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Acronyms

BBO β-Barium borate.

CDF cumulative distribution function.
CSR central scaling region.
CTRW continuous-time random walk.
CW continuous wave.

DA diffusion approximation.
DE diffusion equation.
DPSS diode-pumped solid-state.

EBC extrapolated boundary condition.
EBPC extrapolated boundary partial current.

HG Heyney-Greenstein (phase function).

LUT lookup table.

MC Monte Carlo.
MSD mean square displacement.
MSW mean square width.

NIR near infrared.

OOP object-oriented programming.
OPA optical parametric amplification.
OPO optical parametric oscillator.
OT optical thickness.

PCBC partial current boundary condition.
PDF probability density function.
PMT photo-multiplier tube.
PRNG pseudo-random number generator.

RTE radiative transfer equation.

SEM scanning electron microscope.
SFG sum-frequency generation.
SHG second-harmonic generation.
SLD step-length distribution.

UFI ultrafast imaging.
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Symbols

�0 single particle albedo.

B magnetic field [T].
b unit vector along B.

c light speed in vacuum c = 1√
ε0µ0

[m s−1].

D diffusion coefficient [m s−2].
D diffusion coefficient [m s−2].
∆τp full-width-half-maximum duration of a laser pulse [s].

E electric field [N C−1].
e unit vector along E.
ε dielectric permittivity [F m−1].

F scattering potential [m−2].
f (s, s0) scattering amplitude.
F(r, t) flux density [W m−2].

g scattering anisotropy factor.
γ2 excess kurtosis.

i imaginary unit.
I(r, t, s) Specific intensity [W m−2 sr−1].

J current density [A m−2].

k wave vector |k| = 2π/λ [m−1].

L thickness [m].
la absorption mean free path [m].
λ wavelength [m].
Leff effective thickness Leff = L + 2ze [m].
ls scattering mean free path [m].
l′s reduced scattering mean free path [m].

µ magnetic permeability [N A−2].
µa absorption coefficient [m−1].
µs scattering coefficient [m−1].
µ′s reduced scattering coefficient [m−1].

n refractive index n = c/v.
ne extraordinary refractive index in a birefringent crystal.
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no ordinary refractive index in a birefringent crystal.

OT (reduced) optical thickness L/l′s.

p(s, s0) phase function or scattering diagram.

ρ radial coordinate in a cylindrical reference frame [m].
R(ρ, t) time resolved reflectance [W m−2].
R(t) total time resolved reflectance [W].

S energy flux density [W m−2].
s unit vector along S.
σa absorption cross section [m2].
σs scattering cross section [m2].
σtot extinction cross section [m2].
r position vector [m].

t time [s].
τ decay constant of integrated transmittance/reflectance [s].
T (ρ, t) time resolved transmittance [W m−2].
T (t) total time resolved transmittance [W].

U(r, t) average intensity [W m−2].
u(r, t) energy density [J m−3].

V volume [m3].
v light speed in a medium v = (εµ)−1/2 [m s−1].

W density of electromagnetic energy [J m−3].
ω angular frequency [rad s−1].
w2(t) mean square width of a spatial profile [m2].

ze extrapolation length [m].
zsrc isotropic point source depth [m].
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in time, i.e., that any evolution of the optical properties of the medium occurs on a longer
time scale than the propagation of light. Following interaction with the sample, some light
Xout(r′, t′, s′) will eventually exit the sample. In this context, two tasks arise naturally as
the forward and inverse problem. In the former case, we try to find a transfer function

f [Xin(r, t, s); p(r)]→ Xout(r′, t′, s′)

that allows us to predict Xout assumed that we know the properties of the sample and of
the illumination. Radiative transfer theory, diffusion theory and Monte Carlo simulations
are all examples of forward models for light transport. In the inverse case, which is most
interesting for applications, we will rather seek a way to deduce p(r) assuming to have
measured Xout(r′, t′, s′) or some part of it. This means finding

f −1[Xin(r, t, s); Xout(r′, t′, s′)
]→ p(r).

These problems comprise the fundamental questions and motivation behind this work.
The thesis is outlined as follows: in Chapter 2, we start by reviewing the main forward
radiative transfer models and discuss their validity and range of application. The experi-
mental aspects of ultrafast time-of-flight measurements are presented in Chapter 3, along
with the development of a novel experimental configuration that enables the simultaneous
investigation of both spatially and temporally-resolved transport. As illustrated by the ink
droplet example, the inherently spatio-temporal concept of ‘spreading’ represents the most
straightforward picture of the idea itself of propagation. Still, despite its simple representa-
tion, tracking light at the typical time and length scales associated to its transport dynamics
poses several experimental challenges, requiring accurate calibration and validation of the
measurement technique. Still, we argue that, almost by definition, transport cannot be really
studied in its entirety disregarding either of these domains, nor by studying both of them, but
separately. To support this claim, in Chapter 4 we bring evidence that current state-of-the-
art, single-domain techniques are subject to pitfalls and shortcoming that prevent a correct
optical characterization, or even the identification of novel transport regimes emerging in
more extreme configurations. Most interestingly, in Chapter 5 we demonstrate how it is
actually possible to take advantage of the subtle deviations from diffusion theory that we
unveiled to implement a flexible and efficient inverse model based on a lookup-table routine
and the gold-standard Monte Carlo method. In the last chapter, the origin of these devia-
tions is elucidated by performing an extensive statistical characterization, which revealed
the emergence of a well defined multiple scattering regime characterized by an effective
diffusion constant that differs from that intrinsic to the material. This result, which could not
be identified straightforwardly without the development of our new time-resolved imaging
technique, is demonstrated under extremely general assumptions for the simple case of a
homogeneous scattering slab, which represents the basic model in a number of applications.
As such, it could have far-reaching implications as it challenges our present interpretation
of the link between the macroscopic and microscopic transport parameters of scattering
media, and their optical characterization. In the last Section, further preliminary results are
presented, revealing the presence of an even richer array of phenomena occurring in this
simple system, ranging from anisotropic to anomalous diffusion and weakly self-similar
transport.
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relevant to the description of radiative transport in disordered media. Secondly, it provides
a complete review of all the approximations that are needed to obtain this fundamental
equation, therefore providing clear insights on its validity domain.

2.1. From Maxwell’s equations to Radiative transfer

2.1.1. Energy conservation

A relation of energy conservation arises naturally and directly from Maxwell’s equations
[24]. If we consider an isotropic medium with permeability µ and dielectric permittivity ε,
Maxwell’s equations can be expressed as

∇ × E = −∂B
∂t

(2.1a)

∇ × B = εµ
∂E
∂t
+ µJ (2.1b)

where E, B are the electric and the magnetic induction fields and J is the density current.
By multiplying these two equation by B and E respectively, and taking their difference we
can rewrite

1
µ
∇ · (E × B) =

1
µ

(
εµE · ∂E

∂t
+ B · ∂B

∂t

)
− E · J (2.2)

where we have used the vector identity ∇ · (a × b) = b · (∇ × a) − a · (∇ × b). Looking
at equation (2.2), we can recognize the partial time derivative of the total electromagnetic
energy

W(r, t) =
1

2µ

(
1
c2 E · E + B · B

)
[J m−3] (2.3)

and the divergence of the energy flux density

S =
1
µ

E × B, [W m−2] (2.4)

which allows us to interpret equation (2.2) as a continuity relation bounding the electromag-
netic energy and its flux. The extra E · J term represents Joule’s heating, expressing the rate
of energy transfer from the field to the charges, i.e. dissipation of energy due to absorption.
Energy dissipation in a isotropic medium is defined by Ohm’s law as J = ωε′′E, where ω
is the frequency of the electromagnetic wave and ε′′ is the imaginary part of the permittivity
ε = ε′(r) + iε′′(r). Therefore, we can rewrite it in terms of the absorbed energy per unit
volume

dPabs

dV
= E · J = ωε′′E2, [W m−3] (2.5)

which gives us the usual expression for Poynting’s theorem

∂W
∂t
+

dPabs

dV
+ ∇ · S = 0. (2.6)
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It should be emphasized that this relation holds at any point in space r, provided that E and
B are mutually orthogonal.

Equation (2.6) expresses energy conservation for time-harmonic electromagnetic fields.
In a typical configuration, however, the period of an electromagnetic wave in the optical
frequency range is several orders of magnitude larger than any experimental measurement
time, and we are rather interested in time-averaged quantities. If we consider a plane wave
solution to Maxwell’s equations

E(r, t) = E0e exp(ik · r) exp(−iωt) (2.7a)
B(r, t) =

√
εµE0b exp(ik · r) exp(−iωt) (2.7b)

the time-averaged Poynting vector 〈S〉 is simply given by

〈S〉 � 1
T

∫ T

0

1
µ

[E(r, t) × B(r, t)] dt =
E2

0

2

√
ε

µ
s [W m−2] (2.8)

where s = e× b are mutually orthogonal unitary vectors. This means that the validity of the
time-averaged expression for the Poynting vector that we derived is limited to the far-field,
where the electromagnetic fields propagate as a plane wave directed towards s. Keeping in
mind this assumption, we can analogously derive time-averaged expressions for the energy
density and the absorbed power

〈W〉 = ε
2

E2
0 =
√
εµ 〈S〉 · s [J m−3] (2.9)

