.674

CNN + TagRanking 0.744 0.735 0.747 0.589 0.590 0.590

CNN + KNN 0.811 0.859 0.880 0.683 0.722 0.734

CNN + TagVote 0.808 0.859 0.881 0.675 0.724 0.738

CNN + TagProp 0.824 0.867 0.879 0.689 0.727 0.731

CNN + TagFeature 0.827 0.853 0.859 0.675 0.700 0.703

CNN + RelExample 0.838 0.863 0.878 0.689 0.717 0.734

CNN + RobustPCA 0.811 0.839 – 0.725 0.726 –

CNN + TensorAnalysis – – – – – –
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We start our analysis by comparing the three baselines, namely UserTags,
TagNum, and TagPosition, which retrieve images simply by the original
tags. As it can be noticed, TagNum and TagPosition are more effective
than UserTags, TagNum outperforms TagPosition on Flickr51, and the lat-
ter has better scores on NUS-WIDE. The effectiveness of such metadata
based features depend much on datasets, and are unreliable for tag retrieval.

All the methods considered have higher MAP than the three baselines.
All the methods have better performance than the baselines on Flickr51 and
performance increases with the size of the training set. On NUS-WIDE,
SemanticField, TagCooccur, and TagRanking, are less effective than Tag-
Position. We attribute this result to the fact that, for these methods, the
tag relevance functions favor images with fewer tags. So they closely follow
similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image based
methods (KNN, TagVote, TagProp, TagCooccur+, TagFeature, Robust-
PCA, RelExample) are in general better than the tag based method (Se-
manticField and TagCooccur). Fig. 3.5 shows the per-tag retrieval perfor-
mance on Flickr51. For 33 out of the 51 test tags, RelExample exhibits
average precision higher than 0.9. By examining the top retrieved images,
we observe that the results produced by tag + image based methods and tag
based methods are complementary to some extent. For example, consider
‘military’, one of the test tags of NUS-WIDE. RelExample retrieves images
with strong visual patterns such as military vehicles, while SemanticField
returns images of military personnel. Since the visual content is ignored,
the results of SemanticField tend to be visually different, so making it pos-
sible to handle tags with visual ambiguity. This fact can be observed in
Fig. 3.6, which shows the top 10 ranked images of ‘jaguar’ by TagPosition,
SemanticField, BovW + RelExample, and CNN + RelExample. Although
their results are all correct, RelExample finds jaguar-brand cars only, while
SemanticField covers both cars and animals. However, for a complete eval-
uation of the capability of managing ambiguous tags, fine-grained ground
truth beyond what we currently have is required.

Concerning the learning methods, TagVote consistently performs well
as in the tag assignment experiment. KNN is comparable to TagVote, due
to the reason we have discussed in Section 3.5.1. Given the CNN feature,
the two methods even outperform their model-based variant TagProp. Sim-
ilar to the tag refinement experiment, the effectiveness of RobustPCA for
tag retrieval is sensitive to the choice of visual features. While BovW +
RobustPCA is worse than the majority on Flickrt51, the performance of
CNN + RobustPCA is more stable, and performs well. For TagFeature, its
gain from using larger training data is relatively limited due to the absence
of denoising. In contrast, RelExample, by jointly using SemanticField and
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Table 3.8: Evaluating methods for tag retrieval, MAP scores. Given the same feature,

bold values indicate top performers on individual test sets per performance metric.

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MAP scores:

UserTags 0.595 0.595 0.595 0.489 0.489 0.489

TagNum 0.664 0.664 0.664 0.520 0.520 0.520

TagPosition 0.640 0.640 0.640 0.557 0.557 0.557

SemanticField 0.687 0.707 0.713 0.565 0.584 0.584

TagCooccur 0.625 0.679 0.704 0.534 0.576 0.588

BovW + TagCooccur+ 0.640 0.732 0.764 0.560 0.622 0.643

BovW + TagRanking 0.685 0.686 0.708 0.557 0.574 0.578

BovW + KNN 0.678 0.742 0.770 0.587 0.632 0.658

BovW + TagVote 0.678 0.741 0.769 0.587 0.632 0.659

BovW + TagProp 0.671 0.748 0.772 0.585 0.636 0.657

BovW + TagFeature 0.689 0.726 0.737 0.589 0.602 0.606

BovW + RelExample 0.706 0.756 0.783 0.609 0.645 0.663

BovW + RobustPCA 0.697 0.701 – 0.650 0.650 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.654 0.781 0.821 0.572 0.653 0.674

CNN + TagRanking 0.744 0.735 0.747 0.589 0.590 0.590

CNN + KNN 0.811 0.859 0.880 0.683 0.722 0.734

CNN + TagVote 0.808 0.859 0.881 0.675 0.724 0.738

CNN + TagProp 0.824 0.867 0.879 0.689 0.727 0.731

CNN + TagFeature 0.827 0.853 0.859 0.675 0.700 0.703

CNN + RelExample 0.838 0.863 0.878 0.689 0.717 0.734

CNN + RobustPCA 0.811 0.839 – 0.725 0.726 –

CNN + TensorAnalysis – – – – – –
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Table 3.9: Evaluating methods for tag retrieval, NDCG20 scores. Given the same feature,

bold values indicate top performers on individual test sets per performance metric.

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

NDCG20 scores:

UserTags 0.432 0.432 0.432 0.487 0.487 0.487

TagNum 0.522 0.522 0.522 0.541 0.541 0.541

TagPosition 0.511 0.511 0.511 0.623 0.623 0.623

SemanticField 0.591 0.623 0.645 0.596 0.622 0.624

TagCooccur 0.482 0.527 0.631 0.529 0.602 0.614

BovW + TagCooccur+ 0.503 0.625 0.686 0.590 0.681 0.734

BovW + TagRanking 0.530 0.568 0.571 0.557 0.572 0.572

BovW + KNN 0.577 0.699 0.756 0.638 0.734 0.799

BovW + TagVote 0.573 0.701 0.754 0.629 0.734 0.804

BovW + TagProp 0.570 0.715 0.759 0.666 0.750 0.809

BovW + TagFeature 0.547 0.626 0.646 0.622 0.615 0.618

BovW + RelExample 0.614 0.722 0.748 0.692 0.736 0.776

BovW + RobustPCA 0.549 0.548 – 0.768 0.781 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.504 0.615 0.724 0.571 0.705 0.738

CNN + TagRanking 0.577 0.607 0.597 0.578 0.594 0.583

CNN + KNN 0.709 0.830 0.897 0.773 0.832 0.863

CNN + TagVote 0.722 0.826 0.899 0.740 0.837 0.879

CNN + TagProp 0.768 0.857 0.865 0.764 0.839 0.845

CNN + TagFeature 0.755 0.813 0.818 0.704 0.807 0.787

CNN + RelExample 0.764 0.843 0.879 0.773 0.814 0.866

CNN + RobustPCA 0.733 0.821 – 0.865 0.862 –

CNN + TensorAnalysis – – – – – –
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Figure 3.5: Per-tag comparison between TagPosition, SemanticField, TagVote,

TagProp, and RelExample on Flickr51, with Train1m as the training set. The 51

test tags have been sorted in descending order by the performance of RelExample.

TagVote in its denoising component, is consistently better than TagFeature.

The performance of individual methods consistently improves as more
training data is used. As the size of the training set increases, the per-
formance gap between the best model-based method (RelExample) and
the best instance-based method (TagVote) reduces. This suggests that
large-scale training data diminishes the advantage of model-based methods
against the relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated
varies over datasets, common patterns have been observed. First, the more
social data for training are used the better performance is obtained. Since
the tag relevance functions are learned purely from social data without any
extra manual labeling, and social data are increasingly growing, this result
promises that better tag relevance functions can be learned. Second, given
small-scale training data, tag + image based methods that conducts model-
based learning with denoised training examples turn out to be the most
effective solution, This however comes with a price of reducing the visual
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formance gap between the best model-based method (RelExample) and
the best instance-based method (TagVote) reduces. This suggests that
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against the relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated
varies over datasets, common patterns have been observed. First, the more
social data for training are used the better performance is obtained. Since
the tag relevance functions are learned purely from social data without any
extra manual labeling, and social data are increasingly growing, this result
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(a) TagPosition (b) SemanticField (c) BovW

+ RelExample

(d) CNN

+ RelExample

Figure 3.6: Top 10 ranked images of ‘jaguar’, by (a) TagPosition, (b) Seman-

ticField, (c) BovW + RelExample, and (d) CNN + RelExample. Checkmarks

(✓) indicate relevant results. While both RelExample and SemanticField outperform the

TagPosition baseline, the results of SemanticField show more diversity for this ambiguous

tag. The difference between (c) and (d) suggests that the results of RelExample can be

diversified by varying the visual feature in use.

diversity in the retrieval results. Moreover, the advantage of model-based
learning vanishes as more training data and the CNN feature are used, and
TagVote performs the best.

3.5.4 Flickr versus ImageNet

To address the question of whether one shall resort to an existing resource
such as ImageNet for tag relevance learning, this section presents an em-
pirical comparison between our Flickr based training data and ImageNet.
A number of methods do not work with ImageNet or require modifications.
For instance, tag + image + user information based methods must be able
to remove their dependency on user information, as such information is un-
available in ImageNet. Tag co-occurrences are also strongly limited, because
an ImageNet example is annotated with a single label. Because of these lim-
itations, we evaluate only the two best performing methods, TagVote and
TagProp. TagProp can be directly used since it comes from classic image
annotation, while TagVote is slightly modified by removing the unique user
constraint. The CNN feature is used for its superior performance against
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Figure 3.7: Per-image comparison of TagVote/TagProp learned from different

training datasets, tested on NUS-WIDE. Test images are grouped in terms of the

number of ground truth tags. Within each group, the area of a colored bar is proportional

to the number of images that (the method derived from) the corresponding training

dataset scores the best. ImageNet200k is less effective for assigning multiple labels to an

image.

the BovW feature.

To construct a customized subset of ImageNet that fits the three test
sets, we take ImageNet examples whose labels precisely match with the test
tags. Notice that some test tags, e.g., ‘portrait’ and ‘night’, have no match,
while some other tags, e.g, ‘car’ and ‘dog’, have more than one matches. In
particular, MIRFlickr has 2 missing tags, while the number of missing tags
on Flickr51 and NUS-WIDE is 9 and 15. For a fair comparison these missing
tags are excluded from the evaluation. Putting the remaining test tags
together, we obtain a subset of ImageNet, containing 166 labels and over
200k images, termed ImageNet200k. For a fair comparison, we considered
only Train100k and Train1m training sets of socially tagged images.

The left half of Table 3.10 shows the performance of tag assignment.
TagVote/TagProp trained on the ImageNet data are less effective than their
counterparts trained on the Flickr data. For a better understanding of the
result, we employ the same visualization technique as used in Section 3.5.1,
i.e., grouping the test images in terms of the number of their ground truth
tags, and subsequently checking the performance per group. As shown in
Fig. 3.7, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on
the other groups. For its single-label nature, ImageNet is less effective for
assigning multiple labels to an image.

For tag retrieval, as shown in the right half of Table 3.10, TagVote/Tag-
Prop learned from ImageNet200k in general have higher MAP and NDCG
scores than their counterparts learned from the Flickr data. By compar-
ing the performance difference per concept, we find that the gain is largely
contributed by a relatively small amount of concepts. Consider for instance
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diversity in the retrieval results. Moreover, the advantage of model-based
learning vanishes as more training data and the CNN feature are used, and
TagVote performs the best.

3.5.4 Flickr versus ImageNet

To address the question of whether one shall resort to an existing resource
such as ImageNet for tag relevance learning, this section presents an em-
pirical comparison between our Flickr based training data and ImageNet.
A number of methods do not work with ImageNet or require modifications.
For instance, tag + image + user information based methods must be able
to remove their dependency on user information, as such information is un-
available in ImageNet. Tag co-occurrences are also strongly limited, because
an ImageNet example is annotated with a single label. Because of these lim-
itations, we evaluate only the two best performing methods, TagVote and
TagProp. TagProp can be directly used since it comes from classic image
annotation, while TagVote is slightly modified by removing the unique user
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the BovW feature.

To construct a customized subset of ImageNet that fits the three test
sets, we take ImageNet examples whose labels precisely match with the test
tags. Notice that some test tags, e.g., ‘portrait’ and ‘night’, have no match,
while some other tags, e.g, ‘car’ and ‘dog’, have more than one matches. In
particular, MIRFlickr has 2 missing tags, while the number of missing tags
on Flickr51 and NUS-WIDE is 9 and 15. For a fair comparison these missing
tags are excluded from the evaluation. Putting the remaining test tags
together, we obtain a subset of ImageNet, containing 166 labels and over
200k images, termed ImageNet200k. For a fair comparison, we considered
only Train100k and Train1m training sets of socially tagged images.

The left half of Table 3.10 shows the performance of tag assignment.
TagVote/TagProp trained on the ImageNet data are less effective than their
counterparts trained on the Flickr data. For a better understanding of the
result, we employ the same visualization technique as used in Section 3.5.1,
i.e., grouping the test images in terms of the number of their ground truth
tags, and subsequently checking the performance per group. As shown in
Fig. 3.7, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on
the other groups. For its single-label nature, ImageNet is less effective for
assigning multiple labels to an image.

For tag retrieval, as shown in the right half of Table 3.10, TagVote/Tag-
Prop learned from ImageNet200k in general have higher MAP and NDCG
scores than their counterparts learned from the Flickr data. By compar-
ing the performance difference per concept, we find that the gain is largely
contributed by a relatively small amount of concepts. Consider for instance
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Table 3.10: Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M

are different from Tables 3.4, 3.8 and 3.9 due to the use of a reduced set of test tags. Bold

values indicate top performers on a specific test set per performance metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389

Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405

Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745

Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856

Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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TagVote + ImageNet200k and TagVote + Train1M on NUS-WIDE. The
former outperforms the latter for 25 out of the 66 tested concepts. By
sorting the concepts according to their absolute performance gain, the top
three winning concepts of TagVote + ImageNet200k are ‘sand’, ‘garden’,
and ‘rainbow’, with AP gain of 0.391, 0.284, and 0.176, respectively. Here,
the lower performance of TagVote + Train1M is largely due to the subjec-
tiveness of social tagging. For instance, Flickr images labeled with ‘sand’
tend be much more diverse, showing a wide range of things visually irrel-
evant to sand. Interestingly, the top three losing concepts of TagVote +
ImageNet200k are ‘running’, ‘valley’, and ‘building’, with AP loss of 0.150,
0.107, and 0.090, respectively. For these concepts, we observe that their
ImageNet examples lack diversity. E.g., ‘running’ in ImageNet200k mostly
shows a person running on a track. In contrast, the subjectiveness of social
tagging now has a positive effect on generating diverse training examples.

In summary, for tag assignment social media examples are a preferred
resource of training data. For tag retrieval ImageNet yields better perfor-
mance, yet the performance gain is largely due to a few tags where social
tagging is very noisy. In such a case, controlled manual labeling seems indis-
pensable. In contrast, with clever tag relevance learning algorithms, social
training data demonstrate competitive or even better performance for many
of the tested tags. Nevertheless, where the boundary between the two cases
is precisely located remains unexplored.

3.6 Conclusions

Having established the common ground between methods, a new experi-
mental protocol was introduced for a head-to-head comparison between the
state-of-the-art. A selected set of eleven representative works were imple-
mented and evaluated for tag assignment, refinement, and/or retrieval. The
evaluation justifies the state-of-the-art on the three tasks. For tag assign-
ment, TagProp and TagVote perform best. For tag refinement, RobustPCA
is the choice. For tag retrieval, TagVote achieves the best overall perfor-
mance. Concerning what media is essential for tag relevance learning, tag +
image is consistently found to be better than tag alone. While the joint use
of tag, image, and user information (via TensorAnalysis) demonstrates its
potential on small-scale datasets, it becomes computationally prohibitive
as the dataset size increases to 100k and beyond. Comparing the three
learning strategies, instance-based and model-based methods are found to
be more reliable and scalable than their transduction-based counterparts.
As model-based methods are more sensitive to the quality of social image
tagging, a proper filtering strategy for refining the training media is crucial
for their success. Despite their leading performance on the small training
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dataset, we find that the performance gain over the instance-based alter-
natives diminishes as more training data is used. Finally, the CNN feature
used as a substitute for the BovW feature brings considerable improvements
for all the tasks.
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Chapter 4

A Cross Modal Approach for Tag Assignment

Tag assignment is still an important open problem in multime-
dia and computer vision. Many approaches previously proposed
in the literature do not accurately capture the intricate depen-
dencies between image content and annotations. We propose a
learning procedure based on Kernel Canonical Correlation Anal-
ysis which finds a mapping between visual and textual words by
projecting them into a latent meaning space. The learned map-
ping is then used to annotate new images using advanced nearest
neighbor methods. We evaluate our approach on three popular
datasets, and show clear improvements over several approaches
relying on more standard representations. 1

4.1 Introduction

The exponential growth of media sharing websites, such as Flickr or Picasa,
and social networks such as Facebook, has led to the availability of large
collections of images tagged with human-provided labels. These tags reflect
the image content and can thus be exploited as a loose form of labels and
context. Several researchers have explored ways to use images with associ-
ated labels as a source to build classifiers or to transfer their tags to similar
images (Duygulu et al., 2002; Makadia et al., 2008; Guillaumin et al., 2009;
Li et al., 2009b; Li and Fei-Fei, 2010; Znaidia et al., 2013). Image annota-
tion is therefore a very active subject of research (Metzler and Manmatha,
2004; Yavlinsky et al., 2005; Carneiro et al., 2007; Liu, Li, Liu, Lu and Ma,
2009; Zhang et al., 2010; Verma and Jawahar, 2012) since we can clearly
increase performance of search and indexing over image collections that are
machine enriched with a set of meaningful labels. In this chapter we tackle
the problem of assigning a finite number of relevant tags to an image, given

1Parts of the work presented in this chapter have been published in Ballan, L., Uricchio,

T., Seidenari, L., and Del Bimbo, A. (2014, April). “A cross-media model for automatic image

annotation”. In Proceedings of International Conference on Multimedia Retrieval (p. 73). ACM.

The publication is available at http://dx.doi.org/10.1145/2578726.2578728.
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the problem of assigning a finite number of relevant tags to an image, given

1Parts of the work presented in this chapter have been published in Ballan, L., Uricchio,

T., Seidenari, L., and Del Bimbo, A. (2014, April). “A cross-media model for automatic image

annotation”. In Proceedings of International Conference on Multimedia Retrieval (p. 73). ACM.

The publication is available at http://dx.doi.org/10.1145/2578726.2578728.
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the image appearance and some prior knowledge on the joint distribution
of visual features and tags based on some weakly and noisy annotated data.

The main shortcomings of previous works in the field are twofold. The
first is the aforementioned semantic gap problem, which points to the fact
that it is hard to extract semantically meaningful entities using just low
level visual features. The second shortcoming arises from the fact that
many parametric models, previously presented in the literature, are not
rich enough to accurately capture the intricate dependencies between image
content and annotations. Recently, nearest neighbor based methods have
attracted much attention since they have been found to be quite successful
for tag prediction (Makadia et al., 2008; Guillaumin et al., 2009; Li et al.,
2009b; Uricchio et al., 2013; Znaidia et al., 2013) (see also Chapter 2 and
3). This is mainly due to their flexibility and capacity to adapt to the
patterns in the data as more training data is available. The base ingredient
for a vote based tagging algorithm is of course the source of votes: the
set of K nearest neighbors. In challenging real world data it is often the
case that the vote casting neighbors do not contain enough statistics to
obtain reliable predictions. This is mainly due to the fact that certain tags
are much more frequent than others and can cancel out less frequent but
relevant tags (Guillaumin et al., 2009; Li et al., 2009b). It is obvious that all
voting schemes can benefit from a better set of neighbors. We believe that
the main bottleneck in obtaining such ideal neighbors set is the semantic
gap. We address this problem using a cross-modal approach to learn a
representation that maximizes the correlation between visual features and
tags in a common semantic subspace.

In Figure 4.1 we show our intuition with an example provided by real
data. We compare for the same query, a flower close-up, the first thirty-five
most similar examples provided by the visual features and by our represen-
tation. The first thing to notice is the large visual and semantic difference
between the sets of retrieved neighbors by the two approaches. Note also
that some flower pictures, which we highlight with a dashed red rectangle,
were not tagged as such. Second, note how the result presented in Figure
4.1(b) have more and better ranked flower images than the one in Figure
4.1(a). Indeed with the result set in Figure 4.1(a) it is not possible to obtain
a sufficient amount of meaningful neighbors and the correct tag flower is
canceled by others such as dog or people.

In this chapter we present a cross-media approach that relies on Kernel
Canonical Correlation Analysis (KCCA) (Hardoon and Shawe-Taylor, 2003;
Hardoon et al., 2004) to connect visual and textual modalities through a
common latent meaning space (called semantic space). Visual features and
labels are mapped to this space using feature similarities that are observ-
able inside the respective domains. If mappings are close in this semantic
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Figure 4.1: Nearest neighbors found with baseline representation (a) and with our pro-

posed method (b) for a flower image (first highlighted in yellow in both figures) from the

MIRFlickr-25K dataset. Training images with ground truth tag flower are highlighted

with a red border. Nearest neighbors are sorted by decreasing similarity and arranged

in a matrix using a row-major convention. Dashed red lines indicate flower pictures not

tagged as such.
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space, the images are likely to be instances of the same underlying seman-
tic concept. The learned mapping is then used to annotate new images
using a nearest-neighbor voting approach. We present several experiments
using different voting schemes. First, the simple KNN voting of Makadia et
al. (Makadia et al., 2008), and second three advanced NN models such as
TagVote (Li et al., 2009b), TagProp (Guillaumin et al., 2009) and 2PKNN
(Verma and Jawahar, 2012).

4.1.1 Contribution

Other existing approaches learn from both words and images, including
previous uses of CCA (Hardoon and Shawe-Taylor, 2003; Rasiwasia et al.,
2010; Hwang and Grauman, 2012; Gong et al., 2013). In contrast, we are
the first to propose an approach that combines an effective cross-modal
representation with advanced nearest-neighbor models for the specific task
of tag assignment.

In the following we show that, if combined with advanced NN schemes
able to deal with the class-imbalance (i.e. large variations in the frequency of
different labels), our cross-media model achieves high performance without
requiring heavy computation such as in the case of metric learning frame-
works with many parameters (as in (Guillaumin et al., 2009; Verma and
Jawahar, 2012)).

We present experimental results for two standard datasets, Corel5K
(Duygulu et al., 2002) and IAPR-TC12 (Grubinger et al., 2006), obtain-
ing highly competitive results. We report also experiments on a challenging
dataset collected from Flickr, i.e. the MIRFlickr-25K dataset (Huiskes and
Lew, 2008), and our results show that the performance of the proposed
method is boosted even further in a realistic and more interesting scenario
such as the one provided by weakly-labeled images.

4.2 Related Work

In the multimedia and computer vision communities, jointly modeling im-
ages and text has been an active research area in the recent years. A first
group of methods uses mixture models to define a joint distribution over
image features and labels. The training images are used by these mod-
els as components to define a mixture model over visual features and tags
(Lavrenko et al., 2003; Feng et al., 2004; Carneiro et al., 2007). They can
be interpreted as non-parametric density estimators over the co-occurrence
of images and labels. In another group of methods based on topic models
(such as LDA and pLSA), each topic represents a distribution over image
features and labels (Barnard et al., 2003; Monay and Gatica-Perez, 2004).
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These kind of generative models may be criticized because they maximize
the generative data likelihood, which is not optimal for predictive perfor-
mance. Another main criticism of these models is their need for simplifying
assumptions in order to do tractable learning and inference.

Discriminative models such as support vector machines have also been
proposed (Grangier and Bengio, 2008; Verma and Jawahar, 2013). These
methods learn a classifier for each label, and use them to predict whether a
test image belongs to the class of images that are annotated with a particular
label. A main criticism of these works resides in the necessity to define in
advance the number of labels and to train individual classifiers for each
of them. This is not feasible in a realistic scenario like the one of web
images. Despite their simplicity, nearest-neighbor based methods for image
annotation have been found to give state-of-the-art results (Makadia et al.,
2008; Guillaumin et al., 2009; Verma and Jawahar, 2012). The intuition is
that similar images share common labels. The common procedure of the
existing nearest-neighbor methods is to search for a set of visually similar
images and then to select a set of relevant associated tags based on a tag
transfer procedure (Makadia et al., 2008; Li et al., 2009b; Guillaumin et al.,
2009). In all these previous approaches, this similarity is determined only
using image visual features.

4.3 Approach

The proposed method is based on KCCA which provides a common rep-
resentation for the visual and tag features. We refer to this common rep-
resentation as semantic space. Similarly to (Hardoon and Shawe-Taylor,
2003; Hwang and Grauman, 2012) we use KCCA to connect visual and
textual modalities, but our method is designed to effectively tackle the par-
ticular problem of image auto-annotation. In Section 4.3.1 we present our
visual and text features with their respective kernels; next we briefly de-
scribe KCCA (Section 4.3.2) and the different NN schemes (Section 4.3.3).
In Figure 4.2 we show an embedding computed with ISOMAP (Tenenbaum
et al., 2000) of the visual data and its semantic projection. We randomly
pick three tags to show how the semantic projection that we learn with
KCCA better suits the actual distribution of tags with respect to the vi-
sual representation. The semantic projection improves the separation of the
classes, allowing a better manifold reconstruction and, as our experiments
will confirm, an improvement on precision and recall on different datasets.
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4.3.1 Visual and Tags Views

Visual Feature Representation and Kernels

We directly use the 15 features provided by the authors of (Guillaumin
et al., 2009; Verbeek et al., 2010)2. These are different types of global and
local features commonly used for image retrieval and categorization. In
particular we use two types of global descriptors: Gist and color histograms
with 16 bins in each channel for RGB, LAB, HSV color spaces. Local
features include SIFT and robust hue descriptors, both extracted densely
on a multi-scale grid or for Harris-Laplacian interest points. The local
feature descriptors are quantized using k-means and then all the images
are represented as bag-of-(visual)words histograms. The histograms are
also computed in a spatial arrangement over three horizontal regions of the
image, and then concatenated to form a new global descriptor that encodes
some information of the global spatial layout.

In this work we use χ2 exponential kernels for all visual features f ∈ F :

Kχ2(hi, hj) = exp

(
− 1

2A

d∑
k=1

(hi(k)− hj(k))
2

(hi(k) + hj(k))

)
, (4.1)

where A is the mean of the χ2 distances among all the training examples,
d is the dimensionality of a particular feature descriptor and hi is its re-
spective histogram representation. It has to be noticed that all the feature
descriptors are L1-normalized. Finally, all the different visual kernels are
averaged to obtain the final visual representation. We obtain the kernel
between two images Ii, Ij via kernel averaging:

Kv(Ii, Ij) =
1

|F|
∑
f∈F

Kχ2(hf
i , h

f
j ). (4.2)

Tag Feature Representation and Kernel

We use as tag features the traditional bag-of-words which records which
labels are named in the image, and how many times. Supposing V is our
vocabulary size, i.e. the total possible words used for annotation, each tag-
list is mapped to an V -dimensional feature vector h = [w1, · · · , wV ], where
wi counts the number of times the i-th word is mentioned in the tag list. In
our case this representation is highly sparse and often counts are simply 0 or
1 values. We use these features to compute a linear kernel that corresponds

2These features are available at: http://lear.inrialpes.fr/people/guillaumin/data.php.
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to counting the number of tags in common between two images:

Kt(hi, hj) =< hi, hj >=
V∑
k

hi(k)hj(k). (4.3)

4.3.2 Kernel Canonical Correlation Analysis

Given two views of the data, such as the ones provided by visual and textual
modalities, we can construct a common representation. Canonical Corre-
lation Analysis (CCA) seeks to utilize data consisting of paired views to
simultaneously find projections from each feature space such that the cor-
relation between the projected representations is maximized. In the liter-
ature, the CCA method has often been used in cross-language information
retrieval, where one queries a document in a particular language to retrieve
relevant documents in another language. In our case, the algorithm learns
two semantic projection bases, one per each modality (i.e. the v view is the
visual cue while the t view is the tag-list cue).

More formally, givenN samples from a paired dataset {(v1, t1), . . . , (vN , tN)},
where vi ∈ Rn and ti ∈ Rm are the two views of the data, the goal is to
simultaneously find directions w∗

v and w∗
t that maximize the correlation of

the projections of v onto wv and t onto wt. This is expressed as:

w∗
v, w

∗
t = arg max

wv,wt

Ê[⟨v, wv⟩⟨t, wt⟩]√
Ê[⟨v, wv⟩2]Ê[⟨t, wt⟩2]

=

arg max
wv,wt

wT
v Cvtwt√

wT
v CvvwvwT

t Cttwt

, (4.4)

where Ê denotes the empirical expectation, Cvv and Ctt respectively de-
note the auto-covariance matrices for v and t data, and Cvt denotes the
between-sets covariance matrix. The solution can be found via a general-
ized eigenvalue problem (Hardoon et al., 2004).

The common CCA algorithm can only recover linear relationships, it
is therefore useful to kernelize it by projecting the data into a higher-
dimensional feature space by using the kernel trick. Kernel Canonical Cor-
relation Analysis (KCCA) is the kernelized version of CCA. To this end,
we define kernel functions over v and t as Kv(vi, vj) = ϕv(vi)

Tϕv(vj) and
Kt(ti, tj) = ϕt(ti)

Tϕt(tj). Here, the idea is to search for solutions of wv,wt

that lie in the span of the N training instances ϕv(vi) and ϕt(ti):

wv =
∑
i

αiϕv(vi),

wt =
∑
i

βiϕt(ti), (4.5)
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where i ∈ {1, · · · , N}. The objective of KCCA is thus to identify the weights
α, β ∈ RN that maximize:

α∗, β∗ = argmax
α,β

αTKvKtβ√
αTK2

vαβ
TK2

t β
, (4.6)

where Kv and Kt denote the N × N kernel matrices over a sample of N
pairs. As shown by Hardoon (Hardoon et al., 2004), learning may need to be
regularized in order to avoid trivial solutions. Hence, we penalize the norms
of the projection vectors and obtain the standard eigenvalue problem:

(Kv + κI)−1Kt(Kt + κI)−1Kvα = λ2α. (4.7)

The top D eigenvectors of this problem yield basis A =
[
α(1) . . . α(D)

]
and

B =
[
β(1) . . . β(D)

]
that we use to compute the semantic projections of any

vector vi, ti.

Implementation Details

In order to avoid degeneracy with non-invertible Gram matrices and to
increase computational efficiency we approximate the Gram matrices using
the Partial Gram-Schmidt Orthogonalization (PGSO) algorithm provided
by Hardoon et al. (Hardoon et al., 2004).As suggested in (Hardoon et al.,
2004) the regularization parameter κ is found by maximizing the difference
between projections obtained by correctly and randomly paired views of the
data on the training set. In the experiments we have optimized both the
parameters of the PGSO algorithm (i.e. κ and T ); however, we found as
a good starting configuration the setting T = 30 and κ = 0.1. We also
found important swapping the use of visual and textual spaces as Hardoon
(Hardoon et al., 2004) fixes A to be unit vectors while computing B on the
basis of the two kernels.

4.3.3 Tag Assignment Using Nearest Neighbor Models in the
Semantic Space

The intuition underlying the use of nearest-neighbor methods for tag as-
signment is that similar images share common labels. Following this key
idea, we have investigated and applied several NN schemes to our semantic
space in order to automatically annotate images. We briefly describe these
models below and refer the interested reader to the Chapter 3.

For all baseline methods the K neighbors of a test image Ii are selected
as the training images Ij for which our averaged test kernel value Kv(Ii, Ij),
defined in Eq. 4.2, scores higher. In case the semantic space projection is
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relation Analysis (KCCA) is the kernelized version of CCA. To this end,
we define kernel functions over v and t as Kv(vi, vj) = ϕv(vi)

Tϕv(vj) and
Kt(ti, tj) = ϕt(ti)

Tϕt(tj). Here, the idea is to search for solutions of wv,wt

that lie in the span of the N training instances ϕv(vi) and ϕt(ti):

wv =
∑
i

αiϕv(vi),

wt =
∑
i

βiϕt(ti), (4.5)

72

where i ∈ {1, · · · , N}. The objective of KCCA is thus to identify the weights
α, β ∈ RN that maximize:

α∗, β∗ = argmax
α,β

αTKvKtβ√
αTK2

vαβ
TK2

t β
, (4.6)

where Kv and Kt denote the N × N kernel matrices over a sample of N
pairs. As shown by Hardoon (Hardoon et al., 2004), learning may need to be
regularized in order to avoid trivial solutions. Hence, we penalize the norms
of the projection vectors and obtain the standard eigenvalue problem:

(Kv + κI)−1Kt(Kt + κI)−1Kvα = λ2α. (4.7)

The top D eigenvectors of this problem yield basis A =
[
α(1) . . . α(D)

]
and

B =
[
β(1) . . . β(D)

]
that we use to compute the semantic projections of any

vector vi, ti.

Implementation Details

In order to avoid degeneracy with non-invertible Gram matrices and to
increase computational efficiency we approximate the Gram matrices using
the Partial Gram-Schmidt Orthogonalization (PGSO) algorithm provided
by Hardoon et al. (Hardoon et al., 2004).As suggested in (Hardoon et al.,
2004) the regularization parameter κ is found by maximizing the difference
between projections obtained by correctly and randomly paired views of the
data on the training set. In the experiments we have optimized both the
parameters of the PGSO algorithm (i.e. κ and T ); however, we found as
a good starting configuration the setting T = 30 and κ = 0.1. We also
found important swapping the use of visual and textual spaces as Hardoon
(Hardoon et al., 2004) fixes A to be unit vectors while computing B on the
basis of the two kernels.

4.3.3 Tag Assignment Using Nearest Neighbor Models in the
Semantic Space

The intuition underlying the use of nearest-neighbor methods for tag as-
signment is that similar images share common labels. Following this key
idea, we have investigated and applied several NN schemes to our semantic
space in order to automatically annotate images. We briefly describe these
models below and refer the interested reader to the Chapter 3.

For all baseline methods the K neighbors of a test image Ii are selected
as the training images Ij for which our averaged test kernel value Kv(Ii, Ij),
defined in Eq. 4.2, scores higher. In case the semantic space projection is
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used, the K neighbors are computed using:

d(ψ(Ii), ψ(Ij)) = 1− ψ(Ii)
T · ψ(Ij)

∥ψ(Ii)∥2 · ∥ψ(Ij)∥2
(4.8)

where ψ(Ii) is the semantic projection of a test image Ii. The projection of
Ii is defined as ψ(Ii) = Kv(Ii, ·)TA, where Kv(Ii, ·) is the vector of kernel
values of a sample Ii and all the training samples. Note that we only use
the visual view of our data both for training and test samples.

KNN

Given a test image, we project onto the semantic space and identify its
K Nearest-Neighbors. Then we merge their labels to create a tag-list by
counting all tag occurrences on the K retrieved images, and finally we re-
order the tags by their frequency. If we fix K to a very small number (e.g.
K = 2) this approach is similar to the ad-hoc nearest neighbor tag transfer
mechanism proposed by Makadia et al. (Makadia et al., 2008).

TagVote

Li et al. (Li et al., 2009b) proposed a tag relevance measure based on the
consideration that if different persons label visually similar images using
the same tags, then these tags are more likely to reflect objective aspects
of the visual content. Following this idea it can be assumed that, given
a query image, the more frequently the tag occurs in the neighbor set,
the more relevant it might be. However, some frequently occurring tags
are unlikely to be relevant to the majority of images. To account for this
fact the proposed tag relevance measurement takes into account both the
distribution of a tag t in the neighbor set for an image I and in the entire
collection:

tagV ote(l, I,K) := nt[N(I,K)]− Prior(t), (4.9)

where nt is an operator counting the occurrences of t in the neighborhood
N(I,K) of K similar images, and Prior(t) is the occurrence frequency of t
in the entire collection.

TagProp

Guillaumin et al. (Guillaumin et al., 2009) proposed an image annotation
algorithm in which the main idea is to learn a weighted nearest neighbor
model, to automatically find the optimal combination of multiple feature
distances. Using yit ∈ {−1,+1} to represent if tag t is relevant or not for
the test image Ii, the probability of being relevant given a neighborhood of
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K images Ij ∈ N(Ii,K) = {I1, I2, . . . , IK} is:

p(yit = +1) =
∑

Ij∈N(Ii,K)

πij p(yit = +1|N(Ii,K)), (4.10)

p(yit = +1|N(Ii,K)) =

{
1− ϵ for yit = +1,
ϵ otherwise

(4.11)

πij ≥ 0,
∑

Ij∈N(Ii,K)

πij = 1, (4.12)

where πij is the weight of a training image Ij of the neighborhood N(I,K)
and p(yit = +1|N(Ii,K)) is the prediction of tag t according to each neigh-
bor in the weighted sum.

The model can be used with rank-based (RK) or distance-based weight-
ing; the latter can be learnt by using a single distance (referred to as the
SD variant) or using metric learning (ML) over multiple distances. Further-
more, to compensate for varying frequencies of tags, a tag-specific sigmoid
is used to scale the predictions, to boost the probability for rare tags and
decrease that of frequent ones. Sigmoids and metric parameters can be
learned by maximizing the log-likelihood

∑
Ii,t

ln p(yit).

2PKNN

Verma and Jawahar (Verma and Jawahar, 2012) proposed a two phase
method: a first pass is employed to address the class-imbalance by con-
structing a balanced neighborhood for each test image and then a second
pass, where the actual tag importance is assigned based on image similarity.

The problem of image annotation is formulated similarly as Guillaumin
et al. (Guillaumin et al., 2009), by finding the posterior probabilities:

P (yit|Ii) =
P (Ii|yit)P (yit)

P (Ii)
(4.13)

Given a test image Ii, and a vocabulary Y = {t1, t2, . . . , tM}, the first
phase collects a set neighborhoods Tit for each tag t ∈ Y by selecting at
least the nearest M training images annotated with t. The neighborhood
of image Ii is then given by N(Ii) =

∪
t∈Y Tit. It should be noticed that a

tag can have less than M training image and therefore N(Ii), may still be
a lightly unbalanced set of tags.

On the second phase of 2PKNN, given a tag t ∈ Y , the probability
P (Ii|t) is estimated by the neighborhood defined in phase one for image I:

P (Ii|t) =
∑

Ij∈N(Ii)

exp(−D(Ii, Ij))p(yit = +1|N(Ii)) (4.14)
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(c) MIRFlickr-25K
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Table 4.1: This table shows the results of several configurations of our method based on

KCCA and baselines on the Corel5K , IAPR-TC12 and MIRFlickr-25K datasets.

where p(yit = +1|N(Ii)) is the presence of tag t for image Ii as in Guillaumin
et al. (Guillaumin et al., 2009) and D(Ii, Ij) is the distance between image
Ii and Ij .

In the simplest version of this algorithm D(Ii, Ij) is just a scaled version
of the distance wD(Ii, Ij), where w is a scalar. Authors in (Verma and
Jawahar, 2012) also propose a more complex version where D(Ii, Ij) can be
parameterized as a Mahalanobis distance where the weight matrix can be
learned in a way that the resulting metric will pull the neighbors from the
Tt belonging to ground-truth tags closer and push far the remaining ones.
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4.4 Experiments

We evaluate the performance of our cross-media model for tag assignment
on three popular datasets and we compare it to closely related work.
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Table 4.2: This table shows the results of our method and related work on the Corel5K

dataset (as reported in the literature). JEC-15 refers to the JEC (Makadia et al., 2008)

implementation of (Guillaumin et al., 2009) that uses our 15 visual features.

4.4.1 Datasets

Corel5K. The Corel5K dataset (Duygulu et al., 2002) has been the stan-
dard evaluation benchmark in the image annotation community for around
a decade. It contains 5,000 images which are annotated with 260 labels and
each image has up to 5 different labels (3.4 on average). This dataset is
divided into 4,500 images for training and 500 images for testing.

IAPR-TC12. This dataset was introduced in (Grubinger et al., 2006)
for cross-language information retrieval and it consists of 17,665 training
images and 1,962 testing images. Each image is annotated with an average
of 5.7 labels out of 291 candidate.