〈
dPabs

dV

〉
=

1
2
ωε′′E2

0 =

√
µ

ε
ωε′′ 〈S〉 · s [W m−3] (2.10)

where 1√
εµ
= v is the speed of light in the medium. We can now use the time-averaged

expressions (2.8), (2.9) and (2.10) to rewrite

1
v
∂ 〈S(r)〉 · s
∂t

+

〈
dPabs

dV

〉
+ ∇ · 〈S(r)〉 = 0, (2.11)

which is the time-averaged expression of equation (2.6) and represents the conservation of
energy flux along the direction of the Poynting vector s. Of course, energy conservation
must hold along any arbitrary direction s j, and we can rewrite

1
v
∂ 〈S(r)〉 · s j

∂t
+

〈
dPabs

dV

〉
(s · s j) + s j · ∇(〈S(r)〉 · s j) = 0, (2.12)

where we have used the relation

∇ · (〈S(r)〉 · s j)s j = s j · ∇(〈S(r)〉 · s j). (2.13)

Equation (2.12) expresses the fact that energy conservation is rotationally invariant, i.e.
that power is conserved irrespective of the angle that a detector holds with the power flux.
The total power measured experimentally by a detector of area A placed at r with surface

17
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s [W m−2] (2.8)

where s = e× b are mutually orthogonal unitary vectors. This means that the validity of the
time-averaged expression for the Poynting vector that we derived is limited to the far-field,
where the electromagnetic fields propagate as a plane wave directed towards s. Keeping in
mind this assumption, we can analogously derive time-averaged expressions for the energy
density and the absorbed power

〈W〉 = ε
2

E2
0 =
√
εµ 〈S〉 · s [J m−3] (2.9)

〈
dPabs

dV

〉
=

1
2
ωε′′E2

0 =

√
µ

ε
ωε′′ 〈S〉 · s [W m−3] (2.10)

where 1√
εµ
= v is the speed of light in the medium. We can now use the time-averaged

expressions (2.8), (2.9) and (2.10) to rewrite

1
v
∂ 〈S(r)〉 · s
∂t

+

〈
dPabs

dV

〉
+ ∇ · 〈S(r)〉 = 0, (2.11)

which is the time-averaged expression of equation (2.6) and represents the conservation of
energy flux along the direction of the Poynting vector s. Of course, energy conservation
must hold along any arbitrary direction s j, and we can rewrite

1
v
∂ 〈S(r)〉 · s j

∂t
+

〈
dPabs

dV

〉
(s · s j) + s j · ∇(〈S(r)〉 · s j) = 0, (2.12)

where we have used the relation

∇ · (〈S(r)〉 · s j)s j = s j · ∇(〈S(r)〉 · s j). (2.13)

Equation (2.12) expresses the fact that energy conservation is rotationally invariant, i.e.
that power is conserved irrespective of the angle that a detector holds with the power flux.
The total power measured experimentally by a detector of area A placed at r with surface
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normal n can be therefore expressed as P(r) =
∫

A 〈S(r′)〉 · n dS ′. Finally, in the case of
a non-absorbing medium (dPabs/dV = 0) under continuous illumination (〈∂W/∂t 〉 = 0)
which contains no sources, the conservation of energy simply states that ∇ · 〈S〉 = 0 or,
alternatively, that the averaged total flux of energy

∫
Σ
〈S〉 · n dS through any closed surface

Σ is zero.

2.1.2. Optical parameters of a particle

In order to describe light propagation in a turbid medium we must take into account
the presence of inhomogeneities. Let us therefore introduce a spatially varying index of
refraction n(r) representing an isolated scattering particle of volume V and arbitrary shape
embedded in a host material of refractive index n0. From now on, we will always consider
the host and scattering media to be non-magnetic. In this case, in absence of charges and
currents (i.e. J = 0), we can take the time derivative of equation (2.1b) and substitute the
expression for ∂B/∂t obtaining

− ∇ × (∇ × E) − n2(r)
c2

∂2E
∂t2 = −

n2(r)
c2

∂2E
∂t2 + ∇2E − ∇(∇ · E) = 0 (2.14)

where we have used the identity ∇× (∇× a) = ∇(∇ · a) −∇2a. Assuming a time-harmonic
dependence of the field (2.7a), equation (2.14) becomes

∇2E(r) +
n2

0ω
2

c2 E =
n2

0ω
2

c2

n
2(r)
n2

0

− 1
 E(r) + ∇(∇ · E(r)) (2.15)

where n0ω/c = 2π/λ = k represents the wavenumber of the propagating wave of angular
frequency ω and wavelength λ. The term F(r) = k2(n2(r)

/
n2

0 − 1) is usually referred to
as the scattering potential, and vanishes for r oustide V . Equation (2.15) represents the
full scattering problem for the electric field vector, including its change in polarization
due to the source term ∇(∇ · E(r)), which couples the cartesian components of E. If we
assume that n(r) varies slowly on length scales comparable to λ, or we decide to ignore
polarization effects altogether, we can neglect the coupling term and obtain the (uncoupled)
scalar differential equations

∇2E(r) + k2E(r) = F(r)E(r) (2.16)

which can be more easily solved for each component.
The solution to equation (2.16) for any point outside the scatterer can be written as the

combination of an incident and a scattered field E(r) = Einc(r) + Esc(r) (Figure 2.1), where
Einc corresponds to the value of the field in the absence of the particle, while

Esc(r) =
∫

V
F(r′)E(r′)G(r, r′) d3r′ , (2.17)

with G(r, r′) = G(|r − r′|) = exp(ik|r − r′|)/4π|r − r′| being the free-space outgoing Green
function. If we assume that our detector is placed in the far field of the particle (r � r′),
we can approximate |r − r′| ∼ r − s · r′ with s being the unit vector along r, in which case
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Figure 2.1. T-Matrix calculation of the electric field on the xz-plane following single scattering from
a 3D dielectric sphere (d = 250 nm, n = 2.7, n0 = 1.5). The incoming field is a monochromatic plane
wave (λ = 532 nm) propagating from left to right.

the Green function factorizes into G(|r − r′|) ∼ exp(ikr) exp(−iks · r′)/4πr . Combining
this equation with the plane wave incident field Einc(r) = E0 exp(iks · r) propagating with
kinc = ks0 along the direction s0, we obtain the expression for the scattered electric field as

Esc(r) = E0 f (s, s0)
eikr

r
(2.18)

where we have introduced the scattering amplitude f (s, s0) as

f (s, s0) =
1

4π

∫
V

F(r′)
E(r′)
|E0| e−iks·r′ d3r′ (2.19)

which is defined with respect to the incident direction s0 and independent on the amplitude
of Einc. Finally, this allows us to express the components of time-averaged Poynting vector
〈Ssc〉 associated with the incident and scattered field as

〈Sinc〉 =
E2

0εv
2

s0 (2.20)

〈Ssc〉 =
E2

0εv
2
| f (s, s0)|2

r2 s = |〈Sinc〉| | f (s, s0)|2
r2 s. (2.21)

Note that the full time-averaged Poynting vector 〈S〉 will include an additional term due to
the interference between scattered and incident fields.

Using equation (2.18) we are now able to define several common quantities which
refer directly to the properties of the particle and that eventually determine the way light
propagates through disordered, opaque media.

Let us consider the amount of energy lost by the interaction of the incident light on the
particle due to absorption. We can write an expression for P̄abs as

P̄abs =

∫
V

〈
dPabs

dV

〉
dV =

ω

2

∫
V
ε′(r)|E(r)|2 dV [W] (2.22)
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normal n can be therefore expressed as P(r) =
∫

A 〈S(r′)〉 · n dS ′. Finally, in the case of
a non-absorbing medium (dPabs/dV = 0) under continuous illumination (〈∂W/∂t 〉 = 0)
which contains no sources, the conservation of energy simply states that ∇ · 〈S〉 = 0 or,
alternatively, that the averaged total flux of energy

∫
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〈S〉 · n dS through any closed surface

Σ is zero.

2.1.2. Optical parameters of a particle

In order to describe light propagation in a turbid medium we must take into account
the presence of inhomogeneities. Let us therefore introduce a spatially varying index of
refraction n(r) representing an isolated scattering particle of volume V and arbitrary shape
embedded in a host material of refractive index n0. From now on, we will always consider
the host and scattering media to be non-magnetic. In this case, in absence of charges and
currents (i.e. J = 0), we can take the time derivative of equation (2.1b) and substitute the
expression for ∂B/∂t obtaining
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∂2E
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where we have used the identity ∇× (∇× a) = ∇(∇ · a) −∇2a. Assuming a time-harmonic
dependence of the field (2.7a), equation (2.14) becomes
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where n0ω/c = 2π/λ = k represents the wavenumber of the propagating wave of angular
frequency ω and wavelength λ. The term F(r) = k2(n2(r)

/
n2

0 − 1) is usually referred to
as the scattering potential, and vanishes for r oustide V . Equation (2.15) represents the
full scattering problem for the electric field vector, including its change in polarization
due to the source term ∇(∇ · E(r)), which couples the cartesian components of E. If we
assume that n(r) varies slowly on length scales comparable to λ, or we decide to ignore
polarization effects altogether, we can neglect the coupling term and obtain the (uncoupled)
scalar differential equations

∇2E(r) + k2E(r) = F(r)E(r) (2.16)

which can be more easily solved for each component.
The solution to equation (2.16) for any point outside the scatterer can be written as the

combination of an incident and a scattered field E(r) = Einc(r) + Esc(r) (Figure 2.1), where
Einc corresponds to the value of the field in the absence of the particle, while

Esc(r) =
∫

V
F(r′)E(r′)G(r, r′) d3r′ , (2.17)

with G(r, r′) = G(|r − r′|) = exp(ik|r − r′|)/4π|r − r′| being the free-space outgoing Green
function. If we assume that our detector is placed in the far field of the particle (r � r′),
we can approximate |r − r′| ∼ r − s · r′ with s being the unit vector along r, in which case
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Figure 2.1. T-Matrix calculation of the electric field on the xz-plane following single scattering from
a 3D dielectric sphere (d = 250 nm, n = 2.7, n0 = 1.5). The incoming field is a monochromatic plane
wave (λ = 532 nm) propagating from left to right.

the Green function factorizes into G(|r − r′|) ∼ exp(ikr) exp(−iks · r′)/4πr . Combining
this equation with the plane wave incident field Einc(r) = E0 exp(iks · r) propagating with
kinc = ks0 along the direction s0, we obtain the expression for the scattered electric field as

Esc(r) = E0 f (s, s0)
eikr

r
(2.18)

where we have introduced the scattering amplitude f (s, s0) as

f (s, s0) =
1

4π

∫
V

F(r′)
E(r′)
|E0| e−iks·r′ d3r′ (2.19)

which is defined with respect to the incident direction s0 and independent on the amplitude
of Einc. Finally, this allows us to express the components of time-averaged Poynting vector
〈Ssc〉 associated with the incident and scattered field as

〈Sinc〉 =
E2

0εv
2

s0 (2.20)

〈Ssc〉 =
E2

0εv
2
| f (s, s0)|2

r2 s = |〈Sinc〉| | f (s, s0)|2
r2 s. (2.21)

Note that the full time-averaged Poynting vector 〈S〉 will include an additional term due to
the interference between scattered and incident fields.