MIRFlickr-25K. The MIRFlickr-25K dataset has been recently intro-
duced to evaluate keyword-based image retrieval methods. The set contains
25,000 images that were downloaded from Flickr and for each one of these
images the tags originally assigned by the users are available (as well as
EXIF information fields and other metadata such as GPS). It is a very
challenging dataset since the tags are weak labels and not all of them are
actually relevant to the image content. There are also many meaningless
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where p(yit = +1|N(Ii)) is the presence of tag t for image Ii as in Guillaumin
et al. (Guillaumin et al., 2009) and D(Ii, Ij) is the distance between image
Ii and Ij .

In the simplest version of this algorithm D(Ii, Ij) is just a scaled version
of the distance wD(Ii, Ij), where w is a scalar. Authors in (Verma and
Jawahar, 2012) also propose a more complex version where D(Ii, Ij) can be
parameterized as a Mahalanobis distance where the weight matrix can be
learned in a way that the resulting metric will pull the neighbors from the
Tt belonging to ground-truth tags closer and push far the remaining ones.
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4.4.1 Datasets

Corel5K. The Corel5K dataset (Duygulu et al., 2002) has been the stan-
dard evaluation benchmark in the image annotation community for around
a decade. It contains 5,000 images which are annotated with 260 labels and
each image has up to 5 different labels (3.4 on average). This dataset is
divided into 4,500 images for training and 500 images for testing.

IAPR-TC12. This dataset was introduced in (Grubinger et al., 2006)
for cross-language information retrieval and it consists of 17,665 training
images and 1,962 testing images. Each image is annotated with an average
of 5.7 labels out of 291 candidate.

MIRFlickr-25K. The MIRFlickr-25K dataset has been recently intro-
duced to evaluate keyword-based image retrieval methods. The set contains
25,000 images that were downloaded from Flickr and for each one of these
images the tags originally assigned by the users are available (as well as
EXIF information fields and other metadata such as GPS). It is a very
challenging dataset since the tags are weak labels and not all of them are
actually relevant to the image content. There are also many meaningless
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Figure 4.3: Precision and recall of all the methods on MIRFlickr-25k varying the number of

nearest neighbors. Dashed lines represent baseline methods. Note that 2PKNN implicitly

define the size of the neighborhood based only on the number of images per labels.
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words. Therefore a pre-processing step was performed to filter out these
tags. To this end we matched each tag with entries in Wordnet and only
those tags with a corresponding item in Wordnet were retained. Moreover,
we removed the less frequent tags, whose occurrence numbers are below 50.
The result of this process is a vocabulary of 219 tags. The images are also
manually annotated for 18 concepts (i.e. labels) that are used to evaluate
the automatic annotation performances. As in (Verbeek et al., 2010), the
dataset is divided into 12,500 images for training and 12,500 images for
testing.

4.4.2 Evaluation Measures

We evaluate our models with standard performance measures, used in pre-
vious work on image annotation. The standard protocol in the field is to
report Precision and Recall for fixed annotation length (Duygulu et al.,
2002). Thus each image is annotated with the n most relevant labels (usu-
ally, as in this chapter, the results are obtained using n = 5). Then, the
results are reported as mean precision P and mean recall R over the ground-
truth labels; N+ is often used to denote the number of labels with non-zero
recall value. Note that each image is forced to be annotated with n labels,
even if the image has fewer or more labels in the ground truth. Therefore
we will not measure perfect precision and recall figures.

4.4.3 Results

As a first experiment we compare our method with the corresponding near-
est neighbor voting schemes. It can be seen from Table 4.1 that our approach
improves over baseline methods in every setting on all datasets. Precision
is boosted notably, confirming the better separation of the classes in the
semantic space (as previously discussed in Section 4.3). Also recall is im-
proved by a large margin on Corel5K and MIRFlickr-25k. On IAPR-TC12
recall improvement is less pronounced. We believe this is due the different
amount of textual annotation: IAPR-TC12 has an average of 5.7 tags per
image (TPI) and up to 23 TPI while on Corel5K and MIRFlickr-25k the
average TPI is respectively 3.4 and 4.7 with a maximum of 5 and 17 TPI
respectively. Recalling that we are predicting n = 5 tags per image, recall
is harder to improve on this dataset.

We conduct an evaluation of how the amount of neighbours affect the
performance for both our method and the baseline on the challenging MIRFlickr-
25k dataset. As can be seen from Figure 4.3 the KCCA variants (solid lines)
of the four considered voting schemes systematically improve both precision
and recall for any amount of nearest neighbors used. Note that in both
cases, a similar pattern emerges due the natural instability of NN methods.
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Figure 4.3: Precision and recall of all the methods on MIRFlickr-25k varying the number of

nearest neighbors. Dashed lines represent baseline methods. Note that 2PKNN implicitly

define the size of the neighborhood based only on the number of images per labels.
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words. Therefore a pre-processing step was performed to filter out these
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respectively. Recalling that we are predicting n = 5 tags per image, recall
is harder to improve on this dataset.

We conduct an evaluation of how the amount of neighbours affect the
performance for both our method and the baseline on the challenging MIRFlickr-
25k dataset. As can be seen from Figure 4.3 the KCCA variants (solid lines)
of the four considered voting schemes systematically improve both precision
and recall for any amount of nearest neighbors used. Note that in both
cases, a similar pattern emerges due the natural instability of NN methods.
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It is interesting to note that while recall gets better as the neighborhood
gets bigger, saturating at near 2, 000 neighbours, precision depends on the
algorithm chosen. Basic voting and TagVote show an improvement until
200 neighbors and then begin decreasing; TagProp improves until saturates
at around 900.

2PKNN misses a direct parameter to choose the dimension of the neigh-
borhood, but it implicitly defines it by choosing at mostM images per label.
However, while it has a clear advantage on Corel5K and IAPR-TC12, both
as a baseline and after the projection, it fails to achieve comparable per-
formance on MIRFlickr-25K. We believe that this is due to the noisy and
missing tags of MIRFlickr-25K, a notable difference on this more realistic
and challenging dataset.

Comparing with the state of the art, on Tables 4.2 and 4.3, our method
achieves better performance than all previous works while it is compara-
ble with the state of the art method 2PKNN (Verma and Jawahar, 2012)
on Corel5K. Our method performs slightly worse than 2PKNN in metric
learning configuration. However, metric learning involves a learning proce-
dure with many parameters that rise the complexity of optimization and
undermines scalability.

Our method, once learned the semantic space, continues to work in what
we call an open world setting. In this setting that is indeed more realistic,
the amount of tags per image evolves over time. That is the case of big data
from social media and, more in general, from the web.

We also report in Table 4.4 a comparison with the methods presented
in (Guillaumin et al., 2009; Verbeek et al., 2010) using per-image average
precision (iAP). This measure indicates how well a method identifies rele-
vant concepts for a given image. Our method combining the 2PKNN voting
scheme, without metric learning, with the semantic projection outperforms
all the other methods.

Qualitative Analysis

In Figure 4.4 we present some anecdotal evidence for our method (from the
MIRFlickr-25k dataset). It can be seen that TagProp and TagVote perform
better in general for the baseline representation and our proposed KCCA
variant. It has to be noted that for challenging images where visual features
can be deceiving our cross-modal approach allows to retrieve more tags. As
an example see the first two rows: a close-up of a flower and a cloudy sunset
with a road. For the first one it is not surprising that visual features do not
provide enough good neighbors to retrieve the flower tag. For the second
one none of the baseline method can retrieve the sunset and cloud tags; we
believe that this is due to the lack of color features. In this two cases it is
clear that semantically induced neighbors in the common space can boost
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the accuracy.

Another challenging example is shown at row five: a girl is depicted
behind an object that hides a part of the face. This image component do not
have enough visual neighbors to retrieve its tags. With our representation
we are able to retrieve girl and portrait in the first three voting schemes and
also people in the TagProp voting scheme, though face and woman may be
considered correct even if not present in the ground truth tags.
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Figure 4.4: Anecdotal results of the baseline methods and our proposed representation

for a set of challenging images (MIRFlickr-25K dataset). The tags are ordered by their

relevance scores.

4.5 Conclusions

We presented a cross-media model based on KCCA to perform tag assign-
ment. We learn semantic projections for both textual and visual data. This
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representation is able to provide better neighbors for voting algorithms. The
experimental results show that our method makes consistent improvements
over standard approaches based on a single-view visual representation as
well as other previous work that also exploited tags. We report also exper-
iments on a challenging dataset collected from Flickr and our results show
that the performance of the proposed method is boosted even further in a
realistic scenario such as the one provided by weakly-labelled images. Pos-
sible extensions of this work include the exploration of how richer textual
and semantic cues from natural language annotations might improve our
model.
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the accuracy.

Another challenging example is shown at row five: a girl is depicted
behind an object that hides a part of the face. This image component do not
have enough visual neighbors to retrieve its tags. With our representation
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Baselines KCCA models

NN-voting TagVote TagProp 2PKNN NN-voting TagVote TagProp 2PKNN

dog

graffiti

people

black

art

dog

graffiti

animal

people

house

graffiti

dog

people

face

art

graffiti

dog

people

face

art

flower

flowers

pink

green

spring

flower

flowers

pink

green

red

flower

flowers

green

pink

white

graffiti

dog

people

face

art

sky

clouds

water

landscape

trees

clouds

sky

landscape

water

trees

clouds

sky

water

landscape

trees

clouds

sky

water

landscape

trees

clouds

sky

landscape

sunset

blue

clouds

sky

sunset

landscape

cloud

clouds

sky

landscape

sunset

beach

clouds

sky

water

landscape

trees

japan

art

water

dog

trees

japan

zoo

dog

trees

art

japan

water

dog

park

art

japan

water

dog

park

art

portrait

girl

tree

street

green

portrait

girl

woman

tree

trees

portrait

girl

green

tree

trees

japan

water

dog

park

art

pink

flower

japan

baby

portrait

pink

baby

japan

cake

crochet

pink

japan

flower

japanese

vintage

pink

japan

flower

japanese

vintage

food

chocolate

cake

fruit

red

food

cake

chocolate

dog

crochet

food

chocolate

cake

red

fruit

pink

japan

flower

japanese

vintage

japan

people

man

street

bicycle

japan

man

people

bicycle

animal

japan

people

animal

kid

eye

japan

people

animal

kid

eye

portrait

girl

girls

hair

face

portrait

girl

face

woman

hair

portrait

girl

face

people

woman

japan

people

animal

kid

eye

street

architecture

beach

white

snow

street

snow

architecture

beach

home

beach

street

people

portrait

landscape

beach

street

people

portrait

landscape

beach

sea

clouds

sky

water

beach

sea

sunset

ocean

clouds

beach

sea

clouds

ocean

water

beach

street

people

portrait

landscape

green

garden

people

flower

spring

green

waterfall

garden

bird

colours

green

grass

garden

feet

water

green

grass

garden

feet

water

dog

animal

zoo

green

dogs

dog

animal

animals

puppy

dogs

dog

animal

zoo

dogs

green

green

grass

garden

feet

water

Figure 4.4: Anecdotal results of the baseline methods and our proposed representation

for a set of challenging images (MIRFlickr-25K dataset). The tags are ordered by their
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4.5 Conclusions

We presented a cross-media model based on KCCA to perform tag assign-
ment. We learn semantic projections for both textual and visual data. This
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representation is able to provide better neighbors for voting algorithms. The
experimental results show that our method makes consistent improvements
over standard approaches based on a single-view visual representation as
well as other previous work that also exploited tags. We report also exper-
iments on a challenging dataset collected from Flickr and our results show
that the performance of the proposed method is boosted even further in a
realistic scenario such as the one provided by weakly-labelled images. Pos-
sible extensions of this work include the exploration of how richer textual
and semantic cues from natural language annotations might improve our
model.

83



84

Chapter 5

Evaluating Temporal Information in Social Images

Can we use the temporal gist of annotations in Web images to
improve tasks such as annotation, indexing and retrieval? Typi-
cally visual content and text, are used to improve these tasks. A
characteristic that has received less attention, so far, is the tem-
poral aspect of social media production and tagging. This chapter
gives a thorough analysis of the temporal aspects of two popular
datasets commonly used for tasks such as tag ranking, tag sug-
gestion and tag refinement, namely NUS-WIDE and MIR-Flickr-
1M. The correlation of the time series of the tags with Google
searches shows that for certain concepts web information sources
may be beneficial to annotate social media.1

5.1 Introduction

Typically visual content, text and metadata, such as geo-tags, are used
to improve tasks such as annotation, indexing and retrieval of the huge
quantities of media produced every day by the users of such systems. For
instance, visual content similarity is used in (Li et al., 2009b) to perform
tag suggestion and image retrieval, tag co-occurrence has been proposed in
(Sigurbjörnsson and van Zwol, 2008) for tag suggestion, geo-tags have been
used in (Sizov, 2010) for tag recommendation, content classification and
clustering. A recent review of the state-of-the-art in areas related to web-
based social communities and social media has been presented in (Sundaram
et al., 2012), considering in particular the contribution of contextual and
social aspects of media semantics to multimedia applications.

A characteristic that has received less attention, so far, is the temporal
aspect of social media production. As noted in (Alonso et al., 2007), ex-

1Parts of the work presented in this chapter have been published in Uricchio, T., Ballan, L.,

Bertini, M., and Del Bimbo, A. (2013, September). “Evaluating temporal information for social

image annotation and retrieval”. In International Conference on Image Analysis and Processing

(pp. 722-732). Springer, Berlin, Heidelberg. The publication is available at http://dx.doi.org/

10.1007/978-3-642-41181-6_73.
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Figure 5.1: Time series of user tags and Google searches for “soccer” in NUS-WIDE

dataset.

tracting time information from documents may improve several applications
such as hit-list clustering and exploratory search. More recently, several re-
searchers have shown that the temporal information associated to search
engine queries (e.g. frequency of query keywords over time) can be used to
predict trends and behaviors related to economics and medicine, such as
claims for unemployment benefits (Choi and Varian, 2011), and detection
of flu epidemics (Ginsberg et al., 2009).

In (Rattenbury et al., 2007) “burst” analysis techniques derived from
signal processing are compared against a novel method to identify social
events in the associated social media, using the tags and geo-localization
information of Flickr images. In (Kim et al., 2010), the temporal evolu-
tion of topics in social image collections is proposed to perform subtopic
outbreak detection and to classify noisy social images. The authors used a
non-parametric approach in which images are represented using a similar-
ity network, created using Sequential Monte Carlo, where images are the
vertices and the edges connect the temporally related an visually similar
images. Temporal dynamics of social image collections has been studied in
(Kim and Xing, 2013) to improve search relevance at query time, address-
ing both a general case and personalized interest searches. The authors
propose a unified statistical model based on regularized multi-task regres-
sion on multivariate point process, in which an image stream is considered
an instance of a process and a regression problem is formulated to learn the
relations between image occurrence probabilities and temporal factors that
influence them (e.g. seasons).

Analysis of the temporal evolution of social media collections have been
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proposed in (Jin et al., 2010) to predict political success and product sales;
regression-based and diffusion-based models have been adapted to account
for a Flickr-based index, combining images’ metadata and visual similarity,
that models the popularity of politicians and products. The work presented
in (Kim et al., 2012) re-casts the problem of image retrieval re-ranking as
a prediction of which images will be more likely to appear on the web at
a future time point. Both collective group level and individual user level
cases are considered, using a multivariate point process to model a stream of
input images, and using a stochastic parametric model to solve the relations
between the occurrences of the images and factors such as visual clusters,
user descriptors and month of the image.

All the datasets used in these works are based on custom selections of
user-generated images selected from Flickr, and are not publicly available.
The main contribution of this chapter is a thorough analysis of the tem-
poral aspects of two “standard” datasets commonly used for tasks such
as tag ranking, tag suggestion and tag refinement (Liu, Hua, Yang, Wang
and Zhang, 2009)(Li et al., 2009b)(Zhu et al., 2010)(Liu, Yan, Hua and
Zhang, 2011)(Uricchio et al., 2013): NUS-WIDE (Chua et al., 2009) and
MIR-Flickr-1M (Huiskes et al., 2010). These datasets provide images and
associated metadata, along with a ground-truth annotation of 81 and 18
tags, respectively. Analysis of the temporal evolution of both user tags and
ground-truth tags allows to evaluate the social context (e.g. use of tags re-
lated to the semantics associated to social interaction, and not necessarily
associated with image content) and visual content (e.g. use of tags that are
more strictly related to image content). The correlation of the time series of
the tags with Google searches (see Fig. 5.1) shows that for certain concepts
web information sources may be beneficial to annotate social media.

5.2 Data Analysis Method

5.2.1 Datasets

To measure the impact of temporal information for image annotation pur-
poses, we performed a quantitative analysis over two image datasets: NUS-
WIDE (Chua et al., 2009) and MIR-Flickr-1M (Huiskes et al., 2010).

NUS-WIDE is a large scale dataset collected from Flickr. It contains
269,648 images, provided as multiple visual features and source URLs, with
5,018 tags of which 81 have been manually checked and can be considered
ground-truth tags. Tab. 5.1 reports the classification of these tags according
to their main WordNet category. In order to obtain all temporal metadata
not contained in the set, we had to download again all the original images
from Flickr. Unfortunately, some images are not available anymore, there-
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Figure 5.1: Time series of user tags and Google searches for “soccer” in NUS-WIDE

dataset.
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fore we had to use a subset of 238,251 images that are still present on Flickr.
We refer to this subset as NUS-WIDE-240K. Images are unbalanced with
respect to time, having very different number of images per date. The time
interval goes from year 1900 (old photo scans) to 2009, concentrating most
of the images between 2005-2008.

MIR-Flickr-1M is also a large dataset crawled from Flickr which con-
tains 1 million images, selected by their Flickr interestingness score (von
Ahn and Dabbish, 2004)(Huiskes and Lew, 2008). Every image provided
has full Flickr metadata which includes taken and posted timestamps, indi-
cating when a photo was taken and when it was shared on Flickr. However,
only about half of the images provide a valid “taken” timestamp, in par-
ticular only 584,892 are valid, as 330,454 have no timestamps and 84,654
have an invalid timestamp. Like NUS-WIDE-240K, images are unbalanced
with respect to time. Images are concentrated around years 2007-2009. A
ground-truth comprised of 18 tags is provided for the first 25,000 images
only, that compose a subset called MIR-Flickr25K (Huiskes and Lew, 2008).

5.2.2 Temporal features

Given a set of images I, all taken in a set of dates D (as a daily interval),
we denote as T the set of all tags used and U the set of all users. For every
image i ∈ I we denote tag(i) ⊆ T the set of tags associated, day(i) ∈ D the
timestamp associated and user(i) ∈ U the user who owns the image. We
also consider two other time spans, a set of weeks W and a set of months
M , easily computed by integrating over the interval of days considered.
These can be thought as time series over the selected index set. For every
set considered, we computed a set of features, as proposed in (Kim et al.,
2012):

• Images per day: the number of relevant images which are taken in
a day. More specifically, given a day d ∈ D, the number of images per
day (IMD) is defined as

IMD(d) := |{i ∈ I|day(i) = d}| (5.1)

Similarly we also define a feature for the number of images per week
(IMW) and per month (IMM).

Object 12 Animal 13 Location 2 Substance 2

Action 5 Plant 4 Top 4 Time 2

Artifact 26 Event 4 Phenomenon 4 Person + Groups 3

Table 5.1: WordNet categories of NUS-WIDE ground-truth tags.
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• Images per day for a tag: the number of relevant images associated
with a tag which are taken in a day. More specifically, given a tag t ∈ T
and a day d ∈ D, the number of images with t per day (ITD) is defined
as

ITD(t, d) := |{i ∈ I|day(i) = d ∧ t ∈ tag(i)}| (5.2)

Similarly we also define a feature per week (ITW) and per month
(ITM).

However, a phenomenon associated with a social source is that of batch
tagging : a user may decide to upload an entire album of photos and, instead
of carefully tagging each photo, he could simply opt to tag each photo with
the same tags (e.g. tag the album instead of every single photo). This may
result in a kind of noise with respect to the normal use of tags in time.
In addition, the features defined above are sensitive to this kind of noise,
producing noisy peaks over single days. To produce a more meaningful
analysis we decide to collapse all images that are batch tagged into a single
entry. A set of images are considered batch tagged if they are all uploaded
by the same user on the same day and have the same set of tags. More
specifically, given a user û ∈ U , a day d̂ ∈ D and a set of tags t̂ ⊆ T , a
set of images IB = {i1, i2, . . . , ik} are considered batch tagged if tag(i) =
t̂, user(i) = û, day(i) = d̂ ∀i ∈ IB.

5.2.3 Flickr Popularity Model

As described in (Jin et al., 2010), available images from the two datasets
are only a sample of all images in Flickr. In addition, the number of images
over time in Flickr are mostly variable, based on the popularity of the site
itself. This slow change over time can be modeled as a trend over all tags,
independent from any particular query. Unfortunately, no statistics are
released publicly and other sources such as Alexa2 or Google Trends3 are
affected by the impact of news. Based on this preliminary analysis and
supposing an uniform sampling in Flickr searches, we use the feature IMD
to remove this background deviation by normalizing the ITD feature.

Given a tag t ∈ T and a date d ∈ D we compute:

ITD(t, d) =
ITD(t, d)

IMD(d)
(5.3)

This may also be considered as a frequentist probability distribution of
tag t in day d with respect to all other tags considered, which is p(t; d).
Similarly we also compute ITW and ITM by considering a week and a

2Alexa Internet, Inc. http://www.alexa.com
3Google Trends. http://www.google.com/trends
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month granularity, respectively. After collapsing all batch tagged images,
the two datasets retain 179,128 images for NUS-WIDE-240K and 531,670
images for MIRFLICKR-1M respectively.

5.2.4 Processing

First of all we present a qualitative analysis by measuring the occurrence
of tags in time. Given that NUS-WIDE-240K has the biggest ground truth
of all datasets considered and that we are looking to discover the relations
between tags and image content with respect to time, we choose to use it as
the main reference. We use all the 81 manually checked tags as T set and
consider four different information sources which are different in the kind of
underlining latent process :

• From NUS-WIDE-240K, for all images, we consider the T set of tags
using themanually validated tags which constitute the entire ground
truth; we refer to this source as NUS-GT.

• From NUS-WIDE-240K, for all images, we consider the T set of tags
using the user tags (e.g. the tags provided by the respective Flickr
users); we refer to this source as NUS-TAGS.

• From MIRFLICKR-1M, for all images, we consider the T set of tags
using the user tags; we refer to this source as MIR-TAGS.

• Beside image datasets, we also consider a source of temporal query
information given by Google Trends. From Google Trends, we have
downloaded all available query data for the T set of tags considered;
we refer to this source as GOO-TAGS.

All sources are to be considered subject to different kinds of noise, in par-
ticular all images are highly unbalanced over time, resulting in days with
hundreds of images and others with at most ten images. To reduce this
effect, we choose to consider only the largest time span with at least 350
images per week. In addition the two image datasets differ in the time in-
terval which has the most images. This forced us to use a reduced time
interval that we choose as starting from 2005-06-01 and ending in 2008-08-
01 for NUS-WIDE-240K (retaining 161,176 images from 179,128) and from
2007-01-01 to 2008-08-01 for MIR-Flickr-1M (retaining 110,064 images from
531,670). Those filters were processed with a combination of Python scripts
and Google Refine4. After this we used the R package (Team, 2011) to plot
and execute any successive analysis. A plotting of features of this data re-
vealed an insufficient reduction in noise to be able to clearly visualize most
characteristics pattern. To make the time series patterns more clear, we

4Google Refine. http://code.google.com/p/google-refine
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computed a simple moving average over all time series, varying the win-
dows size n from 2 to 10 weeks. For a day time series defined over a time
span Ψ for a tag t ∈ T is defined as:

ITDn(t, d) =
1

n

n∑
i=−n

ITD(t, d+ i) ∀d ∈ Ψ (5.4)

This has the effect to smooth the series, letting to visualize more clearly the
trend. On the other hand, tags which have very sparse frequency tends to be
worsened, so we adjusted the window size empirically, based on visualization
clearness. The final time series are composed of 1,158 and 579 week samples
respectively for NUS-WIDE-240K and MIR-Flickr-1M.

5.2.5 Correlation analysis

To exploit the underlying time process and to be able to improve image
annotation using temporal information, we need a way to evaluate quanti-
tatively the possible correlation between sources. This allows us to analyze
if a series can be estimated by another one and how a generalized model
may describe the original time series. To this end we compute a correlation
measure over two series. First of all we standardize all time series: given
a time series X = {xi : i ∈ D}, we compute xi = xi−X

s
, where X is the

sample mean and s is the sample standard deviation. Even if sample mean
and sample standard deviation are sensible to outliers, those are removed
thanks to the filtering and smoothing procedure described above. To eval-
uate the correlation between two time series, we choose to use the sample
Pearson correlation coefficient, often denoted as r. Given two time series
X and Y of n samples, r is defined as the ratio between covariance and the
product of X variance and Y variance:

r =

∑n
i=1(xi −X)(yi − Y )√∑n

i=1(xi −X)2
√∑n

i=1(yi − Y )2
(5.5)

which is defined in [−1, 1]. Values towards the positive or negative end
reveal a strong correlation between the two time series, changing only in
the sign. We can reformulate it as the mean of the products of the standard
scores, which permits us to use standardized time series x̂i = xi−X

sX
and

ŷi =
yi−Y
sY

:

r =
1

n− 1

n∑
i=1

(xi −X

sX

)(yi − Y

sY

)
=

1

n− 1

n∑
i=1

x̂iŷi (5.6)

Given that the strength of correlation is not dependent on the direction or
the sign, we also computed r-square. Unfortunately the interpretation of
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x̂iŷi (5.6)

Given that the strength of correlation is not dependent on the direction or
the sign, we also computed r-square. Unfortunately the interpretation of

91



Image Understanding by Socializing the Semantic Gap

92

a correlation coefficient depends heavily on the context and purposes that
can’t be easily defined at this stage of work. However several works like
(Cohen, 1988) offered some guidelines which can be used to interpret our
analysis, that are reported in Tab. 5.2.

Correlation None Small Medium Strong

Positive 0.0 to 0.09 0.1 to 0.3 0.3 to 0.5 0.5 to 1.0

Negative -0.09 to 0.0 -0.3 to -0.1 -0.5 to -0.3 -1.0 to -0.5

Table 5.2: Guidelines for sample Pearson correlation coefficient.

5.3 Experiments and Discussion

In the following we will consider both the presence of the tags that have been
added by the users that uploaded the images to Flickr (referring to them as
“user tags”) and the tags that have been manually checked by the creators
of NUS-WIDE as referring to visual content of images (referring to them as
“ground-truth” tags). In fact, several studies have shown that tags are often
ambiguous and personalized (Kennedy et al., 2006)(Sigurbjörnsson and van
Zwol, 2008), and do not necessarily reflect the visual content of the image.
As an example consider Fig. 5.2 and 5.3, showing the temporal usage of the
tags “snow” and “soccer” in NUS-WIDE, along with the respective Google
searches, as obtained from Google Trends. It can be observed that the peak
in usage of the “soccer” tag - associated with the 2006 FIFA World Cup -
reflects that in Google Trends, but the peak is much less pronounced in the
ground truth tags; this indicates that for this tag the relationship between
tags and image may exist because of how people react to social events,
rather than uploading photos depicting that event on Flickr. On the other
hand the peaks of both user and ground truth “snow” tag are corresponding
to that of Google Trends: in this case the relationship may exist because it
is more likely that people take pictures of snow scenes during winter, and
this concept is less related to social aspects than to visual content of these
images.

5.3.1 Temporal Evaluation

Considering time series composed of the frequencies of image tags (either
user or ground-truth) and Google searches obtained from Google Trends, it
is possible to observe that they exhibit the presence of different components,
that may appear mixed together:

trend long term variation, that can be increasing, decreasing or also sta-
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Figure 5.2: Frequency of “soccer” in NUS-GT, NUS-TAGS and GOO-TAGS: the peak

of Google Trends and user tags in the summer of 2006 are related to the World Soccer

Championship.

ble (see Fig. 5.4). Terms such as “computer” or “military” have this
pattern;

cyclical variation repeated but not periodic variations. Tags like “sports”
or “flags” have this pattern;

seasonal variation periodic variations, e.g. due to concepts associated
with some regular event (see Fig. 5.4). Concepts related to seasons
show this behavior, like “garden”, “snow”, “beach” or “frost”;

irregular variation random irregular variations, e.g. due to the sudden
emergence of a topic (see Fig. 5.5), that appears as a burst of activ-
ity. Concepts that exhibit this pattern are related to social or natural
events like “soccer”, “earthquake” and “protest”.
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Positive 0.0 to 0.09 0.1 to 0.3 0.3 to 0.5 0.5 to 1.0

Negative -0.09 to 0.0 -0.3 to -0.1 -0.5 to -0.3 -1.0 to -0.5

Table 5.2: Guidelines for sample Pearson correlation coefficient.

5.3 Experiments and Discussion

In the following we will consider both the presence of the tags that have been
added by the users that uploaded the images to Flickr (referring to them as
“user tags”) and the tags that have been manually checked by the creators
of NUS-WIDE as referring to visual content of images (referring to them as
“ground-truth” tags). In fact, several studies have shown that tags are often
ambiguous and personalized (Kennedy et al., 2006)(Sigurbjörnsson and van
Zwol, 2008), and do not necessarily reflect the visual content of the image.
As an example consider Fig. 5.2 and 5.3, showing the temporal usage of the
tags “snow” and “soccer” in NUS-WIDE, along with the respective Google
searches, as obtained from Google Trends. It can be observed that the peak
in usage of the “soccer” tag - associated with the 2006 FIFA World Cup -
reflects that in Google Trends, but the peak is much less pronounced in the
ground truth tags; this indicates that for this tag the relationship between
tags and image may exist because of how people react to social events,
rather than uploading photos depicting that event on Flickr. On the other
hand the peaks of both user and ground truth “snow” tag are corresponding
to that of Google Trends: in this case the relationship may exist because it
is more likely that people take pictures of snow scenes during winter, and
this concept is less related to social aspects than to visual content of these
images.

5.3.1 Temporal Evaluation

Considering time series composed of the frequencies of image tags (either
user or ground-truth) and Google searches obtained from Google Trends, it
is possible to observe that they exhibit the presence of different components,
that may appear mixed together:

trend long term variation, that can be increasing, decreasing or also sta-
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Figure 5.2: Frequency of “soccer” in NUS-GT, NUS-TAGS and GOO-TAGS: the peak

of Google Trends and user tags in the summer of 2006 are related to the World Soccer

Championship.

ble (see Fig. 5.4). Terms such as “computer” or “military” have this
pattern;

cyclical variation repeated but not periodic variations. Tags like “sports”
or “flags” have this pattern;

seasonal variation periodic variations, e.g. due to concepts associated
with some regular event (see Fig. 5.4). Concepts related to seasons
show this behavior, like “garden”, “snow”, “beach” or “frost”;

irregular variation random irregular variations, e.g. due to the sudden
emergence of a topic (see Fig. 5.5), that appears as a burst of activ-
ity. Concepts that exhibit this pattern are related to social or natural
events like “soccer”, “earthquake” and “protest”.
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Figure 5.3: Frequency of “snow” in NUS-GT, NUS-TAGS and GOO-TAGS: the peaks

are associated with winter seasons. Tag frequencies have been normalized by the number

of images of the same day.

5.3.2 Correlation Analysis

Fig. 5.6 reports the outcome of correlation analysis of NUS-TAGS with
NUS-GT, NUS-TAGS with GOO-TAGS and NUS-GT with MIR-TAGS.
In particular it can be observed that the correlation of NUS-TAGS and
NUS-GT has a vast majority of “Medium” and “Strong” values, while the
correlation between user tags and Google searches is overall weaker and
can be useful for a selected number of tags. The correlation between NUS-
GT and MIR-TAGS has a large number of “Medium” and “Strong” values,
suggesting that the temporal information of NUS-WIDE can be used in
MIR-Flickr-1M.

Correlation analysis of NUS-TAGS with GOO-TAGS, followed by aver-
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Figure 5.4: Time series patterns of NUS-TAGS and GOO-TAGS, averaged over 10 weeks.

i) trend (computer); ii) seasonal (garden).
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Figure 5.5: Time series patterns of NUS-TAGS and GOO-TAGS, averaged over 10 weeks.

Episodic behavior (earthquake: peaks correspond to earthquakes in China and Pakistan).

aging of r-square values over tags classes (Fig. 5.7 left) shows that Plant,
Event, Phenomenon and Action obtain the higher values. A second group
of categories comprises Artifact, Person+Group, Animal, Object and Time.
In general, the categories that obtain the best performances are benefitting
from tags whose time series show seasonal behaviors (e.g. “snow”, “frost”,
“grass”, “leaf”) or have a “burst” behavior associated with specific social
events (e.g. “soccer”, “protest”, “earthquake”).

Correlation analysis of NUS-GT with GOO-TAGS (Fig. 5.7 right) shows
that Plant and Phenomenon categories maintain their position among the
best performing classes, because of the tags that exhibit a seasonal pattern.
Instead the correlation of Event and Action categories is lower because the
ground-truth tags that have an episodic pattern like “soccer”, “protest” and
“earthquake” have a lower correlation. This is due to the fact that these
tags are employed by users also when the content of the image is not visually
related to the described event.

5.4 Conclusions

This chapter presented a thorough analysis of the temporal aspects of user
annotations in two popular large-scale datasets. The correlation of the time
series of the tags with Google searches showed that for certain concepts web
information sources may be beneficial to annotate social media.
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Figure 5.7: NUS-WIDE dataset: r-square averages for tags classes. i) NUS-TAGS corre-

lation with GOO-TAGS; ii) NUS-GT correlation with GOO-TAGS.
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Chapter 6

Multimodal Feature Learning for Sentiment Analysis

In this chapter we investigate the use of a multimodal feature
learning approach, using neural network based models such as
Skip-gram and Denoising Autoencoders, to address sentiment anal-
ysis of micro-blogging content, such as Twitter short messages,
that are composed by a short text and, possibly, an image. Moti-
vated by the recent advances of unsupervised learning of language
models and visual features based on neural networks models, we
propose a novel architecture that incorporates these models and
test it on several standard Twitter datasets. We show that the
approach is efficient and obtains good classification results. 1

6.1 Introduction

In the last few years micro-blogging services, in which users describe their
current status by means of short messages, obtained a large success among
users. Unarguably, one of the most successful services is Twitter2, that is
used worldwide to discuss about daily activities, to report or comment news,
and to share information using messages (called ‘tweets’) composed by at
most 140 characters. Since 2011 Twitter natively supports adding images to
tweets, easing the creation of richer content. A study performed by Twitter3

has shown that adding images to tweets increases user engagement more
than adding videos or hashtags.

Despite their brevity these messages often convey also the feeling and the
point of view of the people writing them. The addition of images reinforces
and clarifies these feelings (see Fig.6.1). Automatic analysis of the sentiment
of these tweets, i.e. retrieving the opinion they express, has received a large

1Parts of the work presented in this chapter have been published in Baecchi, C., Uricchio, T.,

Bertini, M., and Del Bimbo, A. (2016). “A multimodal feature learning approach for sentiment

analysis of social network multimedia”. Multimedia Tools and Applications, 75(5), 2507-2525.

The publication is available at http://dx.doi.org/10.1007/s11042-015-2646-x.
2Twitter reports to have 271 million monthly active users that send 500 million status updates

per day - https://about.twitter.com/company
3https://blog.twitter.com/2014/what-fuels-a-tweets-engagement
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attention from the scientific community. This is due to its usefulness in
analyzing a large range of domains such as politics (Tumasjan et al., 2010)
and business (Ghiassi et al., 2013). Sentiment analysis may encompass
different scopes (Bravo-Marquez et al., 2013): i) polarity, i.e. categorize a
sentiment as positive, negative or neutral; ii) emotion, i.e. assign a sentiment
to an emotional category such as joy or sadness; iii) strength, i.e. determine
the intensity of the sentiment.

So far, the vast majority of works have addressed only the textual data.
In this chapter we address the classification of tweets, according to their po-
larity, considering both textual and visual information. We propose a novel
schema that, by incorporating a language model based on neural networks,
can efficiently exploit web-scale sources corpus and robust visual features
obtained from unsupervised learning. The proposed method has been tested
on several standard datasets, showing promising results.

Figure 6.1: Examples of tweets with images from the SentiBank Twitter dataset (Borth

et al., 2013). left) positive sentiment tweet; right) negative sentiment tweet.

The chapter is organized as follows: Sect. 6.2 provides an overview of
previous works; the proposed method is presented in Sect. 6.3, while ex-
periments on four standard datasets and comparison with state-of-the-art
approaches and baselines are reported in Sect. 6.4. Conclusions are drawn
in Sect. 6.5.

100

6.2 Previous Work

Sentiment analysis in texts. Brevity, sentence composition and variety
of topics are among the main challenges in sentiment analysis of tweets
(and micro-blogs in general). In fact these texts are short, often they are
not composed carefully as news or product reviews, and cover almost any
conceivable topic. Several specific approaches for Twitter sentiment anal-
ysis have been proposed, typically using sentence-level classification with
n-gram word models. Liu et al. (Liu et al., 2012) concatenate tweets of the
same class (polarity) in large documents, from which a language model is
derived and then classify tweets through maximum likelihood estimation,
using both supervised and unsupervised data for training; the role of unsu-
pervised data is to deal with words that do not appear in the vocabulary
that can be built from a small supervised dataset. In (Bifet and Frank,
2010) three approaches to sentiment classification are compared: Multi-
nomial Näıve Bayes (MNB), Hinge Loss with Stochastic Gradient Descent
and Hoeffding Tree; the authors report that MNB outperforms the other
approaches. In (Deitrick and Hu, 2013) unigram and bigram features have
been used to train Näıve Bayes classifiers, where bigrams help to account
for negation of words. Saif et al. (Saif et al., 2013) have evaluated the use
of a Max Entropy classifier on several Twitter sentiment analysis datasets.
Since using n-grams on tweet data may reduce classification performance
due to the large number of infrequent terms in tweets, some authors have
proposed to enrich the representation using micro-blogging features such as
hashtags and emoticons as in (Barbosa and Feng, 2010), or using semantic
features as in (Saif et al., 2012).

Neural networks language models. Recently, the scientific community
has addressed the problem of learning vector representations of words that
can represent information like similarity or other semantic and syntactic
relations, obtaining better results than using the best n-gram models. The
use of neural networks to perform this task is motivated by recent works
addressing the scalability of training. In this formulation every word is rep-
resented in a distributional space where operations like concatenation and
averaging are used to predict other words in context, trained by the use of
stochastic gradient descent and backpropagation. In the work of (Bengio
et al., 2006), a model is trained based on the concatenation of several words
to predict the next word: every word is mapped into a vector space where
similar words have similar vector representations. A successive work uses
multitask techniques (Collobert and Weston, 2008) to jointly train several
tasks showing improvements in generalization. A fast hierarchical language
model was proposed in (Mnih and Hinton, 2009), attacking the main draw-
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back of needing long training and testing times. The use of unsupervised
additional words was proposed by (Turian et al., 2010) showing further
improvements using word features learned in advance to a supervised NLP
task. Recently Mikolov et al. (Mikolov, Sutskever, Chen, Corrado and Dean,
2013) have proposed several improvements on Hierarchical Softmax (Mnih
and Hinton, 2009) and Negative Sampling (Gutmann and Hyvärinen, 2012)
and introduced the Skip-gram model (Mikolov, Yih and Zweig, 2013), re-
ducing further the computational cost, and showing fast training on corpora
of billions of words (Mikolov, Sutskever, Chen, Corrado and Dean, 2013).
More recently, researchers also extended these models, trying to achieve
paragraph and document level representations (Le and Mikolov, 2014).