Using equation (2.18) we are now able to define several common quantities which
refer directly to the properties of the particle and that eventually determine the way light
propagates through disordered, opaque media.

Let us consider the amount of energy lost by the interaction of the incident light on the
particle due to absorption. We can write an expression for P̄abs as

P̄abs =

∫
V

〈
dPabs

dV

〉
dV =

ω

2

∫
V
ε′(r)|E(r)|2 dV [W] (2.22)
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representing the amount of energy lost per second due to absorption. Normalizing this
power by the rate at which energy impinges on the particle, we obtain an absorption
cross-section

σa =
P̄abs

|〈Sinc〉| =
k

2E2
0ε

∫
V
ε′(r)|E(r)|2 dV [m2] (2.23)

which depends solely on the material properties of the particle and its geometry. A scattering
cross-section is similarly obtained as

σs =
P̄sc

|〈Sinc〉| =
∫

V

∇ · 〈Ssc〉
|〈Sinc〉| dV =

∫
S

〈Ssc〉 · n
|〈Sinc〉| dS . [m2] (2.24)

Introducing the far-field expressions for 〈Ssc〉 and 〈Sinc〉 we obtain

σs =

∫
S
| f (s, s0)|2 dS

r2 =

∫
4π
| f (s, s0)|2 dΩ , [m2] (2.25)

where we have substituted dS /r2 with the solid angle dΩ assuming that the center of
integration is positioned at the center of the particle.

The sum of the absorption and scattering cross-sections is usually referred to as the
total or extinction cross-section

σtot = σa + σs, [m2] (2.26)

which is a particularly relevant microscopic quantity since it depends only on the incident
direction of propagation and can be measured experimentally in the far-field, providing
important information on the microscopic properties of a scattering particle through the
optical theorem σtot = 4π Im{ f (s, s0)}/k .

It is customary to introduce a separate function to refer directly to the square modulus
of the scattering amplitude. This function, misleadingly referred to as the phase function (it
bears no relation with the phase of the electromagnetic wave), is conveniently normalized
by the total cross-section

p(s, s0) =
1
σtot
| f (s, s0)|2 (2.27)

and therefore can be interpreted statistically as the probability distribution for light incident
on the particle from direction s0 to be scattered in direction s. Using the definition of the
scattering cross-section (2.24) we obtain the following relation

∫
4π

p(s, s0) dΩ =
σs

σtot
= �0, (2.28)

where �0 is usually called the albedo and becomes unity for a non-absorbing particle. The
phase function is an extremely complex function which takes into account all the possible
interference effects that occur inside the particle, and can only be solved analytically for
very ideal and simple shapes such as a sphere (e.g., using Mie theory [25], see Fig. 2.2).
However, when considering large assemblies of statistically equivalent scatterers, it is
customary to use approximated forms. If the scatterers are randomly oriented, we can
assume that the scattering phase function is independent on the direction of propagation,
i.e. p(s, s0) = p(s · s0). In this case, a general phase function can be defined as an expansion
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Figure 2.2. Comparison between Henyey-Greenstein and Mie phase function (g = 0.6034). Mie
data taken from the Mie scattering calculator [@26], assuming a 3D dielectric sphere (d = 250 nm,
n = 2.7, n0 = 1.5), and a monochromatic incoming plane wave (λ = 532 nm) propagating from left to
right.

over Legendre polynomials

p(s · s0) =
∞∑

l=0

alPl(s · s0). (2.29)

A simple choice is that of taking al = (2l − 1)gl which leads to the widely used Henyey-
Greenstein phase function [27]

pHG(s · s0) =
�0

4π
1 − g2

(1 + g2 − 2gs · s0) 3/2 (2.30)

which depends solely on the scattering anisotropy factor g ∈ [−1, 1]

g = 〈s · s0〉 = 〈cos θ〉 =
∫

4π p(s, s0)s · s0 dΩ∫
4π p(s, s0) dΩ

, (2.31)

a general parameter expressing the scattering directionality from completely forward (g = 1)
to completely backwards (g = −1), with g = 0 representing the isotropic scattering case.

2.1.3. Multiple scattering

Let us now consider a collection of N particles with equal optical properties. In the far field,
we can write the scattered field at r as the summation

Esc(r) =
N∑

i=1

Ei,sc(r) = |E0|
N∑

i=1

fi(si, s0)
eik|r−ri |

|r − ri| , (2.32)
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representing the amount of energy lost per second due to absorption. Normalizing this
power by the rate at which energy impinges on the particle, we obtain an absorption
cross-section
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P̄abs

|〈Sinc〉| =
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V
ε′(r)|E(r)|2 dV [m2] (2.23)
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where we have substituted dS /r2 with the solid angle dΩ assuming that the center of
integration is positioned at the center of the particle.

The sum of the absorption and scattering cross-sections is usually referred to as the
total or extinction cross-section

σtot = σa + σs, [m2] (2.26)

which is a particularly relevant microscopic quantity since it depends only on the incident
direction of propagation and can be measured experimentally in the far-field, providing
important information on the microscopic properties of a scattering particle through the
optical theorem σtot = 4π Im{ f (s, s0)}/k .

It is customary to introduce a separate function to refer directly to the square modulus
of the scattering amplitude. This function, misleadingly referred to as the phase function (it
bears no relation with the phase of the electromagnetic wave), is conveniently normalized
by the total cross-section

p(s, s0) =
1
σtot
| f (s, s0)|2 (2.27)

and therefore can be interpreted statistically as the probability distribution for light incident
on the particle from direction s0 to be scattered in direction s. Using the definition of the
scattering cross-section (2.24) we obtain the following relation

∫
4π

p(s, s0) dΩ =
σs

σtot
= �0, (2.28)

where �0 is usually called the albedo and becomes unity for a non-absorbing particle. The
phase function is an extremely complex function which takes into account all the possible
interference effects that occur inside the particle, and can only be solved analytically for
very ideal and simple shapes such as a sphere (e.g., using Mie theory [25], see Fig. 2.2).
However, when considering large assemblies of statistically equivalent scatterers, it is
customary to use approximated forms. If the scatterers are randomly oriented, we can
assume that the scattering phase function is independent on the direction of propagation,
i.e. p(s, s0) = p(s · s0). In this case, a general phase function can be defined as an expansion
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over Legendre polynomials

p(s · s0) =
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l=0

alPl(s · s0). (2.29)

A simple choice is that of taking al = (2l − 1)gl which leads to the widely used Henyey-
Greenstein phase function [27]

pHG(s · s0) =
�0

4π
1 − g2

(1 + g2 − 2gs · s0) 3/2 (2.30)

which depends solely on the scattering anisotropy factor g ∈ [−1, 1]

g = 〈s · s0〉 = 〈cos θ〉 =
∫

4π p(s, s0)s · s0 dΩ∫
4π p(s, s0) dΩ

, (2.31)

a general parameter expressing the scattering directionality from completely forward (g = 1)
to completely backwards (g = −1), with g = 0 representing the isotropic scattering case.

2.1.3. Multiple scattering

Let us now consider a collection of N particles with equal optical properties. In the far field,
we can write the scattered field at r as the summation

Esc(r) =
N∑

i=1

Ei,sc(r) = |E0|
N∑

i=1

fi(si, s0)
eik|r−ri |

|r − ri| , (2.32)
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where each fi(si, s0) depends on the total field E(ri) = Einc(ri) + Esc(ri) at ri as expressed
in equation (2.19). The intensity |E|2, which is needed to express the energy density flow
〈S〉, will contain a contribution from each particle as well

|E(r)|2 =
Einc(r) +

N∑
i=1

Ei,sc(r)


Einc(r) +

N∑
i=1

Ei,sc(r)


∗

(2.33)

and in all practical cases cannot be solved analytically even when ignoring depolarization
effects. Introducing equation (2.33) into the expression for 〈S〉 we can rewrite

〈S(r)〉 = 〈Sinc(r)〉 +
N∑

i=1

〈Ssc(r)〉i +
N∑

i, j=1
i� j

〈Ssc(r)〉i j + · · · , (2.34)

where 〈Ssc〉i is the contribution due to particle i, 〈Ssc〉i j results from the interference from
particle i and j, and all higher order terms have not been written explicitly, as the series
contains as many terms as there are combinations between N particles. In order to simplify
the problem we will assume that the wavelength of light is much smaller than the typical
distances involved in the problem, and neglect all interference effects due to the scattering
between particles. Each particle will then contribute independently to the energy density
flux

〈S(r)〉 = 〈Sinc(r)〉 +
N∑

i=1

〈Ssc(r)〉i , (2.35)

where the scattering components can be rewritten as

〈Ssc(r)〉i = σtot 〈Sinc(ri)〉 · s p(si, s)
|r − ri|2

si (2.36)

using the definitions of 〈Sinc〉 and of the phase function.