Micro-blog multimedia analysis. Most of the works dealing with analysis
of the multimedia content of micro-blogs have dealt with content summa-
rization and mining, image classification and annotation. Geo-tagged tweet
photos are used in (Yanai, 2012; Kaneko et al., 2013) to visually mine events
using both textual and visual information. The system presented in (Serra
et al., 2013) provides tools for content curation, creation of personalized
web sites and magazines through topic detection of tweets and selection of
representative associated multimedia. A system for exploration of events
based on facets related to who, when, what, why and how of an event, has
been presented in (Wang, Cui, Xie, Chen, Zhu and Yang, 2012), using a
Bilateral Correspondence model (BC-LDA) for image and words. A multi-
modal extension of LDA has been proposed in (Bian et al., 2013) to discover
sub-topics in microblogs, in order to create a comprehensive summarization.

An algorithm for photo tag suggestion using Twitter and Wikipedia are
used in (McParlane and Jose, 2014) to annotate social media related to
events, exploiting the fact that tweets about an event are typically tweeted
during its development. Classification of tweets’ images in visually-relevant
and visually-irrelevant, i.e. images that are correlated or not to the text of
the tweet, has been studied in (Chen et al., 2013), using a combination of
text, context and visual features.

Zhao et al. (Zhao et al., 2012) have studied the effects of adding multi-
media to tweets within Sina Weibo, a Chinese equivalent of Twitter, finding
that adding images boosts the popularity of tweets and authors, and extends
the lifespan of tweets.

Sentiment analysis in social images. Sentiment analysis of visual data
has received so far less attention than that of text data and, in fact, only
a few small datasets exist, such as the International Affective Picture Sys-
tem (IAPS) (Lang et al., 1999) and the Geneva Affective Picture Database
(GAPED) (Dan-Glauser and Scherer, 2011). The former provides ratings of
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emotion (in terms of pleasure, arousal and dominance) for 369 images, while
the latter provides 520 images associated to negative sentiment, 89 neutral
and 121 positive images. Another related direction is given by works on
aesthetics: surveys are provided in (Wang and He, 2008; Joshi et al., 2011).
However, none of these datasets deal with social media.

A few works have addressed the problem of multimedia sentiment anal-
ysis of social network data. Borth et al. (Borth et al., 2013) have recently
presented a large-scale visual sentiment ontology and associated set of de-
tectors, consisting of 3,244 pairs of nouns and adjectives (ANP), based on
Plutchik’s Wheel of Emotions (Plutchik, 2001). Detectors are trained using
Flickr images, represented using a combination of global (e.g. color his-
togram and GIST) and local (e.g. LBP and BoW) features. The paper
provides also two publicly available image datasets obtained from Flickr
and from Twitter. The system proposed in (Cao et al., 2014) for the clas-
sification of Sina Weibo statuses exploits the ANP detectors proposed in
(Borth et al., 2013), fusing them with text sentiment analysis based on 3
features: i) sentiment words from Hownet (Chinese equivalent to Word-
Net), ii) semantic tags and iii) rules of sentence construction, to cope with
rhetorical questions, negations and exclamatory sentences.

Cross-media bag-of-words, combining bag of text words with bag of im-
age words obtained from the SentiBank detectors of (Borth et al., 2013), has
been proposed in (Wang, Cao, Li, Li and Ji, 2014) for sentiment analysis
of microblog messages obtained from Sina Weibo. Yang et al. (Yang, Cui,
Zhu, Zhao, Shi and Yang, 2014) have proposed a hybrid link graph for im-
ages of social events, weighting links based on textual emotion information,
visual similarity and social similarity. A ranking algorithm to discover emo-
tionally representative images in microblog statuses is then presented. The
work of Chen et al. (Chen, Chen, Hsu, Liao and Chang, 2014), distinguishes
between the intended publisher effect and the sentiment that is induced in
the viewer (‘viewer affect concept’) and aims at predicting the latter. The
goals are to recommend appropriate images and suggest image comments.

6.3 The Proposed Method

Recent works have shown (Mikolov et al., 2011) that neural network based
language models significantly outperform N-gram models; similarly, the use
of neural networks to learn visual features and classify images has shown
that they can achieve state-of-the-art results on several standard datasets
and international competitions (Krizhevsky et al., 2012). The proposed
method builds on these advances.

We start by describing the well-known text based approach Continuous
Bag-Of-Words (CBOW) model (Mikolov, Yih and Zweig, 2013) that is the
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Figure 6.2: Visualization of CBOW word vectors trained on tweets of the SemEval-2013

dataset. Blue points are single words classified as negative, while red ones are positive.

Semantically similar words are near (e.g. ‘crashing’ and ‘crashed’, ‘better’ and ‘best’) and

share the same polarity.

base of our scheme, then we present our model for polarity classification
problem. Finally, we show a further extension of the model to incorporate
visual information, based on a Denoising Autoencoder (Vincent et al., 2008),
that allows the same unsupervised capabilities on images as CBOW-based
methods on text.

6.3.1 Textual information

Mikolov et al. (Mikolov, Yih and Zweig, 2013) showed that in the CBOW
model, words with similar meaning are mapped to similar positions in a
vector space. Thus, distances may carry a meaning, allowing to formu-
late questions in the vector space using simple algebra (e.g. the result of
vector(‘king’) - vector(‘man’) + vector(‘woman’) is near vector(‘queen’)).
Another property is the very fast training, that allows to exploit large-scale
unsupervised corpora such as web sources (e.g . Wikipedia).

Continuous Bag-Of-Words model. In this framework, each word is mapped
to a unique vector represented by a column in a word matrix W of Q length.
Every column is indexed by a correspondent index from a dictionary VT .
Given a sequence of words w1, w2, . . . , wK , CBOW model with hierarchical
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softmax aims at maximizing the average log probability of predicting the
central word wt given the context represented by its M -window of words,
i.e. the M words before and after wt:

1

K

K−M∑
t=M

log p(wt|wt−M , . . . , wt−1, wt+1, . . . , wt+M) (6.1)

The output f ∈ R|VT | for the model is defined as:

fwt
=

[
Wt−M , . . . ,Wt−1,Wt+1, . . . ,Wt+M

]T
G (6.2)

whereWi is the column ofW corresponding to the word wi and G ∈ RP×|VT |.
Both W and G are considered as weights and have to be trained, resulting
in a dual representation of words. Typically the columns of W are taken
as final word features. An output probability is then obtained by using the
softmax function on the output of the model:

p(wt|wcontext) =
efwt∑
i e

fwi

(6.3)

where wcontext = (wt−M , . . . , wt−1, wt+1, . . . , wt+M). When considering a
high number of labels, it can be computed more efficiently by employ-
ing a hierarchical variation (Mnih and Hinton, 2009), requiring to evaluate
log2(|VT |) words instead of |VT |.

In (Mikolov, Yih and Zweig, 2013), an additional task named Negative
Sampling is considered, where a word wl is to be classified as related to the
given context or not, i.e. p(wl|wcontext):

uwl
= σ

([
Wt−M , . . . ,Wl, . . . ,Wt+M

]T
Ns

)
(6.4)

where Ns ∈ RQ and σ is the logistic function. Depending on wl as the actual
wt word or a randomly sampled one, uwl

has a target value of respectively
1 or 0.

The CBOW-LR method. Our model, denoted as CBOW-LR, is an exten-
sion of CBOW with negative sampling, specialized on the task of sentiment
classification. An important difference from approaches that directly use a
CBOW representation, or from (Turian et al., 2010), is that our model learns
representation and classification concurrently. Considering that multi-task
learning can improve neural networks performance (Turian et al., 2010),
the idea is to use two different contributions accounting for semantic and
sentiment polarity, respectively.

Given a corpus of tweets X where each tweet is a sequence of words
w1, w2, . . . , wK , we aim at classifying tweets as positive or negative, and
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The CBOW-LR method. Our model, denoted as CBOW-LR, is an exten-
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classification. An important difference from approaches that directly use a
CBOW representation, or from (Turian et al., 2010), is that our model learns
representation and classification concurrently. Considering that multi-task
learning can improve neural networks performance (Turian et al., 2010),
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learn word vectors W ∈ RQ×|VT | with properties related to the sentiment
carried by words, while retaining semantic representation. Semantic rep-
resentation can be well-represented by a CBOW model, while sentiment
polarity has limited presence or is lacking. Note that polarity supervision
is limited and possibly weak, thus a robust semi-supervised setting is pre-
ferred: on the one hand, a model of sentiment polarity can use the limited
supervision available, on the other hand the ability to exploit a large corpus
of unsupervised text, like CBOW, can help the model to classify previously
unseen text. This is explicitly accounted in our model by considering two
different components:

i) inspired by (Mikolov, Yih and Zweig, 2013), we consider a feature
learning task on words by classifying sentiment polarity of a tweet. A tweet
is represented as a set of M -window of words that we denote as G. Each
window G is represented as a sum of their associated word vectors Wi, and
a polarity classifier based on logistic regression is applied accordingly:

y(G) = σ(CT (
∑

Wi←wi∈G

Wi) + bs) (6.5)

Here the notation Wi ← wi ∈ G refers to selecting the i-th column of
W by matching the wi word from G. The matrix C ∈ RQ and the vector
bs ∈ R are parameters of a logistic regression, while a binary cross entropy
is applied as loss function for every window G. This is applied for every
tweet T labeled with yT in the training set and results in the following cost:

Csent =
∑

(T,yT )

∑
G∈T

−yT log(y(G)− (1− yT ) log(1− y(G))) (6.6)

However, differently from a standard logistic regression, the represen-
tation matrix W is also a parameter to be learned. A labeled sentiment
dataset is required to learn this task.

ii) we explicitly represent semantics by adding a task similar to negative
sampling, without considering the hierarchical variation. The idea is that
a CBOW model may also act as a regularizer and provide an additional
semantic knowledge of word context. Given a window G, a classifier has to
predict if a word wl fits in it. To this end, an additional cost is added:

Csem =
∑
T

∑
G∈T

∑
(rl,wl)∈F

(rl − uwl
)2 (6.7)

where F is a set of words wl with their associated target rl, derived from
a training text sequence. This is the core of negative sampling: F always
contains the correct word wt for the considered context G (rl = 1) and K−1
random sampled words from VT (rl = 0). It is indeed a sampling as K <
|VT |−1 of the remain wrong words. Note that differently from the previous
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task, this is unsupervised, not requiring labeled data; moreover tweets can
belong to a different corpus than that used in the previous component. This
allows to perform learning on additional unlabeled corpora, to enhance word
knowledge beyond that of labeled training words.

Finally, concurrent learning is obtained by forging a total cost, defined
by the sum of the two parts, opportunely weighted by a λ ∈ [0, 1], and
minimized with SGD:

CCBOW-LR = λ · Csent + (1− λ) · Csem (6.8)

Fig. 6.2 visualizes the word vectors learned by our model. Note the
tendency of separating the opposite polarities and the fact that similar words
are close to each other.

At prediction time, for each word in a tweet T we consider its M -window
G and we compute (6.5) for each window, summing the results:

Pred(T ) =
∑
G∈T

(
y(G)− 0.5

)
(6.9)

If Pred(T ) < 0 the tweet is labeled as negative, otherwise it is considered
positive. It is worth noticing that at prediction time the method does not
consider a word as positive or negative in its own, but it uses also its context
to classify its sentiment and how strong it is. Thus the same word can be
classified differently if used in different contexts.

6.3.2 Textual and Visual Information

The CBOW-LR model presented in Sect. 6.3.1 can be extended to account
for visual information, such as that of images associated to tweets or sta-
tus messages. Popular image representations are the Visual Bag-Of-Words
Model (Grauman and Darrell, 2005; Lazebnik et al., 2006; Li, Mei, Kweon
and Hua, 2011), Fisher Vector (Perronnin, Liu, Sánchez and Poirier, 2010)
and its improved version (Perronnin, Sánchez and Mensink, 2010; Baec-
chi et al., 2014). However, as shown recently in (Chatfield et al., 2014;
Krizhevsky et al., 2012), neural network based models have been shown to
widely outperform these previous models. So, to fit with the CBOW repre-
sentation discussed in the previous section, we choose to exploit the images
by using a representation similar to the one used for the textual informa-
tion, i.e. a representation obtained from the whole training set by means of
a neural network. Moreover, likewise for the text, unsupervised learning can
be performed. For these reasons, inspired also by works such as (Vincent
et al., 2008), we choose to extend our network with a single-layer Denoising
Autoencoder, to take its middle level representation as our image descrip-
tor. As for the textual version, the inclusion of this additional task allows
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our method to concurrently learn a textual representation and a classifier
on text polarity and its associated image.

Denoising Autoencoder. In general, an Autoencoder (also called Autoas-
sociator (Bengio, 2009)) is a kind of neural network trained to encode the
input into some representation (usually of lower dimension) so that the in-
put can be reconstructed from that representation. For this type of network
the output is thus the input itself. Specifically, an Autoencoder is a net-
work that takes as input a K-dimensional vector x and maps it to a hidden
representation h through the mapping:

h = σ(Pe x+ be) (6.10)

where σ is the sigmoid function (but any other non-linear activation
function can be used), Pe and be are respectively a matrix of encoding
weights and a vector of encoding biases. At this point, h is the coded
representation of the input, and has to be mapped back to x. This second
part is called the reconstruction z of x (being z of the same dimension and
domain of x). In this step a similar transformation as in Eq. 6.10 is used:

z = σ(Pd h+ bd) (6.11)

where Pd and bd are respectively a matrix of decoding weights and a vector
of decoding biases. One common choice is to constrain Pd = P T

e ; in this
configuration the Autoencoder is said to have ‘tied weights’. The motivation
for this is that tied weights are used as a regularizer, to prevent the Autoen-
coder to learn the identity matrix when the dimension of the hidden layer
is big enough to memorize the whole input; another important advantage
is that the network has to learn fewer parameters. With this configuration,
Eq. (6.11) becomes:

ẑ = σ(P T
e h+ bd) (6.12)

Learning is performed by minimizing the cross-entropy between the in-
put x and the reconstructed input z:

L(x, z) = −
K∑

k=1

(
xk log zk + (1− xk) log (1− zk)

)
(6.13)

using stochastic gradient descent and backpropagation.
In this scenario h is similar to a lossy compression of x, that should cap-

ture the coordinates along the main directions of variation of x. To further
improve the network, the input x can be ‘perturbed’ to another slightly
different image, x̃, so that the network will not adapt too much to the given
inputs but will be able to better generalize over new samples. This forms
the Denoising variant of the Autoencoder. To do this, the input is corrupted
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Figure 6.3: The process of polarity prediction of a tweet with its associated image per-

formed by our model. On the left, one tweet text window (in red) at a time is fed into

the CBOW model to get a textual representation. Likewise, the associated image is fed

into the denoising autoencoder (DA). The two representations are concatenated and a

polarity score for the window is obtained from the logistic regression (LR). Finally, each

window polarity is summed into a final tweet polarity score.

by randomly setting some of the values to zero (Bengio, 2009). This way
the Denoising Autoencoder will try to reconstruct the image including the
missing parts. Another benefit of the stochastic corruption is that, when
using a hidden layer bigger than the input layer, the network does not learn
the identity function (which is the simplest mapping between the input and
the output) but instead it learns a more useful mapping, since it is trying
to also reconstruct the missing part of the image.

The CBOW-DA-LR method. The model used to deal with textual and
visual information, denoted as CBOW-DA-LR, is an extension of CBOW-
LR with the addition of a new task based on a Denoising Autoencoder (DA)
applied to images, aiming at obtaining a mid-level representation. In this fi-
nal form, the descriptor obtained from the DA, together with the continuous
word representation, represents the new descriptor for a window of words in
a tweet and is concurrently used to learn a logistic regressor. Given a tweet,
for each window, we compute the continuous word representation and the
image descriptor associated with the tweet. Each window in a tweet will
be associated with the same image descriptor as the image for the tweet is
always the same.

Fig. 6.3 shows an exemplification of the prediction process for a tweet
with its accompanying image. While the image gets a fixed representation
for the entire process, the text is represented one window at a time through
a sliding window process. Each window is processed independently to get a
local polarity score. To get the overall tweet polarity, each window polarity
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our method to concurrently learn a textual representation and a classifier
on text polarity and its associated image.

Denoising Autoencoder. In general, an Autoencoder (also called Autoas-
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h = σ(Pe x+ be) (6.10)
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z = σ(Pd h+ bd) (6.11)

where Pd and bd are respectively a matrix of decoding weights and a vector
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e ; in this
configuration the Autoencoder is said to have ‘tied weights’. The motivation
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ẑ = σ(P T
e h+ bd) (6.12)

Learning is performed by minimizing the cross-entropy between the in-
put x and the reconstructed input z:

L(x, z) = −
K∑

k=1

(
xk log zk + (1− xk) log (1− zk)

)
(6.13)

using stochastic gradient descent and backpropagation.
In this scenario h is similar to a lossy compression of x, that should cap-

ture the coordinates along the main directions of variation of x. To further
improve the network, the input x can be ‘perturbed’ to another slightly
different image, x̃, so that the network will not adapt too much to the given
inputs but will be able to better generalize over new samples. This forms
the Denoising variant of the Autoencoder. To do this, the input is corrupted
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be associated with the same image descriptor as the image for the tweet is
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is summed into a final score and classified according to its sign.
This can be formalized as follows: if we define hG as the encoding of the

image associated to the window G of the tweet T , then Eq. (6.5) becomes:

y(G) = σ

(
CT

(
(

∑
Wi←wi∈G

Wi) ∥ (hG)
)
+ bs

)
(6.14)

where ∥ is the concatenation operator, i.e. the encoded representation
of the image is concatenated to the continuous word representation of the
window, forming a new vector whose size is the sum of the size of the
continuous word space and the size of the encoding representation of the
image.

As stated before, the Autoencoder can be pre-trained in the same fashion
as the continuous word representation. Any set of unlabeled images can be
used to train the network before the actual training on the tweets.

The DA will be a component of our model and, like the two previous
components CBOW and LR, it has its own cost function. Similar to Eq.
(6.13), it is:

Cimage = −
K∑

k=1

(
x̃k log ẑk + (1− x̃k) log (1− ẑk)

)
(6.15)

Since we are aiming at concurrent learning the textual and image rep-
resentations, the three components are combined together in a single final
cost of CBOW-DA-LR. Starting from the previously defined Eq. (6.8) for
CBOW and Eq. (6.7) for LR, the cost becomes:

CCBOW-DA-LR = λ1 · Csent + λ2 · Csem + λ3 · Cimage (6.16)

where λ1, λ2, λ3 weight the contribution of each task. The model can be
trained by minimizing CCBOW-DA-LR with stochastic gradient descend. Sym-
bolic derivatives can be easily obtained by using an automatic differentiation
algorithm (e.g. Theano (Bastien et al., 2012)). After training, Eq. (6.9) can
be used to predict the label of the tweet in the same manner as it is used
when we do not consider the image descriptor.

6.4 Experiments

The datasets. To evaluate the proposed approach we have used four datasets
obtained from Twitter:

i) Sanders Corpus4, consists of 5,513 manually labelled tweets on 4 topics
(Apple, Google, Microsoft and Twitter). Of these, after removing missing

4http://sananalytics.com/lab/twitter-sentiment/
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tweets, retweets ad duplicates, only 3,625 remain. The dataset does not
specify a train and a test subset, so to evaluate the performance the whole
set is randomly divided multiple times into subsets each time each one with
the same size and the mean performance is reported;

ii) Sentiment1405 (Go et al., 2009) consists of a 1.6 million tweet train-
ing set collected and weakly annotated by querying positive and negative
emoticons, considering a tweet positive if it contains a positive emoticon like
“ :) ”and negative if, likewise, it contains a negative emoticon like “ :( ”; the
dataset also comprises a manually annotated test set of 498 tweets obtained
querying names of products, companies and people;

iii) SemEval-20136 provides a training set of 9,684 tweets of which only
8,208 are not missing at the time of writing and a test set of 3,813 tweets,
selected querying a mixture of entities, products and events; the dataset is
part of the SemEval-2013 challenge for sentiment analysis and also comprises
of a development set of 1,654 (of which only 1,413 available at the time
of writing) that can be used as an addendum to the training set or as a
validation set;

iv) SentiBank Twitter Dataset7, consists of 470 positive and 133 negative
tweets with images, related to 21 topics, annotated using Mechanical Turk;
the dataset has been partitioned by the authors into 5 subsets, each of
around 120 tweets with the respective images, to be used for a 5-fold cross-
validation.

In this work we consider the binary positive/negative classification, thus
we have removed neutral/objective tweets from the corpora when necessary.
This approach follows that of (Go et al., 2009) and (Liu et al., 2012), and is
motivated by the difficulty to obtain training data for this class; it has to be
noted that even human annotators tend to disagree whether a tweet has a
negative/positive polarity or it is neutral (Jiang et al., 2011). Performance
is reported in terms of Accuracy. The evaluation for SemEval is performed
using F1, since this is the metric originally used in this dataset.

For the Sanders dataset, as described earlier, there is no definition of an
actual test set nor of a training set. For these reasons we choose to follow
the experimental setup of (Liu et al., 2012), where experiments on Sanders
dataset have been performed varying the number of training tweets between
32 to 768. For each test, first the number of training tweets is selected, then
half of them are randomly chosen from all the positive tweets and the other
half are chosen from the negative ones. Finally, the remaining tweets are
used as test set. Since there could be some variation from a random set to
another, for each test 10 different runs are evaluated and the mean is taken

5http://help.sentiment140.com/for-students
6http://www.cs.york.ac.uk/semeval-2013/task2/
7http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
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as the result of the selected test. Results with this dataset are reported
with the notation “Sanders@n”, where n is the number of training tweets
selected.

The evaluation of the SentiBank dataset has been performed preserving
the structure given by the authors so that the results could be comparable.
The dataset is divided into 5 subsets for 5-fold cross-validation. Each at a
time a subset is considered as test set while the other 4 are considered as
training set; 5 runs are performed and in the end the mean of the 5 results
is computed and considered the resulting value given by the method for
the dataset. Considering the high imbalance between positive and negative
tweets of this dataset we report also the F1 score in addition to Accuracy.

We have evaluated the proposed method through a set of 5 experiments:
in the first one we evaluate the performance of the proposed CBOW-LR text
model comparing it against the standard CBOW model. Then we assess the
performance of these models after pre-training them with large scale Twitter
corpora. In a third experiment we compare the proposed approach against
a baseline and two state-of-the-art methods. In the final experiment we
compare the proposed CBOW-DA-LR text+image model against a state-
of-the-art method on a publicly available dataset composed by tweets with
images. In all these experiments we empirically fixedK = 5 andQ = 100. In
the last experiment we evaluate the effects of K and Q parameters w.r.t. the
classification performance an all the datasets. Regarding λ in the first three
experiments and λ1, λ2, λ3 in the last one, we tested several combinations
and found a good setting by fixing λ = 0.5 and λ1 = λ2 = λ3 = 0.33,
respectively. Also the image DA was implemented with ‘tied weights’ to
reduce overfitting. Its dimensionality was tested in the range [200, 1000] and
found it better performing by fixing it to 500. To perform the optimization
using stochastic gradient descent, we employed Theano (Bastien et al., 2012)
to automatically compute the derivatives.

Exp. 1: Comparison with baselines. Tab. 6.1 compares our proposed
method (CBOW-LR) with two baselines: RAND-LR and CBOW+SVM.
The purpose is twofold: i) since we are learning features crafted for the
specific task, we compare our method with randomly generated features.
RAND-LR learns a logistic regression classifier on random word features
(i.e. we set λ = 1 in eq. 6.8); ii) we verify the superiority of CBOW-LR
learned features against a standard unsupervised CBOW representation.
The CBOW+SVM baseline employs SVM with standard pre-trained CBOW
representation on the specific dataset.

Performance figures show that the proposed method consistently out-
performs both baselines, thus our method learns useful representations with
some improvement over CBOW.
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Dataset
(proposed)

CBOW-LR RAND-LR CBOW+SVM

Sentiment140 83.01 61.56 79.39

SemEval-2013 (F1) 72.57 53.01 71.32

Sanders @ 32 62.55 58.38 59.89

Sanders @ 256 74.91 63.69 67.91

Sanders @ 768 82.69 65.53 73.03

Table 6.1: Comparison between our method and two baselines. Performance is reported

in terms of accuracy except for SemEval-2013, where is used the F1 measure. Sanders@n

indicates the number of training tweets used for the experiments on that dataset.

Exp. 2: Exploiting CBOW training on large scale data. Tab. 6.2 com-
pares our proposed method with two baselines when exploiting large scale
training data for the CBOW representation. We pre-trained a CBOWmodel
using the 1.6 million tweets of Sentiment140 and used the learned features
(termed CBOWS) with two standard learning algorithms. CBOWS+LR em-
ploys the logistic regression while CBOWS+SVM uses the SVM classifier.
In contrast to the baselines, our model CBOWS-LR employs the pre-trained
CBOWS features as initialization for the W matrix. Comparing Tab. 6.2
with Tab. 6.1 shows that CBOWS+SVM baseline benefit from the use of
pre-learned CBOWS. This is visible especially on the Sanders dataset, as
more rich representation is built. Note that when CBOWS+SVM is applied
to Sentiment140 dataset it corresponds to CBOW+SVM, since CBOWS

description is trained on Sentiment140; therefore the result is the same.

While both CBOWS+SVM and CBOWS+LR are unable to modify the
word vector representation, our model CBOWS-LR is able to retain the full
richness of the initial representation and improve it on two datasets.

Exp. 3: Comparison with FSLM and ESLAM. In this experiment we
have compared both textual variants of our approach, one with CBOW
trained using the dataset on which the method is applied and one using
CBOWS, with two state-of-the-art methods: FSLM and ESLAM, proposed
in (Liu et al., 2012). FSLM uses a fully supervised probabilistic language
model, learned concatenating all the tweets of the same class to form syn-
thetic documents. ESLAM extends FSLM exploiting noisy tweets, based
on the presence of ‘positive’ and ‘negative’ emoticons, to smooth the lan-
guage model. Inclusion of manually labelled data with the unsupervised
noisy data gives the power to deal with unforeseen text that is not eas-
ily handled by fully supervised methods. Fig. 6.4 shows the Accuracy while
varying the number of training tweets of the Sanders dataset. The proposed
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Dataset
(proposed)

CBOWS-LR CBOWS+LR CBOWS+SVM

Sentiment140 83.84 76.32 79.39

Semeval-2013 (F1) 72.23 73.73 71.48

Sanders @ 32 66.28 66.90 66.65

Sanders @ 256 76.33 71.14 73.69

Sanders @ 768 82.98 75.43 76.44

Table 6.2: Comparison between our method and two baselines, using an initialization

based on CBOW pre-trained aside with 1.6 million tweets of Sentiment140. Performance

is reported in terms of accuracy except for SemEval-2013, where is used the F1 measure.

Sanders@n indicates the number of training tweets used for the experiments on that

dataset.

approach has a much lower performance when using only 32 or 64 tweets
for training. However, it can be observed that as the number of training
data increases so does the performance of the proposed method, that out-
performs that of ESLAM when using 768 tweets for training. In general the
proposed method outperforms FSLM. The fact that ESLAM outperforms
the proposed method when using smaller training data can be explained by
the fact that CBOW models, as Skip-Gram and feature learning methods,
require large training datasets.
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Figure 6.4: Comparison between our method with FSLM and ESLAM (Liu et al., 2012)

on Sanders dataset, while varying the number of training tweets.
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Data Method SentiBank (AC) SentiBank (F1)

Random 47 42

Text

SentiStrength (Thelwall et al., 2010) 58 51

CBOW+SVM 72 50

(proposed)

CBOW-LR 75 52

Image

SentiBank (Borth et al., 2013) 71 51

(proposed)

DA-LR 69 51

Text+Image

SentiStrength (Thelwall et al., 2010) +

SentiBank (Borth et al., 2013) 72 n.a.

(proposed)

CBOW-DA-LR 79 57

Table 6.3: Comparison between our method (on single and combined modalities) with

baselines and state-of-the-art approaches on SentiBank Twitter Dataset.

Exp. 4: Exploiting textual and visual data. In this experiment we have
evaluated the performance of three versions of our proposed approach –
CBOW-LR for text, DA-LR for visual data, and CBOW-DA-LR for both
text and visual information – with different baselines and state-of-the-art
approaches.

CBOW-LR has been compared with SentiStrenght (Thelwall et al., 2010)
and the CBOW+SVM baseline used in Exp. 1 and Exp. 2. DA-LR has been
compared with SentiBank (Borth et al., 2013) classifiers. CBOW-DA-LR
has been compared with the approach proposed by the authors of the Sen-
tiBank Twitter dataset (Borth et al., 2013), that uses SentiStrenght (Thel-
wall et al., 2010) API8 for text classification and SentiBank classifiers as
mid-level visual features, with a logistic regression model. As the dataset is
imbalanced, we also compare these approaches with an additional baseline
based on random classification, i.e. we assign a random polarity to each
test tweet. We used the code provided by the authors of the methods,
except for the SentiStrenght+SentiBank case, for which we report the re-
sult published in (Borth et al., 2013). Results reported in Tab. 6.3 show
that not only CBOW-LR outperforms both the baseline and SentiStrenght,
but also the multimodal SentiStrenght+SentiBank approach. When us-
ing only visual information SentiBank obtains a better performance than
DA-LR. Considering the text+image case it can be observed that the pro-
posed multimodal CBOW-DA-LR method improves upon single modalities
(CBOW-LR and DA-LR) and outperforms SentiStrenght+SentiBank by a
larger margin, proving that images hold meaningful informations regarding
the polarity of text, and thus can be exploited to improve overall Accuracy
and F1.

8http://sentistrength.wlv.ac.uk/
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(proposed)

CBOWS-LR CBOWS+LR CBOWS+SVM

Sentiment140 83.84 76.32 79.39

Semeval-2013 (F1) 72.23 73.73 71.48
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Sanders@n indicates the number of training tweets used for the experiments on that

dataset.

approach has a much lower performance when using only 32 or 64 tweets
for training. However, it can be observed that as the number of training
data increases so does the performance of the proposed method, that out-
performs that of ESLAM when using 768 tweets for training. In general the
proposed method outperforms FSLM. The fact that ESLAM outperforms
the proposed method when using smaller training data can be explained by
the fact that CBOW models, as Skip-Gram and feature learning methods,
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Figure 6.4: Comparison between our method with FSLM and ESLAM (Liu et al., 2012)

on Sanders dataset, while varying the number of training tweets.
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Data Method SentiBank (AC) SentiBank (F1)

Random 47 42
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SentiStrength (Thelwall et al., 2010) 58 51
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posed multimodal CBOW-DA-LR method improves upon single modalities
(CBOW-LR and DA-LR) and outperforms SentiStrenght+SentiBank by a
larger margin, proving that images hold meaningful informations regarding
the polarity of text, and thus can be exploited to improve overall Accuracy
and F1.

8http://sentistrength.wlv.ac.uk/

115



Image Understanding by Socializing the Semantic Gap

116

Exp. 5: Parameters analysis. Fig. 6.5 shows accuracy and F1 of our model
when varying K and Q parameters on Sanders, SemEval-2013 and Senti-
ment140 datasets. The performance on SentiBank is practically not affected
by these parameters. The same set of parameters results in the best per-
formance on all the datasets. The values of K and Q are in line with those
obtained to train CBOW models on Wikipedia by Mikolov et al. .
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Figure 6.5: Performance of the proposed method when varying K and Q parameters on

Sanders, SemEval-2013 and Sentiment140 datasets.

6.5 Conclusions

In this chapter we have presented a method for sentiment analysis of social
network multimedia, presenting an unified model that considers both textual
and visual information.

Regarding textual analysis we described a novel semi-supervised model
CBOW-LR, extending the CBOW model, that learns concurrently vector
representation and a sentiment polarity classifier on short texts such as that
of tweets. Our experiments show that CBOW-LR can obtain improved
accuracy on polarity classification over CBOW representation on the same
quantity of text. When considering a large unsupervised corpus of tweets as
additional training data for CBOW, a further improvement is shown, with
our model being able to improve the overall accuracy. Comparison with the
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state-of-the-art methods FSLM and ESLAM shows promising results.
The CBOW-LR model has been expanded to account for visual informa-

tion using a Denoising Autoencoder. The unified model (CBOW-DA-LR)
works in an unsupervised and semi-supervised manner, learning text and
image representation, as well as the sentiment polarity classifier for tweets
containing images. The unified CBOW-DA-LR model has been compared
with SentiBank, a state-of-the-art approach on a publicly available Twitter
dataset, obtaining a higher classification accuracy.
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representation and a sentiment polarity classifier on short texts such as that
of tweets. Our experiments show that CBOW-LR can obtain improved
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additional training data for CBOW, a further improvement is shown, with
our model being able to improve the overall accuracy. Comparison with the
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image representation, as well as the sentiment polarity classifier for tweets
containing images. The unified CBOW-DA-LR model has been compared
with SentiBank, a state-of-the-art approach on a publicly available Twitter
dataset, obtaining a higher classification accuracy.
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Chapter 7

Popularity Prediction with Sentiment and Context Features

Images in social networks share different destinies: some are go-
ing to become popular while others are going to be completely
unnoticed. In this chapter we propose to use visual sentiment
features together with three novel context features to predict a
concise popularity score of social images. Experiments on large
scale datasets show the benefits of proposed features on the perfor-
mance of image popularity prediction. Exploiting state-of-the-art
sentiment features, we report a qualitative analysis of which sen-
timents seem to be related to good or poor popularity.1

7.1 Introduction

In the last decade users of social networks such as Flickr and Facebook have
uploaded tens of billions of photos, often adding accompanying metadata by
tagging and by providing a short description. Users interact with each other
by forming groups of shared interests, following the status streams of each
other, and by commenting the photos that have been shared. Inevitably,
in the huge quantity of available media, some of these images are going
to become very popular, while others are going to be totally unnoticed
and end up in oblivion. Often, media may be popular because it conveys
sentiments or it has a rich meaning in the social context it is put. In
fact, sentiments have been known to affect popularity of visual media since
the widespread watch of television programs(Diener and DeFour, 1978).
Also, it was recently found to be related to popularity in tweets (Bae and
Lee, 2012). Being able to predict the popularity of a media may have a
profound impact on several essential applications such as content retrieval
and annotation, but also in other fields such as advertising and content

1Parts of the work presented in this chapter have been published in Gelli, F., Uricchio, T.,

Bertini, M., Del Bimbo, A., and Chang, S. F. (2015, October). “Image popularity prediction in

social media using sentiment and context features”. In Proceedings of the 23rd ACM international

conference on Multimedia (pp. 907-910). ACM. The publication is available at http://dx.doi.

org/10.1145/2733373.2806361.
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Figure 7.1: The idea of our approach to popularity prediction of images.

distribution (Figueiredo et al., 2014).

In this chapter, we address the problem of predicting the popularity of
an image posted in a social network, considering different scenarios that
are typical of different situations. Despite the recent crop of literature that
studies the question of what makes an image popular (Khosla et al., 2014;
Totti et al., 2014; McParlane et al., 2014), none of these works addresses the
question of how much the visual sentiment is influencing the popularity of
media. As social context has been widely found important to predict media
popularity (Khosla et al., 2014), we show how to further improve popularity
estimation by using a knowledge base to supplement the understanding of
semantics in textual metadata.

The main contributions of this chapter are:

• we propose to employ state-of-the-art visual sentiment features (Borth
et al., 2013; Chen, Borth, Darrell and Chang, 2014) to perform image
popularity prediction;

• we propose three new textual features based on a knowledge base, to
better model the semantic description of an image, in addition to the
social context features proposed in (Khosla et al., 2014; McParlane
et al., 2014);

• we show qualitative results of which sentiments seem to be related to
a good or poor popularity.

To the best of our knowledge, this is the first work understanding specific vi-
sual concepts that positively or negatively influence the eventual popularity
of images, beyond just numerical prediction of photo popularity.
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Experiments performed on large scale datasets illustrate several benefits
of the two types of proposed features, and show how their combination
impacts effectively on the performance of popularity prediction.

7.2 Related work

Popularity Prediction Recently, a significant effort has been spent on in-
vestigating popularity of social media content. Regarding image popularity,
the majority of works agree that social features have the greatest predic-
tive power (Khosla et al., 2014; McParlane et al., 2014; Totti et al., 2014).
Visual content features are less powerful than social ones in terms of pre-
dictive power, but they are useful when no user metadata is present (e.g. no
tags or description) or to address scenarios such as the case in which no so-
cial interactions have been recorded before posting the image (e.g. because
the user has just joined the social network). Previous works vary in terms
of popularity score definition (e.g. image views, reshares, mean views over
a period) but they all share the same basic pipeline: they extract several
content and context related features and successively employ a regressor to
compute the popularity score.

In (Khosla et al., 2014), Khosla et al. investigate both low-level features
such as color, GIST, LBP, and content features such as the object pre-
dictions and network activations of a state-of-the-art CNN image classifier
(Krizhevsky et al., 2012). Together with user and image context features,
they show promising results. McParlane et al. (McParlane et al., 2014)
propose to use image content, context features and user context to predict
popularity. Their analysis is limited to a cold start scenario, i.e. where there
exist no or little textual or interaction data. Totti et al. (Totti et al., 2014)
investigate the use of aesthetics features such as blur, aspect ratio and color
channel statistics together with the output of 85 object classifiers as content
features.

Visual Sentiment A few works have addressed the problem of multime-
dia sentiment analysis of social network images. Starting from the 24 ba-
sic emotions of Plutchik’s Wheel of Emotions (Plutchik, 2001), Borth et
al. (Borth et al., 2013) have recently presented a large-scale visual senti-
ment ontology termed SentiBank. They train 3,244 detectors on pairs of
nouns and adjectives (ANPs) based on a combination of global and local
features. Based on the recent breakthrough of convolutional networks for
classification (Krizhevsky et al., 2012), Chen et al. (Chen, Borth, Darrell
and Chang, 2014) used a CNN to replace SVM in the approach of Borth et
al. (Borth et al., 2013), obtaining an improved accuracy on ANPs.

The authors in (Chen, Yu, Chen, Cui, Chen and Chang, 2014) proposed
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dia sentiment analysis of social network images. Starting from the 24 ba-
sic emotions of Plutchik’s Wheel of Emotions (Plutchik, 2001), Borth et
al. (Borth et al., 2013) have recently presented a large-scale visual senti-
ment ontology termed SentiBank. They train 3,244 detectors on pairs of
nouns and adjectives (ANPs) based on a combination of global and local
features. Based on the recent breakthrough of convolutional networks for
classification (Krizhevsky et al., 2012), Chen et al. (Chen, Borth, Darrell
and Chang, 2014) used a CNN to replace SVM in the approach of Borth et
al. (Borth et al., 2013), obtaining an improved accuracy on ANPs.

The authors in (Chen, Yu, Chen, Cui, Chen and Chang, 2014) proposed
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an hierarchical system able to handle sentiment concept classification and lo-
calization on objects. They found individual concept detector of SentiBank
(Borth et al., 2013) less reliable for object-based concepts.

Chen et al. (Chen, Chen, Hsu, Liao and Chang, 2014) studied the corre-
lation between the intended publisher sentiment and the actual induced in
the viewer (‘viewer affect concept’). They aim to recommend appropriate
images for the publisher by predicting in advance the induced sentiment in
the viewer.

7.3 The Proposed Method

Our proposed method is based on two hypotheses: i) the popularity of an
image can be fueled by the inherent visual sentiments conveyed; ii) semantic
descriptions of an image is also important for its popularity, since it makes
it easier to be found or looked at.

7.3.1 Measuring Popularity

It is difficult to precisely define a single score as measure of popularity, and
several ways have been proposed to measure it. Khoshla et al. (Khosla et al.,
2014) used the number of views on Flickr as the principal metric. McParlane
et al. (McParlane et al., 2014) consider both the number of views and the
number of comments for each image as they have been found correlated in
video popularity (Chatzopoulou et al., 2010). However they only aim to
predict two classes of popularity: high or low.

In this work we follow Khoshla et al. (Khosla et al., 2014) and consider
the number of views on Flickr as popularity metric. To cope with the large
variation of views, we divide the popularity metric by the difference of time
between the user upload and our retrieval, then we apply the log function.