In many practical situations we do not know the number of particles N nor their sizes
or shapes. However, if we assume that hey all have the same average radius R and random
orientation we can introduce few average quantities with statistical significance such as the
scattering coefficient and the absorption coefficient (or their associated mean free paths)

µs = nσs = 1/ls [m−1] (2.37a)
µa = nσa = 1/la [m−1] (2.37b)

where n is the number density of particles in the element of volume. Finally, to take
into account the scattering anisotropy factor g, another quantity is introduced to relate the
scattering coefficient of an anisotropic particle to that of an isotropic one

µ′s = µs(1 − g) = 1/l′s [m−1] (2.38)

which is called the reduced scattering coefficient. Its reciprocal, the reduced scattering
mean free path or transport mean free path l′s, represents the distance that light needs to
travel before it loses every residual correlation with its original direction of propagation.

22

This distance diverges asymptotically as g → 1, while it is equivalent to ls for g = 0,
consistently with the definition of isotropic scattering. As we will see in the following, this
relation expresses the fact that, under the diffusive approximation, the transport of light in
a medium characterized by scattering parameters µs and g � 0 can be mapped identically
onto that of a system with µ′s and g = 0. This degeneracy is usually referred to as the
similarity relation [25, 28].

It is important to stress the statistical nature of the parameters that we introduced to
describe radiative transport. Both the scattering/absorption coefficients and our choice of a
phase function are basically independent of the actual size and properties of each individual
particle, and make sense only from a statistical point of view. In most applications, though,
this statistical approach and the loss of wave properties that characterizes multiple scattering
in the radiative transfer framework does not represent a problem. The reason is that often,
both in fundamental research and applications, statistical properties represent actually the
most meaningful information, and it would be pointless to fully resolve the extremely
complex (but deterministic) way in which light propagates in a very specific configuration
of scatterers rather than in any other statistically equivalent one. As a matter of fact, in many
practical cases we may even want to have our scattering sample moving or, equivalently,
average its transport properties over many different regions in order to converge more
efficiently towards its average properties, especially for heterogeneous media [29]. Even
where exact techniques are available to solve numerically the electromagnetic problem,
such as the T-Matrix method, random orientation-averaging is frequently applied to obtain
meaningful average properties [30]. A useful analogy is that of a pile of sand: being able to
retrieve statistical properties such as their local packing density, distribution of grain sizes
or positional and angular correlations functions, is much more informative and desirable
than obtaining the exact number of grains, let alone their individual shapes, positions and
orientation.

That being said, the fundamental nature of multiple wave scattering is indeed determin-
istic, which must be taken into account to explain a number of different phenomena and
applications which are worth mentioning, even if briefly. Among the most striking exam-
ples, phase-conjugation and its time-reversal applications have been investigated since the
early 80’s [31, 32]. Moreover, there are actually cases where we might be interested in the
existence of specific, non-general solutions to the problem of transport that are applicable
only to a single specimen. Notable examples include the problem of perfect focusing and
the control of transmission through scattering media [33, 34], as well as the enhancement
of photonic devices through the introduction of intentional disorder [35] or the realization
of physically unclonable keys for secure authentication [36]. On a more fundamental side,
well-known phenomena such as coherent backscattering [37] and Anderson localization
[38] take place in scattering, disordered media and yet are entirely based on interference
effects. The same holds for the concept of correlated disorder, which can give rise to a wide
array of intriguing interference effects ranging from non-iridescent structural coloration,
to bang-gap formation and transparency [15, 39–41]. Finally, the passive retrieval of the
time-dependent Green function has been also recently demonstrated in strongly scattering
media, based on the measurement of the mutual coherence of an incoherent excitation at
two different points and times [42]. All the above examples use the fact that light transport
in scattering materials is deterministic, as opposed to the stochastic nature of the RTE.
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where each fi(si, s0) depends on the total field E(ri) = Einc(ri) + Esc(ri) at ri as expressed
in equation (2.19). The intensity |E|2, which is needed to express the energy density flow
〈S〉, will contain a contribution from each particle as well

|E(r)|2 =
Einc(r) +

N∑
i=1

Ei,sc(r)


Einc(r) +

N∑
i=1

Ei,sc(r)


∗

(2.33)

and in all practical cases cannot be solved analytically even when ignoring depolarization
effects. Introducing equation (2.33) into the expression for 〈S〉 we can rewrite

〈S(r)〉 = 〈Sinc(r)〉 +
N∑

i=1

〈Ssc(r)〉i +
N∑

i, j=1
i� j

〈Ssc(r)〉i j + · · · , (2.34)

where 〈Ssc〉i is the contribution due to particle i, 〈Ssc〉i j results from the interference from
particle i and j, and all higher order terms have not been written explicitly, as the series
contains as many terms as there are combinations between N particles. In order to simplify
the problem we will assume that the wavelength of light is much smaller than the typical
distances involved in the problem, and neglect all interference effects due to the scattering
between particles. Each particle will then contribute independently to the energy density
flux

〈S(r)〉 = 〈Sinc(r)〉 +
N∑

i=1

〈Ssc(r)〉i , (2.35)

where the scattering components can be rewritten as

〈Ssc(r)〉i = σtot 〈Sinc(ri)〉 · s p(si, s)
|r − ri|2

si (2.36)

using the definitions of 〈Sinc〉 and of the phase function.

In many practical situations we do not know the number of particles N nor their sizes
or shapes. However, if we assume that hey all have the same average radius R and random
orientation we can introduce few average quantities with statistical significance such as the
scattering coefficient and the absorption coefficient (or their associated mean free paths)

µs = nσs = 1/ls [m−1] (2.37a)
µa = nσa = 1/la [m−1] (2.37b)

where n is the number density of particles in the element of volume. Finally, to take
into account the scattering anisotropy factor g, another quantity is introduced to relate the
scattering coefficient of an anisotropic particle to that of an isotropic one

µ′s = µs(1 − g) = 1/l′s [m−1] (2.38)

which is called the reduced scattering coefficient. Its reciprocal, the reduced scattering
mean free path or transport mean free path l′s, represents the distance that light needs to
travel before it loses every residual correlation with its original direction of propagation.
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This distance diverges asymptotically as g → 1, while it is equivalent to ls for g = 0,
consistently with the definition of isotropic scattering. As we will see in the following, this
relation expresses the fact that, under the diffusive approximation, the transport of light in
a medium characterized by scattering parameters µs and g � 0 can be mapped identically
onto that of a system with µ′s and g = 0. This degeneracy is usually referred to as the
similarity relation [25, 28].

It is important to stress the statistical nature of the parameters that we introduced to
describe radiative transport. Both the scattering/absorption coefficients and our choice of a
phase function are basically independent of the actual size and properties of each individual
particle, and make sense only from a statistical point of view. In most applications, though,
this statistical approach and the loss of wave properties that characterizes multiple scattering
in the radiative transfer framework does not represent a problem. The reason is that often,
both in fundamental research and applications, statistical properties represent actually the
most meaningful information, and it would be pointless to fully resolve the extremely
complex (but deterministic) way in which light propagates in a very specific configuration
of scatterers rather than in any other statistically equivalent one. As a matter of fact, in many
practical cases we may even want to have our scattering sample moving or, equivalently,
average its transport properties over many different regions in order to converge more
efficiently towards its average properties, especially for heterogeneous media [29]. Even
where exact techniques are available to solve numerically the electromagnetic problem,
such as the T-Matrix method, random orientation-averaging is frequently applied to obtain
meaningful average properties [30]. A useful analogy is that of a pile of sand: being able to
retrieve statistical properties such as their local packing density, distribution of grain sizes
or positional and angular correlations functions, is much more informative and desirable
than obtaining the exact number of grains, let alone their individual shapes, positions and
orientation.

That being said, the fundamental nature of multiple wave scattering is indeed determin-
istic, which must be taken into account to explain a number of different phenomena and
applications which are worth mentioning, even if briefly. Among the most striking exam-
ples, phase-conjugation and its time-reversal applications have been investigated since the
early 80’s [31, 32]. Moreover, there are actually cases where we might be interested in the
existence of specific, non-general solutions to the problem of transport that are applicable
only to a single specimen. Notable examples include the problem of perfect focusing and
the control of transmission through scattering media [33, 34], as well as the enhancement
of photonic devices through the introduction of intentional disorder [35] or the realization
of physically unclonable keys for secure authentication [36]. On a more fundamental side,
well-known phenomena such as coherent backscattering [37] and Anderson localization
[38] take place in scattering, disordered media and yet are entirely based on interference
effects. The same holds for the concept of correlated disorder, which can give rise to a wide
array of intriguing interference effects ranging from non-iridescent structural coloration,
to bang-gap formation and transparency [15, 39–41]. Finally, the passive retrieval of the
time-dependent Green function has been also recently demonstrated in strongly scattering
media, based on the measurement of the mutual coherence of an incoherent excitation at
two different points and times [42]. All the above examples use the fact that light transport
in scattering materials is deterministic, as opposed to the stochastic nature of the RTE.
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Figure 2.3. From left to right: representation of the Poynting vector field 〈S(r′)〉 evaluated at r′ ∈ δV .
Averaging over the differential volume δV we obtain a volume-averaged flow of energy ‖S(r)‖v
pointing at an average direction 〈sr〉v, with different projections along arbitrary directions s j.