7.3.2 Visual Sentiment Features

To discover which visual emotions are roused from the visualization of an
image, a visual sentiment concept classification is performed based on the
Visual Sentiment Ontology (VSO). The ontology, consisting in a collec-
tion of 3,244 Adjective-Noun-Pairs (ANPs), has been defined by Borth et
al. (Borth et al., 2013). In particular we used DeepSentiBank (Chen, Borth,
Darrell and Chang, 2014): a convolutional neural network pre-trained from
(Krizhevsky et al., 2012) has been fine-tuned to classify images in one of a
subset of 2,096 ANPs. Similarly to its previous version (Borth et al., 2013),
this tool provides a mid-level representation of an image.

For each image we extract two descriptors that we term respectively
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SentANPs and FeatANPs: the ANPs prediction layer of 2,096d and the
rectified activations of the 7th fully connected layer of 4,096d.

7.3.3 Object Features

Since image popularity is related also to the visual content of the image,
we extract the convolutional neural networks features, initially proposed in
(Khosla et al., 2014). A very deep CNN with 16 layers (Chatfield et al.,
2014) was used to extract for each image the final output containing 1,000
objects from ILSVRC 2014 challenge (termed ObjOut) and the 4,096d rep-
resentation of the 7th rectified fully connected layer (termed ObjFC7).

7.3.4 Context Features

Image context information such as tags and description contains important
cues that may reflect on the number of views that an image obtains. En-
tities like people, locations or tourist attractions can affect popularity as
i) people may be more interested in photographs referring some particular
subject; ii) the presence of tags and description, the submission of a photo
to some groups, etc. make it easier to be found by other users. The extrac-
tion of entities from image context strongly depends on the nature of the
text, i.e. tags and textual description; due to the different nature of these
channels, two different approaches are proposed.

Entity Extraction from Tags Starting from image tags, we define two new
context features that we term TagType and TagDomain. They both rely
on Freebase, a large collaborative ontology containing millions of intercon-
nected topics. Given a tag, a search for a Freebase topic is performed: if
the tag is related to some topics, the most popular one is picked, accord-
ing to Freebase popularity ranking. Meaningless tags that do not have a
match in Freebase topics are ignored, thus they do not act as a nuisance.
When a Freebase topic is retrieved, another query is performed to extract its
Freebase types with the “notable” property and its Freebase domain. While
types are mostly specific (e.g. Person, Author) domains cover broader areas
(e.g. Film, Music).

Due to the vast number of types in the ontology, a smaller specific type
knowledge base is introduced. We first randomly sampled 10k tags from
MIR-Flickr dataset vocabulary (Huiskes et al., 2010) and used them to
extract Freebase types. We select the 100 most frequent types as our specific
knowledge base.

The extraction of TagType feature for an image is then straightforward:
each tag is used to query Freebase for a notable type. We count the matches
to the 100 selected types and obtain a 100d histogram as final feature.
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we extract the convolutional neural networks features, initially proposed in
(Khosla et al., 2014). A very deep CNN with 16 layers (Chatfield et al.,
2014) was used to extract for each image the final output containing 1,000
objects from ILSVRC 2014 challenge (termed ObjOut) and the 4,096d rep-
resentation of the 7th rectified fully connected layer (termed ObjFC7).

7.3.4 Context Features

Image context information such as tags and description contains important
cues that may reflect on the number of views that an image obtains. En-
tities like people, locations or tourist attractions can affect popularity as
i) people may be more interested in photographs referring some particular
subject; ii) the presence of tags and description, the submission of a photo
to some groups, etc. make it easier to be found by other users. The extrac-
tion of entities from image context strongly depends on the nature of the
text, i.e. tags and textual description; due to the different nature of these
channels, two different approaches are proposed.

Entity Extraction from Tags Starting from image tags, we define two new
context features that we term TagType and TagDomain. They both rely
on Freebase, a large collaborative ontology containing millions of intercon-
nected topics. Given a tag, a search for a Freebase topic is performed: if
the tag is related to some topics, the most popular one is picked, accord-
ing to Freebase popularity ranking. Meaningless tags that do not have a
match in Freebase topics are ignored, thus they do not act as a nuisance.
When a Freebase topic is retrieved, another query is performed to extract its
Freebase types with the “notable” property and its Freebase domain. While
types are mostly specific (e.g. Person, Author) domains cover broader areas
(e.g. Film, Music).

Due to the vast number of types in the ontology, a smaller specific type
knowledge base is introduced. We first randomly sampled 10k tags from
MIR-Flickr dataset vocabulary (Huiskes et al., 2010) and used them to
extract Freebase types. We select the 100 most frequent types as our specific
knowledge base.

The extraction of TagType feature for an image is then straightforward:
each tag is used to query Freebase for a notable type. We count the matches
to the 100 selected types and obtain a 100d histogram as final feature.
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Regarding the TagDomain feature, we take the full list of 78 domains
pre-defined by Freebase curators and count the tag matches, similarly as
TagType. Thus, the eventual TagDomain feature result in a 78d histogram.

Entity Extraction from description Differently from the concise tags, im-
age descriptions allow users to comprehensively detail their images in natu-
ral language. We seek to recognize subjects and objects of this text to detail
context. Hence, we adopt a well known CRF-based language model to per-
form Named Entity Recognition (NER) (Finkel et al., 2005). We used the
pre-trained 7-class model for MUC that is able to recognize Time, Location,
Organization, Person, Money, Percent, Date. We count the occurrences for
each class and build a 7d feature that we term NER7.

7.3.5 User Features

Previous works have found that the number of views that a photograph
is going to obtain depends not only on the image itself and its context
information, but also on the author data. In this work we used the same
user features proposed by Khosla et al. (Khosla et al., 2014): among these
features the most related one to popularity is the mean views of the images
of the user, as it represents the popularity of the user himself.

7.3.6 Popularity prediction

In order to predict popularity as a concise score, we used an off-the-shelf
Support Vector Machine. As we are working with large-scale dataset, we
used a L2 regularized L2 loss Support Vector Regression (SVR) from LI-
BLINEAR package due to its scalability with large sparse data and huge
number of instances compared to a kernelized version.

7.4 Experiments

As different scenarios show different aspects of popularity, we structure
our experimental setups similarly to those of Khosla et al. (Khosla et al.,
2014), using Flickr social network. Two datasets were used to represent two
different scenarios:

• One-Per-User (OPU): we randomly selected 250k images from the
VSO Flickr Dataset (Borth et al., 2013). This dataset represents the
scenario of a Flickr search, where images belong to different users.

• User Specific (US): 25 users from the VSO Flickr Dataset are selected
at random to constitute 25 different trials. For each one, 10k images
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are randomly selected. This dataset represent the scenario of a user
that wants to select which of his pictures should be uploaded to attract
the attention of other users.

In each experiment, we extract and concatenate the selected features.
We freely provide the extracted features on our website. Multidimensional
features are L2 normalized, while scalar attributes are scaled in the [0, 1]
range. We split every dataset in training and evaluation: half was randomly
chosen as training set, while the remaining images were equally split in
validation and testing set. The C of SVM was set in the range [0.001−100].

After the prediction, testing images are ranked in descending popularity
scores and compared to the correct ranking obtained by the ground truth
scores. The correlation between these two lists r and s is computed using
Spearman’s rank correlation that ranges in [−1, 1]:

ρ =

∑
i(ri − r)(si − s)√∑

i(ri − r)2
√∑

i(si − s)2
(7.1)

a score of 1 (or -1) corresponds to perfect (inverse) correlation, while 0
corresponds to random ranks.

7.4.1 Results

Experiments have been carried out for visual features, context ones and
visual + context + user combination. We train a model with each single
feature to show its predictive power. Then, we combine the features and
compare a model with all of them against baselines implemented following
the method of Khosla et al. (Khosla et al., 2014) i.e. without our novel
features. Results are reported in terms of Spearman’s rank correlation and,
for the User Specific dataset, the average scores between the 25 users are
reported.

Visual Features Visual content features include visual sentiment and ob-
ject detections (Sec. 7.3.2, 7.3.3). The latter ones are used in this case as a
baseline, including ObjOut and ObjFC7.

Dataset SentANPs FeatANPs ObjOut ObjFC7 Baseline All

OPU 0.28 0.32 0.13 0.30 0.30 0.36

US 0.31 0.40 0.27 0.40 0.40 0.43

Table 7.1: Visual Features Results

Results are reported in Table 7.1: sentiment features are comparable
with object features. As ANPs are learned starting from a similar network
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Regarding the TagDomain feature, we take the full list of 78 domains
pre-defined by Freebase curators and count the tag matches, similarly as
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context. Hence, we adopt a well known CRF-based language model to per-
form Named Entity Recognition (NER) (Finkel et al., 2005). We used the
pre-trained 7-class model for MUC that is able to recognize Time, Location,
Organization, Person, Money, Percent, Date. We count the occurrences for
each class and build a 7d feature that we term NER7.

7.3.5 User Features

Previous works have found that the number of views that a photograph
is going to obtain depends not only on the image itself and its context
information, but also on the author data. In this work we used the same
user features proposed by Khosla et al. (Khosla et al., 2014): among these
features the most related one to popularity is the mean views of the images
of the user, as it represents the popularity of the user himself.

7.3.6 Popularity prediction

In order to predict popularity as a concise score, we used an off-the-shelf
Support Vector Machine. As we are working with large-scale dataset, we
used a L2 regularized L2 loss Support Vector Regression (SVR) from LI-
BLINEAR package due to its scalability with large sparse data and huge
number of instances compared to a kernelized version.

7.4 Experiments

As different scenarios show different aspects of popularity, we structure
our experimental setups similarly to those of Khosla et al. (Khosla et al.,
2014), using Flickr social network. Two datasets were used to represent two
different scenarios:

• One-Per-User (OPU): we randomly selected 250k images from the
VSO Flickr Dataset (Borth et al., 2013). This dataset represents the
scenario of a Flickr search, where images belong to different users.

• User Specific (US): 25 users from the VSO Flickr Dataset are selected
at random to constitute 25 different trials. For each one, 10k images
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are randomly selected. This dataset represent the scenario of a user
that wants to select which of his pictures should be uploaded to attract
the attention of other users.

In each experiment, we extract and concatenate the selected features.
We freely provide the extracted features on our website. Multidimensional
features are L2 normalized, while scalar attributes are scaled in the [0, 1]
range. We split every dataset in training and evaluation: half was randomly
chosen as training set, while the remaining images were equally split in
validation and testing set. The C of SVM was set in the range [0.001−100].

After the prediction, testing images are ranked in descending popularity
scores and compared to the correct ranking obtained by the ground truth
scores. The correlation between these two lists r and s is computed using
Spearman’s rank correlation that ranges in [−1, 1]:

ρ =
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i(ri − r)(si − s)√∑

i(ri − r)2
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i(si − s)2
(7.1)

a score of 1 (or -1) corresponds to perfect (inverse) correlation, while 0
corresponds to random ranks.

7.4.1 Results

Experiments have been carried out for visual features, context ones and
visual + context + user combination. We train a model with each single
feature to show its predictive power. Then, we combine the features and
compare a model with all of them against baselines implemented following
the method of Khosla et al. (Khosla et al., 2014) i.e. without our novel
features. Results are reported in terms of Spearman’s rank correlation and,
for the User Specific dataset, the average scores between the 25 users are
reported.

Visual Features Visual content features include visual sentiment and ob-
ject detections (Sec. 7.3.2, 7.3.3). The latter ones are used in this case as a
baseline, including ObjOut and ObjFC7.

Dataset SentANPs FeatANPs ObjOut ObjFC7 Baseline All

OPU 0.28 0.32 0.13 0.30 0.30 0.36

US 0.31 0.40 0.27 0.40 0.40 0.43

Table 7.1: Visual Features Results

Results are reported in Table 7.1: sentiment features are comparable
with object features. As ANPs are learned starting from a similar network
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for classification, this suggests the existence of some correlation between
them. Nevertheless, SentANPs is higher than ObjOut, suggesting that
ANPs are better for popularity prediction than purely object classification.
Our features are able to improve overall prediction in both scenarios.

Context Features The performance of the proposed context features (Sec. 7.3.4)
is compared with a baseline composed by the number of tags, the length of
title and description (Table 7.2).

Dataset TagType TagDomain NER7 TagNum TitleLen DescLen Baseline All

OPU 0.42 0.36 0.50 0.55 0.22 0.48 0.61 0.63

US 0.44 0.37 0.13 0.23 0.17 0.20 0.33 0.54

Table 7.2: Context Features Results

Our features are comparable with other context-based ones in the OPU
scenario. In the US scenario, all the features except TagType and Tag-
Domain lose predictive power due to the limited context of a single user.
This is because our features are able to better model semantically the single
photos, regardless of the single user. When combined, our feature boost
correlation to 0.54 from 0.33 of the baseline.

Visual + Context + User In this experiment we combined visual, con-
text and user features along with the total combination with and without
our novel features. User features are added to resemble a state of the art
pipeline. Each modality is singularly tested and finally combined together.
Results are reported in Table 7.3. Note that User Features can’t be used
for the User Specific scenario as each model is trained for a single user.

Dataset Method Visual Content Image Context User Features All

OPU
proposed 0.36 0.63 0.72 0.76

baseline 0.30 0.61 0.72 0.74

US
proposed 0.43 0.54 n/a 0.61

baseline 0.40 0.33 n/a 0.50

Table 7.3: Visual + Context + User Features Results

User Features produce the highest correlation in the OPU scenario, con-
firming that popularity is highly related to the popularity of the author
(Khosla et al., 2014). Despite this, the combination of the three modalities
is helpful, boosting correlation from 0.72 to 0.74. Our features further im-
prove upon this, bringing the value to 0.76. In the User Specific dataset,
the improvement from the baseline is more pronounced, where a correlation
of 0.61 vs 0.50 is obtained.
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7.4.2 Qualitative Analysis

We investigate which specific ANP and semantic metadata correlated the
most with the number of views of images. This analysis is performed for the
One-Per-User scenario, as it aims to be as generic as possible. Fig. 7.2(a)
shows the trained SVR weights for each of the 2089 ANPs, in descend-
ing order. According to the figure we split the visual sentiments in three
categories.

A first group include those ANPs that have a positive impact on image
popularity (e.g. sexy legs, beautiful eyes, heavy rain). The rapid drop evinces
that a very short number of ANPs corresponds to strongly popular images in
the training dataset. Then, we observe that some visual sentiments obtain
very low weights, near zero: that ANPs are almost irrelevant to the number
of views (e.g. sunny trees, dry forest). Finally a third group includes ANPs
that are associated to a sufficiently negative score: the detection of those
push an image towards unpopularity (e.g. creepy eyes, silly clown).

Extending our analysis to the 28 basic emotions of the Plutchick wheel,
we found out that our model marked as unpopular those images that arouse
emotions such as annoyance or serenity, while high scores are likely to be
returned in case of sentiments as amazement or ecstasy. These last emotions
derive from ANPs containing the adjective sexy, resulting in 10 occurrences
in the top 35 visual emotions. A similar analysis on the 100 semantic en-
tities is shown in Fig. 7.2(b). This plot has a similar trend compared with
that of visual sentiment, but for the extreme values: in this case the nega-
tively weighted types (e.g. religious practice and software genre) have more
prominent values than the positively weighted ones (e.g. garment and film
character).

7.5 Conclusions

In this chapter we proposed to employ state-of-the-art visual sentiment fea-
tures and three new context features to address the problem of predicting
whether an image posted on a social network may became popular. We
are the first to show a qualitative analysis of which sentiments (as ANPs)
are correlated to popularity. Our experiments suggest that some sentiments
have a correlation with popularity, still smaller than user features. How-
ever, together with our novel context features, they have good prediction
power, especially when user features are unavailable as in the User Specific
scenario.
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Chapter 8

Conclusion

This chapter summarizes the contribution of the thesis and dis-
cusses avenues for future research.

8.1 Summary of Contribution

After presenting a structured survey of related work on social tagging and
retrieval, we detailed a novel experimental protocol that we used to test and
analyze eleven key methods. Established the state of the art, we proposed
several models and methods to achieve objective annotation of images. Fi-
nally we moved to subjective annotation of sentiments aroused in a viewer
and the expected popularity of an image.

In particular, we first presented in Chapter 2 a survey on image tag
assignment, refinement and retrieval, with the hope of illustrating connec-
tions and difference between the many methods and their applicabilities,
and consequently helping the interested audience to either pick up an exist-
ing method or devise a method of their own given the data at hand. Based
on the key observation that all works rely on tag relevance learning as the
common ingredient, exiting works, which vary in terms of their methodolo-
gies and target tasks, are interpreted in a unified framework. Consequently,
a two-dimensional taxonomy has been developed, allowing us to structure
the growing literature in light of what information a specific method ex-
ploits and how the information is leveraged in order to produce their tag
relevance scores.

Having established the common ground between methods, a new experi-
mental protocol was introduced in Chapter 3 for a head-to-head comparison
between the state-of-the-art. A selected set of eleven representative works
were implemented and evaluated for tag assignment, refinement, and/or
retrieval.

Nearest neighbors methods proved to be the best overall performing
method for assignment in Chapter 3. Hence, we proposed a novel technique
in Chapter 4 that reduce the semantic gap in that class of methods. We pre-
sented a cross-media model based on KCCA for tag assignment. The key
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Chapter 8

Conclusion

This chapter summarizes the contribution of the thesis and dis-
cusses avenues for future research.

8.1 Summary of Contribution

After presenting a structured survey of related work on social tagging and
retrieval, we detailed a novel experimental protocol that we used to test and
analyze eleven key methods. Established the state of the art, we proposed
several models and methods to achieve objective annotation of images. Fi-
nally we moved to subjective annotation of sentiments aroused in a viewer
and the expected popularity of an image.

In particular, we first presented in Chapter 2 a survey on image tag
assignment, refinement and retrieval, with the hope of illustrating connec-
tions and difference between the many methods and their applicabilities,
and consequently helping the interested audience to either pick up an exist-
ing method or devise a method of their own given the data at hand. Based
on the key observation that all works rely on tag relevance learning as the
common ingredient, exiting works, which vary in terms of their methodolo-
gies and target tasks, are interpreted in a unified framework. Consequently,
a two-dimensional taxonomy has been developed, allowing us to structure
the growing literature in light of what information a specific method ex-
ploits and how the information is leveraged in order to produce their tag
relevance scores.

Having established the common ground between methods, a new experi-
mental protocol was introduced in Chapter 3 for a head-to-head comparison
between the state-of-the-art. A selected set of eleven representative works
were implemented and evaluated for tag assignment, refinement, and/or
retrieval.

Nearest neighbors methods proved to be the best overall performing
method for assignment in Chapter 3. Hence, we proposed a novel technique
in Chapter 4 that reduce the semantic gap in that class of methods. We pre-
sented a cross-media model based on KCCA for tag assignment. The key
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idea was learning a semantic space, where visual and textual data where
represented as blended unified features. This representation is able to pro-
vide better neighbors for nearest neighbor algorithms. The experimental
results showed that our method makes consistent improvements over stan-
dard approaches based on a single-view visual representation as well as other
previous work that also exploited tags. The properties of tested methods
found in Chapter 3 remain still valid in the semantic space, although with
an improved capability of retrieving better neighbors. Hence a better per-
formance is obtained.

Considering the influence of real world events in tagging behavior, in
Chapter 5 we briefly analyzed the correlations between user tags, news and
the objective relevance of concepts. The results suggest that analyzing the
time series of tags may be beneficial to annotate social media.

Moving on to subjective information extraction, in Chapter 6 and 7 we
explored the related tasks of sentiment analysis in tweets and the popularity
estimation of images in social networks. In Chapter 6 we have presented
a method for sentiment analysis of social network multimedia, capable of
learning both textual and visual features in an unified fashion. Our model
CBOW-LR, extending the CBOW model, learns concurrently a vector rep-
resentation and a sentiment polarity classifier on short texts. Comparing
to previous work, our representation explicitly includes the sentiment of
words and maintains good performance. By adding images to the mix,
a further extension CBOW-DA-LR was presented. This semi-supervised
model concurrently learns text and image representation, as well as the sen-
timent polarity classifier for tweets containing images. Experiments with
large unsupervised corpus of tweets show promising results compared to the
state-of-the-art.