2.1.4. Specific intensity, average intensity and flux

In order to derive the RTE, we consider the time-averaged Poynting vector 〈S〉 = S s and
take its average over a small volume δV [22, 23]. Most of the approximations involved on
the derivation of the RTE are based on the ‘smallness’ of δV , and its role will be further
discussed at the end of the section.

For each point r′ ∈ δV the Poynting vector will have a well defined value 〈S(r′)〉
pointing along a certain direction s (Fig. 2.3). The resulting integral can have contributions
along any direction s j, each with a normalized weight

wr(s j) =
1

δV‖S(r)‖v

∫
δV

S (r − r′)(s′ · s j) d3r′ , [sr−1] (2.39)

where ‖S(r)‖v is the magnitude of volume-averaged flow

‖S(r)‖v =
1
δV

∫
δV

S (r − r′) d3r′ . (2.40)

We can now express the average direction of energy flow

〈sr〉v =
1

4π

∫
4π

wr(s j)s j dΩ (2.41)

and finally write the volume-averaged energy flow as

〈S(r)〉v = ‖S(r)‖v 〈sr〉v , (2.42)

which is the quantity that will be used to establish a connection with the concept of specific
intensity and other radiometric quantities.

As we mentioned at the beginning of the chapter, the specific intensity represents the
amount of power per unit area that flows in a certain direction defined by a unit solid angle.
In terms of the average energy flow defined in equation (2.42), we can define it as

I(r, t, s) =
1

4π
‖S(r)‖vwr(s) [W m−2 sr−1] (2.43)
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where wr(s) expresses the probability of the averaged flow to point in direction s as shown
in equation (2.39). We must note that the specific intensity, as well as all other radiometric
quantities, are inherently referred to a certain frequency interval: we will in general omit
such dependence and consider quasi-monochromatic light.

Starting from the specific intensity, another relevant quantity that we can build is
the average intensity at a point r, defined as the volume average of the Poynting vector
integrated over all directions

U(r, t) =
∫

4π
I(r, t, s) dΩ =

1
4π
‖S(r)‖v

∫
4π

wr(s) dΩ = ‖S(r)‖v [W m−2] (2.44)

which is equal to the magnitude of the volume averaged energy flow. Connected to it, a
quantity that is commonly used in the radiative transfer formalism is the energy density
u(r, t). A convenient way to define it is to consider the definition of energy density (2.10)
that we obtained directly from Maxwell’s equations and relate it to the volume averaged
Poynting vector

u(r, t) =
1

vδV

∫
δV

∣∣∣〈S(r − r′)
〉∣∣∣ d3r′ =

1
v
‖S(r)‖v =

U(r, t)
v
. [J m−3] (2.45)

Neither U(r, t) nor u(r, t) contain any information regarding the average direction of propa-
gation, though. The main quantity that is connected to the overall flux of energy is the flux
density

F(r, t) =
∫

4π
I(r, t, s)s dΩ =

1
4π
‖S(r)‖v

∫
4π

wr(s)s dΩ = ‖S(r)‖v 〈sr〉v [W m−2] (2.46)

which is a vector with magnitude and direction of the average flow of electromagnetic
energy, which we have already encountered in equation (2.42).

2.1.5. The radiative transfer equation

The starting point to derive the radiative transfer equation (RTE) is represented by the
equation of energy conservation expressed by Poynting’s theorem (2.6). Even in the
presence of a time dependence (i.e., if we have an intensity-modulated source), provided
that it is much slower than the optical oscillation period, we can resort to our time-averaged
expression (2.12) for energy conservation along any arbitrary direction s j. Let us consider
the differential volume δV as the one depicted in Figure 2.3, containing N particles with
absorption cross-section σa and scattering cross section σs. If we integrate equation (2.12)
over δV we obtain the following expression

1
v
∂1
∂t

∫
δV

(s · s j)S (r − r′) d3r′

+

∫
δV

(s · s j)
〈

dPabs(r − r′)
dV

〉
d3r′

+

∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ = 0 (2.47)
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Averaging over the differential volume δV we obtain a volume-averaged flow of energy ‖S(r)‖v
pointing at an average direction 〈sr〉v, with different projections along arbitrary directions s j.

2.1.4. Specific intensity, average intensity and flux

In order to derive the RTE, we consider the time-averaged Poynting vector 〈S〉 = S s and
take its average over a small volume δV [22, 23]. Most of the approximations involved on
the derivation of the RTE are based on the ‘smallness’ of δV , and its role will be further
discussed at the end of the section.

For each point r′ ∈ δV the Poynting vector will have a well defined value 〈S(r′)〉
pointing along a certain direction s (Fig. 2.3). The resulting integral can have contributions
along any direction s j, each with a normalized weight

wr(s j) =
1

δV‖S(r)‖v

∫
δV

S (r − r′)(s′ · s j) d3r′ , [sr−1] (2.39)

where ‖S(r)‖v is the magnitude of volume-averaged flow

‖S(r)‖v =
1
δV

∫
δV

S (r − r′) d3r′ . (2.40)

We can now express the average direction of energy flow

〈sr〉v =
1

4π

∫
4π

wr(s j)s j dΩ (2.41)

and finally write the volume-averaged energy flow as

〈S(r)〉v = ‖S(r)‖v 〈sr〉v , (2.42)

which is the quantity that will be used to establish a connection with the concept of specific
intensity and other radiometric quantities.

As we mentioned at the beginning of the chapter, the specific intensity represents the
amount of power per unit area that flows in a certain direction defined by a unit solid angle.
In terms of the average energy flow defined in equation (2.42), we can define it as

I(r, t, s) =
1

4π
‖S(r)‖vwr(s) [W m−2 sr−1] (2.43)
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where wr(s) expresses the probability of the averaged flow to point in direction s as shown
in equation (2.39). We must note that the specific intensity, as well as all other radiometric
quantities, are inherently referred to a certain frequency interval: we will in general omit
such dependence and consider quasi-monochromatic light.

Starting from the specific intensity, another relevant quantity that we can build is
the average intensity at a point r, defined as the volume average of the Poynting vector
integrated over all directions

U(r, t) =
∫

4π
I(r, t, s) dΩ =

1
4π
‖S(r)‖v

∫
4π

wr(s) dΩ = ‖S(r)‖v [W m−2] (2.44)

which is equal to the magnitude of the volume averaged energy flow. Connected to it, a
quantity that is commonly used in the radiative transfer formalism is the energy density
u(r, t). A convenient way to define it is to consider the definition of energy density (2.10)
that we obtained directly from Maxwell’s equations and relate it to the volume averaged
Poynting vector

u(r, t) =
1

vδV

∫
δV

∣∣∣〈S(r − r′)
〉∣∣∣ d3r′ =

1
v
‖S(r)‖v =

U(r, t)
v
. [J m−3] (2.45)

Neither U(r, t) nor u(r, t) contain any information regarding the average direction of propa-
gation, though. The main quantity that is connected to the overall flux of energy is the flux
density

F(r, t) =
∫

4π
I(r, t, s)s dΩ =

1
4π
‖S(r)‖v

∫
4π

wr(s)s dΩ = ‖S(r)‖v 〈sr〉v [W m−2] (2.46)

which is a vector with magnitude and direction of the average flow of electromagnetic
energy, which we have already encountered in equation (2.42).

2.1.5. The radiative transfer equation

The starting point to derive the radiative transfer equation (RTE) is represented by the
equation of energy conservation expressed by Poynting’s theorem (2.6). Even in the
presence of a time dependence (i.e., if we have an intensity-modulated source), provided
that it is much slower than the optical oscillation period, we can resort to our time-averaged
expression (2.12) for energy conservation along any arbitrary direction s j. Let us consider
the differential volume δV as the one depicted in Figure 2.3, containing N particles with
absorption cross-section σa and scattering cross section σs. If we integrate equation (2.12)
over δV we obtain the following expression

1
v
∂1
∂t

∫
δV

(s · s j)S (r − r′) d3r′

+

∫
δV

(s · s j)
〈

dPabs(r − r′)
dV

〉
d3r′

+

∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ = 0 (2.47)
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which, after several approximations, can be connected to the RTE in terms of the specific
intensity. An overview of the steps needed to derive each one of these terms can be found
in Appendix A.1, here we will limit ourselves to give their final respective representation as
the

• Volume-averaged change in energy density

1
v
∂1
∂t

∫
δV

(s · s j)S (r − r′) d3r′ → 1
v
∂1
∂t
‖S(r)‖vwr(s j)δV (2.48)

• Volume-averaged absorbed power
∫
δV

(s · s j)
〈

dPabs(r − r′)
dV

〉
d3r′ → Nσa‖S(r)‖vwr(s j) (2.49)

• Volume-averaged change in energy flow

∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ → s j · ∇‖S(r)‖vwr(s j)δV

+ Nσs‖S(r)‖vwr(s j) − Nσtot

∫
4π
‖S(r)‖vwr(s′j)p(s j, s′) dΩ′ . (2.50)

The dependence on the arbitrary volume δV can be removed introducing the density of
particles n = N/δV , which we already used in the definitions for the scattering and absorp-
tion coefficients (2.37b). Finally, if we identify the specific intensity as ‖S(r)‖vwr(s)

/
4π

(equation (2.43)) we can recast equation (2.47) into the usual equation for radiative transfer

1
v
∂I(r, t, s)
∂t

= −s · ∇I(r, t, s) − (µs + µa)I(r, t, s) + µtot

∫
4π

I(r, t, s′)p(s, s′) dΩ′ . (2.51)

Clearly, the RTE represents an energy balance for the flow of energy, stating that the
specific intensity at r at time t pointed towards direction s will vary due to, respectively,
the energy flowing through its boundaries s · ∇I(r, t, s), the losses from absorption and
scattering (µs +µa)I(r, t, s) and the gain due to scattering from any direction s′ into direction
s: µtot

∫
4π I(r, t, s′)p(s, s′) dΩ′. The last term missing from this energy balance is the source

term, which can assume different forms depending on the specific problem. If we consider
to have a certain amount of energy delivered to the system, we can model it as an additional
gain term Q(r, t, s) emitting a certain amount of energy in direction s.

An important property of the RTE is that it is invariant under certain transformations.
Two of these similarity relations are particularly relevant. If I(r, t, s) is a solution of equation
(2.51) for a medium with µtot = µs + µa and phase function p(s, s0), then we can scale the
specific intensity as

Ĩ(r̃, t̃, s) =
(
µ̃tot

µtot

)3
I(r, t, s) (2.52)

with r̃ = rµtot/µ̃tot and t̃ = tµtot/µ̃tot. This conveniently allows to use the results obtained in
a given geometry for any other scaled geometry, as long as the albedo �0 = µs/µtot and
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p(s, s0) remain constant [43]. Perhaps even more important, another relation exist linking
the solutions for a medium with and without absorption, namely

I(r, t, s) = I(r, t, s|µa = 0) e−µavt, (2.53)

which is particularly relevant when attempting to solve the RTE numerically, since it allows
to calculate only one solution per each (µs, g) pair, to which any µa dependence can be
applied a posteriori [44].

It is worth summarizing the main approximations taken to derive the RTE from
Maxwell’s equations. The far-field approximation is perhaps the strongest approxima-
tion needed to derive formally the RTE and the definition of the specific intensity itself. It
allows us to consider the contribution from each scatterer as an outgoing spherical wave,
with the electric and magnetic field always mutually orthogonal. Connected to this, we
have always dealt with additive intensities rather than fields, i.e. we have completely ne-
glected any interference effect. Analogously, this has allowed us to sum incoherently the
scattering and absorption cross-sections, assuming an independent scattering regime that is
strictly valid only for very low concentrations of scatterers. Secondly, we assumed that our
sampling volume δV was large enough to contain a statistically representative amount of
scatterers, but yet so small to contribute negligibly to the scattered flow from the rest of
the sample volume. This also allowed us to substitute the Poynting vector within δV with
its volume-averaged value. Finally, in order to use the scalar wave equation, we neglected
the term ∇(∇ · E) that couples different polarization components in equation (2.15). We
must note that this approximation is greatly alleviated when one averages over multiple
realization of disorder. Moreover it is pertinent to the derivation of the scalar RTE only,
since polarization can be accounted for in the full derivation of the vector RTE, and indeed
it has been shown to play a non-trivial role in determining transport properties [45].

Despite all the approximations that are involved in a rigorous derivation of the RTE
from electromagnetic theory, the radiative transfer framework that we described has proven
to be extremely robust against its own defining assumptions. As a matter of fact, the extent
of its validity range and flexibility goes well beyond our expectations, both in terms of
the variety of fields and the physical configurations to which it applies. A few notable
examples include the fact that the RTE is known to describe light transport accurately
also for samples whose thickness is comparable with the wavelength [46], or with a dense
packing of particles, where coherent (dependent) scattering needs to be taken into account
and the far-field approximation clearly breaks down. When finite-size scatterers are packed
together at high density, their spatial arrangement is not entirely random, and a short-range
order emerges akin to that of molecules in a liquid. As it turns out, it is possible to map this
dependent scattering problem back onto an independent regime with effective parameters
that are modulated according to the spatial correlations of the sample, as described by the
structure factor of the spatial arrangement [47, 48].

2.1.6. Solving the RTE: Monte Carlo method

Despite the multiple approximations that we applied, the RTE is a integro-differential equa-
tion that is exceedingly difficult to solve explicitly. Several approaches exist to approximate
its solution (see [7, 49] and references therein for a comprehensive discussion), one of
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which, after several approximations, can be connected to the RTE in terms of the specific
intensity. An overview of the steps needed to derive each one of these terms can be found
in Appendix A.1, here we will limit ourselves to give their final respective representation as
the

• Volume-averaged change in energy density

1
v
∂1
∂t

∫
δV

(s · s j)S (r − r′) d3r′ → 1
v
∂1
∂t
‖S(r)‖vwr(s j)δV (2.48)

• Volume-averaged absorbed power
∫
δV

(s · s j)
〈

dPabs(r − r′)
dV

〉
d3r′ → Nσa‖S(r)‖vwr(s j) (2.49)

• Volume-averaged change in energy flow

∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ → s j · ∇‖S(r)‖vwr(s j)δV

+ Nσs‖S(r)‖vwr(s j) − Nσtot

∫
4π
‖S(r)‖vwr(s′j)p(s j, s′) dΩ′ . (2.50)

The dependence on the arbitrary volume δV can be removed introducing the density of
particles n = N/δV , which we already used in the definitions for the scattering and absorp-
tion coefficients (2.37b). Finally, if we identify the specific intensity as ‖S(r)‖vwr(s)

/
4π

(equation (2.43)) we can recast equation (2.47) into the usual equation for radiative transfer
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= −s · ∇I(r, t, s) − (µs + µa)I(r, t, s) + µtot

∫
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I(r, t, s′)p(s, s′) dΩ′ . (2.51)

Clearly, the RTE represents an energy balance for the flow of energy, stating that the
specific intensity at r at time t pointed towards direction s will vary due to, respectively,
the energy flowing through its boundaries s · ∇I(r, t, s), the losses from absorption and
scattering (µs +µa)I(r, t, s) and the gain due to scattering from any direction s′ into direction
s: µtot

∫
4π I(r, t, s′)p(s, s′) dΩ′. The last term missing from this energy balance is the source

term, which can assume different forms depending on the specific problem. If we consider
to have a certain amount of energy delivered to the system, we can model it as an additional
gain term Q(r, t, s) emitting a certain amount of energy in direction s.

An important property of the RTE is that it is invariant under certain transformations.
Two of these similarity relations are particularly relevant. If I(r, t, s) is a solution of equation
(2.51) for a medium with µtot = µs + µa and phase function p(s, s0), then we can scale the
specific intensity as

Ĩ(r̃, t̃, s) =
(
µ̃tot

µtot

)3
I(r, t, s) (2.52)

with r̃ = rµtot/µ̃tot and t̃ = tµtot/µ̃tot. This conveniently allows to use the results obtained in
a given geometry for any other scaled geometry, as long as the albedo �0 = µs/µtot and
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p(s, s0) remain constant [43]. Perhaps even more important, another relation exist linking
the solutions for a medium with and without absorption, namely

I(r, t, s) = I(r, t, s|µa = 0) e−µavt, (2.53)

which is particularly relevant when attempting to solve the RTE numerically, since it allows
to calculate only one solution per each (µs, g) pair, to which any µa dependence can be
applied a posteriori [44].

It is worth summarizing the main approximations taken to derive the RTE from
Maxwell’s equations. The far-field approximation is perhaps the strongest approxima-
tion needed to derive formally the RTE and the definition of the specific intensity itself. It
allows us to consider the contribution from each scatterer as an outgoing spherical wave,
with the electric and magnetic field always mutually orthogonal. Connected to this, we
have always dealt with additive intensities rather than fields, i.e. we have completely ne-
glected any interference effect. Analogously, this has allowed us to sum incoherently the
scattering and absorption cross-sections, assuming an independent scattering regime that is
strictly valid only for very low concentrations of scatterers. Secondly, we assumed that our
sampling volume δV was large enough to contain a statistically representative amount of
scatterers, but yet so small to contribute negligibly to the scattered flow from the rest of
the sample volume. This also allowed us to substitute the Poynting vector within δV with
its volume-averaged value. Finally, in order to use the scalar wave equation, we neglected
the term ∇(∇ · E) that couples different polarization components in equation (2.15). We
must note that this approximation is greatly alleviated when one averages over multiple
realization of disorder. Moreover it is pertinent to the derivation of the scalar RTE only,
since polarization can be accounted for in the full derivation of the vector RTE, and indeed
it has been shown to play a non-trivial role in determining transport properties [45].

Despite all the approximations that are involved in a rigorous derivation of the RTE
from electromagnetic theory, the radiative transfer framework that we described has proven
to be extremely robust against its own defining assumptions. As a matter of fact, the extent
of its validity range and flexibility goes well beyond our expectations, both in terms of
the variety of fields and the physical configurations to which it applies. A few notable
examples include the fact that the RTE is known to describe light transport accurately
also for samples whose thickness is comparable with the wavelength [46], or with a dense
packing of particles, where coherent (dependent) scattering needs to be taken into account
and the far-field approximation clearly breaks down. When finite-size scatterers are packed
together at high density, their spatial arrangement is not entirely random, and a short-range
order emerges akin to that of molecules in a liquid. As it turns out, it is possible to map this
dependent scattering problem back onto an independent regime with effective parameters
that are modulated according to the spatial correlations of the sample, as described by the
structure factor of the spatial arrangement [47, 48].