Chapter 7 presented a novel approach to predict whether an image
posted on a social network may became popular. The approach uses a
combination of state-of-the-art visual sentiment features and three novel
context features to reduce the semantic gap. The experiments reported
suggest that some sentiments have a correlation with popularity. Moreover,
our novel context features have good prediction power, especially when user
features are unavailable. We also presented the first study that show a qual-
itative analysis of which sentiments (as ANPs) are correlated to popularity.

8.2 Direction of future work

Much remains to be done. Several exciting recent developments open up
new opportunities for the future. First, extraction of objective informa-
tion can profit from recent developments of deep learning. Employing novel
deep learning based visual features is likely to boost the performance of an-
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notations method that employ visual features. What is scientifically more
interesting is to devise a learning strategy that is capable of jointly exploit-
ing tag, image, and user information in a much more scalable manner than
currently feasible. The importance of the filter component, which refines
socially tagged training examples in advance to learning, is underestimated.
Having a number of collaboratively labeled resources publicly available, re-
search on joint exploration of social data and these resources is important.
This connects to the most fundamental aspect of content-based image re-
trieval in the context of sharing and tagging within social media platforms:
to what extent a social tag can be trusted remains open. Image retrieval by
multi-tag query is another important yet largely unexplored problem. For
a query of two tags, it is suggested to view the two tags as a single bi-gram
tag (Li et al., 2012; Nie et al., 2012; Borth et al., 2013), which is found to
be superior to late fusion of individual tag scores. Nonetheless, due to the
increasing sparseness of n-grams, how to effectively answer generic queries
of more than two tag is challenging. Exploiting further modalities remain
still a largely unexplored area of research. In Chapter 5 we investigated the
correlation of tags with the ground truth and events gathered from news by
considering the time dimension. Although of limited scope, the study found
that objective tags have a strong correlation to both content and context,
giving a promising direction for improving content understanding. Possi-
ble extensions of this work include the exploration of how richer textual
and semantic cues from natural language annotations might improve our
models. Compared to extracting objective information, subjective informa-
tion extraction is still young and full of exciting directions. We are still far
from getting reliable estimations of sentiments in visual content. Current
features are handcrafted on psychological or empirical studies but they are
inherently affected by the semantic gap. Automatically learning features
alike to approaches used in deep learning could bring considerable improve-
ments in recognizing feelings despite the hard interpretability of filters. We
barely scratched the surface in Chapter 6. Similarly, the prediction of pop-
ularity is still relying in basic handcrafted features. Although the social
network aspects are well known to be related to popularity, visual content
and context analysis is still needed when aiming to maximize popularity of
a content. An underestimated factor is the peculiarity of different cultures
in having different values and thus interest and feelings. Social networks
can provide a world playground for study these aspects.

We see contributions of this field as essential to other related fields such
as that of computer vision and artificial intelligence. The last two years were
marked by a surge of deep convolutional models that showed remarkable im-
provement on vision tasks such as object recognition and image captioning.
However, their limit is related to the strong supervision they need for train-
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idea was learning a semantic space, where visual and textual data where
represented as blended unified features. This representation is able to pro-
vide better neighbors for nearest neighbor algorithms. The experimental
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dard approaches based on a single-view visual representation as well as other
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Considering the influence of real world events in tagging behavior, in
Chapter 5 we briefly analyzed the correlations between user tags, news and
the objective relevance of concepts. The results suggest that analyzing the
time series of tags may be beneficial to annotate social media.

Moving on to subjective information extraction, in Chapter 6 and 7 we
explored the related tasks of sentiment analysis in tweets and the popularity
estimation of images in social networks. In Chapter 6 we have presented
a method for sentiment analysis of social network multimedia, capable of
learning both textual and visual features in an unified fashion. Our model
CBOW-LR, extending the CBOW model, learns concurrently a vector rep-
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timent polarity classifier for tweets containing images. Experiments with
large unsupervised corpus of tweets show promising results compared to the
state-of-the-art.

Chapter 7 presented a novel approach to predict whether an image
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combination of state-of-the-art visual sentiment features and three novel
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8.2 Direction of future work
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tion can profit from recent developments of deep learning. Employing novel
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130

notations method that employ visual features. What is scientifically more
interesting is to devise a learning strategy that is capable of jointly exploit-
ing tag, image, and user information in a much more scalable manner than
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still a largely unexplored area of research. In Chapter 5 we investigated the
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considering the time dimension. Although of limited scope, the study found
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inherently affected by the semantic gap. Automatically learning features
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ments in recognizing feelings despite the hard interpretability of filters. We
barely scratched the surface in Chapter 6. Similarly, the prediction of pop-
ularity is still relying in basic handcrafted features. Although the social
network aspects are well known to be related to popularity, visual content
and context analysis is still needed when aiming to maximize popularity of
a content. An underestimated factor is the peculiarity of different cultures
in having different values and thus interest and feelings. Social networks
can provide a world playground for study these aspects.

We see contributions of this field as essential to other related fields such
as that of computer vision and artificial intelligence. The last two years were
marked by a surge of deep convolutional models that showed remarkable im-
provement on vision tasks such as object recognition and image captioning.
However, their limit is related to the strong supervision they need for train-
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ing. Due to the cost of scaling these approaches, we expect an increased
interest in unsupervised and semi-supervised learning, ultimately reaching
social networks as an essential source of media.

“One way to resolve the semantic gap comes from sources outside the
image ...”, Smeulders et al. wrote at the end of their seminal paper (Smeul-
ders et al., 2000). While what such sources would be was mostly unknown
by that time, it is now becoming evident that the many images shared
and tagged in social media platforms are promising to resolve the semantic
gap. By adding new relevant tags, refining the existing ones or directly ad-
dressing retrieval, the access to the semantic of the content has been much
improved. This is achieved only when appropriate care is taken to attack
the unreliability of social tagging.

132

Appendix A

Publications

This research activity has led to several publications in international jour-
nals and conferences. These are summarized below.1

International Journals

1. T. Uricchio, L. Ballan, L. Seidenari, A. Del Bimbo, “Automatic Image Annotation

via Label Transfer in the Semantic Space”, In Pattern Recognition, Volume 71,

November 2017, Pages 144-157, DOI: 10.1016/j.patcog.2017.05.019.

2. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “So-

cializing the Semantic Gap: A Comparative Survey on Image Tag Assignment,

Refinement and Retrieval”, ACM Computing Surveys (CSUR), Volume 49 Issue 1,

July 2016, DOI: 10.1145/2906152 (* indicates equal contribution).

3. L. Ballan*, M. Bertini*, T. Uricchio*, A. Del Bimbo*, “Data-driven approaches

for social image and video tagging”. In Multimedia Tools and Applications, Feb

2015, Volume 74, Issue 4, pp. 1443-1468. DOI: 10.1007/s11042-014-1976-4 *equal

contribution.

4. C. Baecchi, T. Uricchio, M. Bertini, A. Del Bimbo, “A multimodal feature learn-

ing approach for sentiment analysis of social network multimedia”. In Multimedia

Tools and Applications., Volume 75, March 2016, Issue 5, pp. 2507-2525. DOI:

10.1007/s11042-015-2646-x.

International Conferences and Workshops

Tutorials

1. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Image

Tag Assignment, Refinement and Retrieval”. In Proc. of ACM Conference on Mul-

timedia Conference (ACM MM), Brisbane, Australia, 2015. *equal contribution.

2. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Im-

age Tag Assignment, Refinement and Retrieval”. In Proc. of Computer Vision and

Pattern Recognition (CVPR), Las Vegas, USA, 2016, (* indicates equal contribu-

tion).

1The author’s bibliometric indices at the end of his PhD were the following H -index = 5, total

number of citations = 43, i10-index = 1 (source: Google Scholar on November 28, 2015).

133



ing. Due to the cost of scaling these approaches, we expect an increased
interest in unsupervised and semi-supervised learning, ultimately reaching
social networks as an essential source of media.

“One way to resolve the semantic gap comes from sources outside the
image ...”, Smeulders et al. wrote at the end of their seminal paper (Smeul-
ders et al., 2000). While what such sources would be was mostly unknown
by that time, it is now becoming evident that the many images shared
and tagged in social media platforms are promising to resolve the semantic
gap. By adding new relevant tags, refining the existing ones or directly ad-
dressing retrieval, the access to the semantic of the content has been much
improved. This is achieved only when appropriate care is taken to attack
the unreliability of social tagging.

132

Appendix A

Publications

This research activity has led to several publications in international jour-
nals and conferences. These are summarized below.1

International Journals

1. T. Uricchio, L. Ballan, L. Seidenari, A. Del Bimbo, “Automatic Image Annotation

via Label Transfer in the Semantic Space”, In Pattern Recognition, Volume 71,

November 2017, Pages 144-157, DOI: 10.1016/j.patcog.2017.05.019.

2. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “So-

cializing the Semantic Gap: A Comparative Survey on Image Tag Assignment,

Refinement and Retrieval”, ACM Computing Surveys (CSUR), Volume 49 Issue 1,

July 2016, DOI: 10.1145/2906152 (* indicates equal contribution).

3. L. Ballan*, M. Bertini*, T. Uricchio*, A. Del Bimbo*, “Data-driven approaches

for social image and video tagging”. In Multimedia Tools and Applications, Feb

2015, Volume 74, Issue 4, pp. 1443-1468. DOI: 10.1007/s11042-014-1976-4 *equal

contribution.

4. C. Baecchi, T. Uricchio, M. Bertini, A. Del Bimbo, “A multimodal feature learn-

ing approach for sentiment analysis of social network multimedia”. In Multimedia

Tools and Applications., Volume 75, March 2016, Issue 5, pp. 2507-2525. DOI:

10.1007/s11042-015-2646-x.

International Conferences and Workshops

Tutorials

1. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Image

Tag Assignment, Refinement and Retrieval”. In Proc. of ACM Conference on Mul-

timedia Conference (ACM MM), Brisbane, Australia, 2015. *equal contribution.

2. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Im-

age Tag Assignment, Refinement and Retrieval”. In Proc. of Computer Vision and

Pattern Recognition (CVPR), Las Vegas, USA, 2016, (* indicates equal contribu-

tion).

1The author’s bibliometric indices at the end of his PhD were the following H -index = 5, total

number of citations = 43, i10-index = 1 (source: Google Scholar on November 28, 2015).

133Tiberio Uricchio, Image Understanding by Socializing the Semantic Gap, ISBN 978-88-6453-576-0 (print), 
ISBN 978-88-6453-577-7 (online) © 2017 Firenze University Press



Image Understanding by Socializing the Semantic Gap

134

3. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Image

Tag Assignment, Refinement and Retrieval”. In Proc. of International Conference

on Image Analysis and Processing (ICIAP), Catania, Italy, 2017, (* indicates equal

contribution).

Conferences and Workshops

1. F. Gelli, T. Uricchio, M. Bertini, A. Del Bimbo, S-F. Chang, “Image Popularity

Prediction in Social Media Using Sentiment and Context Features”, In Proc. of

ACM Conference on Multimedia Conference (ACM MM), Brisbane, Australia, 2015.

2. L. Ballan*, T. Uricchio*, L. Seidenari, A. Del Bimbo, “A Cross-media Model for

Automatic Image Annotation”. In Proc. of ACM International Conference on Mul-

timedia Retrieval (ICMR), Glasgow, United Kingdom, 2014, *equal contribution.

3. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “Evaluating Temporal

Information for Social Image Annotation and Retrieval”. In Proc. of International

Conference on Image Analysis and Processing (ICIAP), Napoli, Italy, 2013.

4. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “An Evaluation of Nearest-

Neighbor Methods for Tag Refinement”. In Proc. of IEEE International Conference

on Multimedia & Expo (ICME), San Jose, CA, USA, 2013.

5. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “MICC-UNIFI at Image-

CLEF 2013 Scalable Concept Image Annotation”. In Proc. of Conference and Labs

of the Evaluation Forum (CLEF), Valencia, Spain, 2013.

6. T. Uricchio*, M. Bertini*, L. Seidenari, A. Del Bimbo, “Fisher Encoded Convolu-

tional Bag-of-Boxes for Efficient Image Annotation and Retrieval”. Proc. of Inter-

national Conference on Computer Vision Workshops (ICCVW), Santiago, Chile,

2015, *equal contribution.

7. L. Ballan, M. Bertini, T. Uricchio, and A. Del Bimbo, “Social Media Annotation”.

In Proc. of IEEE International Workshop on Content-Based Multimedia Indexing

(CBMI), Veszprem, Hungary, 2013.

134

Acknowledgments

This thesis would not have been possible without the help and support of
many people. First, I would like to acknowledge the efforts and input of my
supervisors, Prof. Alberto Del Bimbo and Prof. Marco Bertini, who were
of great help during my research. I thank Telecom Italia and my industrial
tutor Carlo Alberto Licciardi for their support of my work.

Many people contributed to the development of this research. The dis-
cussions with Dr. Lamberto Ballan were extremely important to me and the
success of this work. Thank you for your patience and insightful suggestions.
Special thanks to Prof. Cees G.M. Snoek, Dr. Xirong Li, Dr. Lorenzo Sei-
denari, Dr. Claudio Baecchi and Francesco Gelli who collaborated on several
parts of my research work. I will be always grateful to you all. Props out to
Prof. Paolo Frasconi who inspired me with his visionary look at research.
His passion has always encouraged me to take bolder roads.

Many many thanks to all my colleagues of the Media Integration and
Communication Center (MICC): Dr. Irene Amerini, Prof. Andrew Bag-
danov, Dr. Federico Bartoli, Federico Becattini, Giuseppe Becchi, Enrico
Bondi, Matteo Bruni, Dr. Maxime Devanne, Dr. Dario Di Fina, Dr. Simone
Ercoli, Andrea Ferracani, Claudio Ferrari, Leonardo Galteri, Dr. Svebor
Karaman, Dr. Giuseppe Lisanti, Dr. Iacopo Masi, Dr. Federico Pernici,
Daniele Pezzatini, Andrea Salvi, Dr. Francesco Turchini. In these years,
their enthusiasm and their support was extremely important to me during
the highs and especially in the lows.

Thanks to my long-standing friends Elisa, Filippo, Francesco, Giulia,
Laura, Leonardo, Massimo, Riccardo, Stefano, Yasamin. You are very im-
portant to me. Finally, I don’t know how I would have made it through
without the support of Valentina and my family. I thank them deeply for
all the love and understanding.



3. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo, “Image

Tag Assignment, Refinement and Retrieval”. In Proc. of International Conference

on Image Analysis and Processing (ICIAP), Catania, Italy, 2017, (* indicates equal

contribution).

Conferences and Workshops

1. F. Gelli, T. Uricchio, M. Bertini, A. Del Bimbo, S-F. Chang, “Image Popularity

Prediction in Social Media Using Sentiment and Context Features”, In Proc. of

ACM Conference on Multimedia Conference (ACM MM), Brisbane, Australia, 2015.

2. L. Ballan*, T. Uricchio*, L. Seidenari, A. Del Bimbo, “A Cross-media Model for

Automatic Image Annotation”. In Proc. of ACM International Conference on Mul-

timedia Retrieval (ICMR), Glasgow, United Kingdom, 2014, *equal contribution.

3. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “Evaluating Temporal

Information for Social Image Annotation and Retrieval”. In Proc. of International

Conference on Image Analysis and Processing (ICIAP), Napoli, Italy, 2013.

4. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “An Evaluation of Nearest-

Neighbor Methods for Tag Refinement”. In Proc. of IEEE International Conference

on Multimedia & Expo (ICME), San Jose, CA, USA, 2013.

5. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “MICC-UNIFI at Image-

CLEF 2013 Scalable Concept Image Annotation”. In Proc. of Conference and Labs

of the Evaluation Forum (CLEF), Valencia, Spain, 2013.

6. T. Uricchio*, M. Bertini*, L. Seidenari, A. Del Bimbo, “Fisher Encoded Convolu-

tional Bag-of-Boxes for Efficient Image Annotation and Retrieval”. Proc. of Inter-

national Conference on Computer Vision Workshops (ICCVW), Santiago, Chile,

2015, *equal contribution.

7. L. Ballan, M. Bertini, T. Uricchio, and A. Del Bimbo, “Social Media Annotation”.

In Proc. of IEEE International Workshop on Content-Based Multimedia Indexing

(CBMI), Veszprem, Hungary, 2013.

134

Acknowledgments

This thesis would not have been possible without the help and support of
many people. First, I would like to acknowledge the efforts and input of my
supervisors, Prof. Alberto Del Bimbo and Prof. Marco Bertini, who were
of great help during my research. I thank Telecom Italia and my industrial
tutor Carlo Alberto Licciardi for their support of my work.

Many people contributed to the development of this research. The dis-
cussions with Dr. Lamberto Ballan were extremely important to me and the
success of this work. Thank you for your patience and insightful suggestions.
Special thanks to Prof. Cees G.M. Snoek, Dr. Xirong Li, Dr. Lorenzo Sei-
denari, Dr. Claudio Baecchi and Francesco Gelli who collaborated on several
parts of my research work. I will be always grateful to you all. Props out to
Prof. Paolo Frasconi who inspired me with his visionary look at research.
His passion has always encouraged me to take bolder roads.

Many many thanks to all my colleagues of the Media Integration and
Communication Center (MICC): Dr. Irene Amerini, Prof. Andrew Bag-
danov, Dr. Federico Bartoli, Federico Becattini, Giuseppe Becchi, Enrico
Bondi, Matteo Bruni, Dr. Maxime Devanne, Dr. Dario Di Fina, Dr. Simone
Ercoli, Andrea Ferracani, Claudio Ferrari, Leonardo Galteri, Dr. Svebor
Karaman, Dr. Giuseppe Lisanti, Dr. Iacopo Masi, Dr. Federico Pernici,
Daniele Pezzatini, Andrea Salvi, Dr. Francesco Turchini. In these years,
their enthusiasm and their support was extremely important to me during
the highs and especially in the lows.

Thanks to my long-standing friends Elisa, Filippo, Francesco, Giulia,
Laura, Leonardo, Massimo, Riccardo, Stefano, Yasamin. You are very im-
portant to me. Finally, I don’t know how I would have made it through
without the support of Valentina and my family. I thank them deeply for
all the love and understanding.

Tiberio Uricchio, Image Understanding by Socializing the Semantic Gap, ISBN 978-88-6453-576-0 (print), 
ISBN 978-88-6453-577-7 (online) © 2017 Firenze University Press



Bibliography

Alonso, O., Gertz, M. and Baeza-Yates, R. (2007), ‘On the value of temporal information
in information retrieval’, SIGIR Forum 41(2), 35–41.

Andrews, S., Tsochantaridis, I. and Hofmann, T. (2003), Support vector machines for
multiple-instance learning, in ‘Proc. of NIPS’, pp. 561–568.

Atrey, P., Hossain, M., El Saddik, A. and Kankanhalli, M. (2010), ‘Multimodal fusion for
multimedia analysis: a survey’, Multimedia Systems 16(6), 345–379.

Bae, Y. and Lee, H. (2012), ‘Sentiment analysis of Twitter audiences: Measuring the
positive or negative influence of popular twitterers’, JASIST 63(12), 2521–2535.

Baecchi, C., Turchini, F., Seidenari, L., Bagdanov, A. D. and Bimbo, A. D. (2014), Fisher
vectors over random density forests for object recognition, in ‘Proc. of International
Conference on Pattern Recognition (ICPR)’.

Ballan, L., Bertini, M., Uricchio, T. and Del Bimbo, A. (2014), ‘Data-driven approaches
for social image and video tagging’, Multimedia Tools and Applications 74(4), 1443–
1468.

Ballan, L., Uricchio, T., Seidenari, L. and Bimbo, A. D. (2014), A cross-media model for
automatic image annotation, in ‘Proc. of ACM ICMR’, pp. 73–80.

Barbosa, L. and Feng, J. (2010), Robust sentiment detection on Twitter from biased
and noisy data, in ‘Proc. of International Conference on Computational Linguistics
(COLING)’.

Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D. M. and Jordan, M. I.
(2003), ‘Matching words and pictures’, JMLR 3, 1107–1135.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D. and Bengio, Y. (2012), ‘Theano: new features and
speed improvements’, arXiv preprint arXiv:1211.5590 .

Bengio, Y. (2009), ‘Learning deep architectures for AI’, Foundations and Trends in Ma-
chine Learning 2(1), 1–127.
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