2.1.6. Solving the RTE: Monte Carlo method

Despite the multiple approximations that we applied, the RTE is a integro-differential equa-
tion that is exceedingly difficult to solve explicitly. Several approaches exist to approximate
its solution (see [7, 49] and references therein for a comprehensive discussion), one of
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Figure 2.4. Simplified flowchart of a Monte Carlo simulation. On the right panel, a typical MC
trajectory in a semi-infinite medium (n = 1.5) is shown, simulated using a scattering mean free path
of ls = 10 µm and a scattering anisotropy of g = 0.6034.

the main being the spherical harmonics expansion of the specific intensity I(r, t, s), often
referred to as the PN approximation by the number N of terms at which the expansion
is truncated. Promising progress is recently being reported in this direction, exploiting
a newly developed rotated reference frame method [50, 51], though mainly limited to a
steady-state description of radiative transport.

A different approach is that represented by the Monte Carlo (MC) method, where the
conservation of energy expressed by equation (2.51) is enforced by simulating a random
walk of fictional energy-carrying particles. The use of Monte Carlo simulations for light
transport was first proposed in the early ’80s [52], and has been continuously developed
since then to increase its performances and adapt it to ever more complex geometries
[53–55]. Indeed, due to its stochastic nature, the computational burden needed to solve
the RTE with the Monte Carlo method is generally high also for simple geometries, but
remains basically constant moving to extremely complex meshes and boundary conditions,
which can be modeled exactly with little extra effort. Analogously, more realistic phase
functions can also be implemented straightforwardly.

One of the main advantages of the MC method is that it lends itself to a very intuitive
interpretation in terms of random walks. However, we must keep in mind that this is only
a convenient (mathematical) way of solving the RTE and should never be considered as
the physical picture. The particles that we refer to are definitely not ‘photons’, and they
do not propagate in ‘steps’ nor undergo ‘collisions’. Nonetheless, as we will see also in
the following section, linking the problem of (light) transport to the random walk model
provides an extremely rich insight at the basis of both the equation of radiative transport
and its diffusive approximation.

Building on this random walk analogy, we can express the density of particles propa-
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gating along direction s and relate it to the specific intensity as

N(r, t, s) =
I(r, t, s)

Ev
[m−3 sr−1] (2.54)

where E is the energy per particle. Using this definition, the RTE becomes

1
v
∂N
∂t
= −s · ∇N − (µs + µa)N + µtot

∫
4π

N(r, t, s′)p(s, s′) dΩ′ + Q (2.55)

where Q(r, t, s) = q(r, t, s′)/Ev is the number of particles emitted per unit time, volume and
solid angle. Equation (2.55) can be now solved numerically by tracing particles from the
source Q, through the scattering medium. During the propagation, particles are scattered
and absorbed with probabilities µs and µa per unit length, until they are absorbed or exit the
sample (see Figure 2.4). In the limit of a large number of repetitions, the MC estimate of
radiometric quantities approaches the solution. In practice of course, only a finite number of
trajectories is always used, with a number varying heavily depending on the exact geometry,
detection scheme and variance reduction techniques applied. The solution obtained is
nonetheless exact, yet affected by some degree of statistical noise.

The basic principle of Monte Carlo simulations consists of properly sampling probabil-
ity distributions. Typically, we start by generating a random number ξ uniformly distributed
between 0 and 1, and use it as the building block to obtain a random variable x distributed
according to p(x). The target probability distribution p(x) is normalized over the entire
domain a ≤ x ≤ b. We can therefore define its cumulative distribution function (CDF)

Px(x̃) =
∫ x̃

a
p(x) dx (2.56)

which describes the probability of a ≤ x ≤ x̃, and is therefore also bound between 0 and
1. On the other hand, the cumulative distribution function for the uniformly distributed
variable ξ is simply

Pξ(ξ̃) =
∫ ξ̃

0
p(ξ) dξ = ξ̃. (2.57)

To sample p(x), we assume the existence of a nondecreasing function f (ξ) = x mapping
ξ ∈ [0, 1] into x ∈ [a, b]. Its expression is obtained by setting

Px(x̃) = Pξ(ξ̃) →
∫ x̃

a
p(x) dx = ξ̃ (2.58)

which, solved for x̃, yields the sought function f (ξ). A prominent example where this ex-
pression admits an analytic solution is that of the exponential distribution, which represents
the step size distribution given by the scattering rate µs. In fact, we can write the probability
of taking a step longer than a certain value �̃ as

P(� ≥ �̃) = exp
(
−µs�̃
)

(2.59)
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referred to as the PN approximation by the number N of terms at which the expansion
is truncated. Promising progress is recently being reported in this direction, exploiting
a newly developed rotated reference frame method [50, 51], though mainly limited to a
steady-state description of radiative transport.

A different approach is that represented by the Monte Carlo (MC) method, where the
conservation of energy expressed by equation (2.51) is enforced by simulating a random
walk of fictional energy-carrying particles. The use of Monte Carlo simulations for light
transport was first proposed in the early ’80s [52], and has been continuously developed
since then to increase its performances and adapt it to ever more complex geometries
[53–55]. Indeed, due to its stochastic nature, the computational burden needed to solve
the RTE with the Monte Carlo method is generally high also for simple geometries, but
remains basically constant moving to extremely complex meshes and boundary conditions,
which can be modeled exactly with little extra effort. Analogously, more realistic phase
functions can also be implemented straightforwardly.

One of the main advantages of the MC method is that it lends itself to a very intuitive
interpretation in terms of random walks. However, we must keep in mind that this is only
a convenient (mathematical) way of solving the RTE and should never be considered as
the physical picture. The particles that we refer to are definitely not ‘photons’, and they
do not propagate in ‘steps’ nor undergo ‘collisions’. Nonetheless, as we will see also in
the following section, linking the problem of (light) transport to the random walk model
provides an extremely rich insight at the basis of both the equation of radiative transport
and its diffusive approximation.

Building on this random walk analogy, we can express the density of particles propa-
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gating along direction s and relate it to the specific intensity as

N(r, t, s) =
I(r, t, s)

Ev
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where E is the energy per particle. Using this definition, the RTE becomes
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∫
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N(r, t, s′)p(s, s′) dΩ′ + Q (2.55)

where Q(r, t, s) = q(r, t, s′)/Ev is the number of particles emitted per unit time, volume and
solid angle. Equation (2.55) can be now solved numerically by tracing particles from the
source Q, through the scattering medium. During the propagation, particles are scattered
and absorbed with probabilities µs and µa per unit length, until they are absorbed or exit the
sample (see Figure 2.4). In the limit of a large number of repetitions, the MC estimate of
radiometric quantities approaches the solution. In practice of course, only a finite number of
trajectories is always used, with a number varying heavily depending on the exact geometry,
detection scheme and variance reduction techniques applied. The solution obtained is
nonetheless exact, yet affected by some degree of statistical noise.

The basic principle of Monte Carlo simulations consists of properly sampling probabil-
ity distributions. Typically, we start by generating a random number ξ uniformly distributed
between 0 and 1, and use it as the building block to obtain a random variable x distributed
according to p(x). The target probability distribution p(x) is normalized over the entire
domain a ≤ x ≤ b. We can therefore define its cumulative distribution function (CDF)

Px(x̃) =
∫ x̃

a
p(x) dx (2.56)

which describes the probability of a ≤ x ≤ x̃, and is therefore also bound between 0 and
1. On the other hand, the cumulative distribution function for the uniformly distributed
variable ξ is simply

Pξ(ξ̃) =
∫ ξ̃

0
p(ξ) dξ = ξ̃. (2.57)

To sample p(x), we assume the existence of a nondecreasing function f (ξ) = x mapping
ξ ∈ [0, 1] into x ∈ [a, b]. Its expression is obtained by setting

Px(x̃) = Pξ(ξ̃) →
∫ x̃

a
p(x) dx = ξ̃ (2.58)

which, solved for x̃, yields the sought function f (ξ). A prominent example where this ex-
pression admits an analytic solution is that of the exponential distribution, which represents
the step size distribution given by the scattering rate µs. In fact, we can write the probability
of taking a step longer than a certain value �̃ as

P(� ≥ �̃) = exp
(
−µs�̃
)

(2.59)
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which can be rearranged to yield the CDF (2.57)

P(� < �̃) =
∫ �̃

0
p(�) d� = 1 − exp

(
−µs�̃
)
. (2.60)

Solving for �̃ gives

� =
− ln(1 − ξ)
µs

(2.61)

which is the actual expression used to obtain an exponentially distributed random variate �
from a uniformly distributed ξ ∈ [0, 1) (see also Appendix B). Analogously, in the presence
of absorption, the step length to the next inelastic scattering event is given by

�i =
− ln(1 − ξ)
µa

. (2.62)

If �i < �, the particle reaches the absorption event before the scattering event and is absorbed
after the step. Otherwise, the scattering event is reached first and the algorithm proceeds.
This way of handling absorption is based on the fact that the exponential distribution, and
in particular the absorption process, is memoryless. As a matter of fact, it does not matter
how far the particle has already traveled, but solely the probability of absorption per unit
length traveled µa.

When the particle undergoes a scattering event its propagation direction is deflected
according to the phase function p(s, s0). As discussed in section 2.1.2, it is commonly
assumed that p(s, s0) = p(s · s0) and that the new direction is simply characterized by a pair
of deflection and azimuth angles θ and φ. The azimuth angle is uniformly distributed in
φ ∈ [0, 2π):

φ = 2πξ. (2.63)

A commonly used distribution for the deflection angle is the Henyey-Greenstein distribution
(2.30), whose cumulative distribution function can also be inverted to give

cos θ =
1

2π

(
1 + g2 − 1 − g2

1 − g + 2gξ

)
(2.64)

or simply cos θ = 2ξ − 1 in the case of isotropic scattering (g = 0).

Whenever a particle eventually reaches a boundary, the probability to be reflected
is usually described by the Fresnel reflection coefficient R(θi) averaged over different
polarizations

R(θi) =


1
2

(
ni cos θi−ne cos θr
ni cos θi+ne cos θr

)2
+ 1

2

(
ne cos θi−ni cos θr
ne cos θi+ni cos θr

)2
for 0 < θi < θc

1 for θi ≥ θc = arcsin ne
ni

(2.65)

where θi and θr are the angles of incidence and refraction calculated using Snell’s law

θr = arcsin
(

ni

ne
sin θi

)
. (2.66)
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The interaction with the boundary is handled as follows: the particle is moved to the
boundary, and a uniformly distributed number ξ ∈ [0, 1) is compared to R(θi) to decide
whether the particle is reflected (ξ ≤ R(θi)) or transmitted (ξ > R(θi)) with an angle θr. In
both cases, the exceeding part of the step can be either stored and reused to walk the original
step length, or it can be discarded and redrawn, taking advantage of the memoryless nature
of the exponential distribution.

A prominent feature of the Monte Carlo simulation scheme is that it can naturally
accommodate a time-domain simulation, since the total path length traveled by each particle
can be readily converted to time dividing by the current velocity of the particle, v. Working
in the time-domain offers another relevant advantage, as expressed by the properties of the
RTE described at the end of section 2.1.5. On one hand, absorption can be ignored since
its effect can be added rigorously to an absorption-free simulation using Lambert-Beer
law. Secondly, in any simulation performed with µa = 0, the scattering coefficient µs can
be rescaled by rescaling the spatial and temporal coordinates. While this is particularly
useful in certain simple geometries lacking spatially dependent features (such as infinite
and semi-infinite media), rescaling can still be profitably applied to the slab geometry, as
will be discussed in Chapter 5.

2.2. From Radiative transfer to Diffusion

2.2.1. The diffusion approximation

As we have seen in the previous section, the RTE is a complex equation requiring a sig-
nificant computational effort to be solved, with no general analytic (closed-form) solution
available. Nevertheless, when the transport phenomenon is dominated by multiple scatter-
ing, the diffusive approximation emerges as a widely and successfully used model to yield
a variety of simple solutions for both steady-state and time-dependent excitation [44, 56].

The first appearance of the concept of diffusion dates back to almost two centuries ago,
when J. Fourier published the Théorie analytique de la Chaleur (1822), which later on
inspired G. Ohm to apply it to the problem of charge conduction and A. Fick who used it to
describe the concentration of salts in a solvent. Both Fourier and Fick derived two relations
linking the flux with the change of concentration, and the increase of concentration with
time due to this flux. These equations have since then been used with great success to
predict the transport of heat, particles, mass, charge, population and, as in our case, light in
highly turbid media. In this section we will discuss how the diffusion equation (DE) can be
derived from the RTE [7, 23], with special emphasis on the approximations required.

The first useful relation to derive the DE is the continuity equation for the energy density,
which can be obtained by the RTE (2.51) without the need of any other approximation, just
by integrating over the whole solid angle

1
v
∂

∂t

∫
Ω

I(r, t, s) dΩ + ∇ ·
∫
Ω

sI(r, t, s) dΩ + µtot

∫
Ω

I(r, t, s) dΩ

− µtot

∫
Ω,Ω′

I(r, t, s′)p(s, s′) dΩ′ dΩ =
∫
Ω

q(r, t, s) dΩ (2.67)
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which can be rearranged to yield the CDF (2.57)

P(� < �̃) =
∫ �̃

0
p(�) d� = 1 − exp

(
−µs�̃
)
. (2.60)

Solving for �̃ gives

� =
− ln(1 − ξ)
µs

(2.61)

which is the actual expression used to obtain an exponentially distributed random variate �
from a uniformly distributed ξ ∈ [0, 1) (see also Appendix B). Analogously, in the presence
of absorption, the step length to the next inelastic scattering event is given by

�i =
− ln(1 − ξ)
µa

. (2.62)

If �i < �, the particle reaches the absorption event before the scattering event and is absorbed
after the step. Otherwise, the scattering event is reached first and the algorithm proceeds.
This way of handling absorption is based on the fact that the exponential distribution, and
in particular the absorption process, is memoryless. As a matter of fact, it does not matter
how far the particle has already traveled, but solely the probability of absorption per unit
length traveled µa.

When the particle undergoes a scattering event its propagation direction is deflected
according to the phase function p(s, s0). As discussed in section 2.1.2, it is commonly
assumed that p(s, s0) = p(s · s0) and that the new direction is simply characterized by a pair
of deflection and azimuth angles θ and φ. The azimuth angle is uniformly distributed in
φ ∈ [0, 2π):

φ = 2πξ. (2.63)

A commonly used distribution for the deflection angle is the Henyey-Greenstein distribution
(2.30), whose cumulative distribution function can also be inverted to give

cos θ =
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1 + g2 − 1 − g2
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or simply cos θ = 2ξ − 1 in the case of isotropic scattering (g = 0).

Whenever a particle eventually reaches a boundary, the probability to be reflected
is usually described by the Fresnel reflection coefficient R(θi) averaged over different
polarizations

R(θi) =
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where θi and θr are the angles of incidence and refraction calculated using Snell’s law
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The interaction with the boundary is handled as follows: the particle is moved to the
boundary, and a uniformly distributed number ξ ∈ [0, 1) is compared to R(θi) to decide
whether the particle is reflected (ξ ≤ R(θi)) or transmitted (ξ > R(θi)) with an angle θr. In
both cases, the exceeding part of the step can be either stored and reused to walk the original
step length, or it can be discarded and redrawn, taking advantage of the memoryless nature
of the exponential distribution.

A prominent feature of the Monte Carlo simulation scheme is that it can naturally
accommodate a time-domain simulation, since the total path length traveled by each particle
can be readily converted to time dividing by the current velocity of the particle, v. Working
in the time-domain offers another relevant advantage, as expressed by the properties of the
RTE described at the end of section 2.1.5. On one hand, absorption can be ignored since
its effect can be added rigorously to an absorption-free simulation using Lambert-Beer
law. Secondly, in any simulation performed with µa = 0, the scattering coefficient µs can
be rescaled by rescaling the spatial and temporal coordinates. While this is particularly
useful in certain simple geometries lacking spatially dependent features (such as infinite
and semi-infinite media), rescaling can still be profitably applied to the slab geometry, as
will be discussed in Chapter 5.

2.2. From Radiative transfer to Diffusion

2.2.1. The diffusion approximation

As we have seen in the previous section, the RTE is a complex equation requiring a sig-
nificant computational effort to be solved, with no general analytic (closed-form) solution
available. Nevertheless, when the transport phenomenon is dominated by multiple scatter-
ing, the diffusive approximation emerges as a widely and successfully used model to yield
a variety of simple solutions for both steady-state and time-dependent excitation [44, 56].

The first appearance of the concept of diffusion dates back to almost two centuries ago,
when J. Fourier published the Théorie analytique de la Chaleur (1822), which later on
inspired G. Ohm to apply it to the problem of charge conduction and A. Fick who used it to
describe the concentration of salts in a solvent. Both Fourier and Fick derived two relations
linking the flux with the change of concentration, and the increase of concentration with
time due to this flux. These equations have since then been used with great success to
predict the transport of heat, particles, mass, charge, population and, as in our case, light in
highly turbid media. In this section we will discuss how the diffusion equation (DE) can be
derived from the RTE [7, 23], with special emphasis on the approximations required.

The first useful relation to derive the DE is the continuity equation for the energy density,
which can be obtained by the RTE (2.51) without the need of any other approximation, just
by integrating over the whole solid angle

1
v
∂

∂t

∫
Ω

I(r, t, s) dΩ + ∇ ·
∫
Ω

sI(r, t, s) dΩ + µtot

∫
Ω

I(r, t, s) dΩ

− µtot

∫
Ω,Ω′

I(r, t, s′)p(s, s′) dΩ′ dΩ =
∫
Ω

q(r, t, s) dΩ (2.67)
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where
Q(r, t) =

∫
Ω

q(r, t, s) dΩ [W m−3] (2.68)

is the source energy density. If we identify the term

µtot

∫
Ω,Ω′

I(r, t, s′)p(s, s′) dΩ′ dΩ = µtotU(r, t)
∫
Ω′

p(s, s′) dΩ′ = µsU(r, t) (2.69)

using the normalization of the phase function (2.28) and the definition for the average
intensity (2.44) and and flux density (2.46), we can write

1
v
∂

∂t
U(r, t) + ∇ · F(r, t) + µtotU(r, t) − µsU(r, t) = Q(r, t)

→ 1
v
∂

∂t
U(r, t) + ∇ · F(r, t) + µaU(r, t) = Q(r, t) (2.70)

where eventually the total energy is of course independent of the scattering strength.
In the general case of time-dependent sources, obtaining the diffusive equation requires

that we apply two simplifying assumptions. The first one assumes that the radiance inside
a diffusive medium is almost isotropic, with a slightly unbalanced flux towards s j. The
simplest approximation that can be made for the diffuse intensity I(r, t, s) is to assume a
series expansion in spherical harmonics

I(r, t, s) � f0(r, t) + f1(r, t)s j · s, (2.71)

where the expression for f0 and f1 can be readily found looking at the definitions (2.44)
and (2.46) for the energy and flux densities (see also Appendix A.2), yielding

I(r, t, s) � 1
4π

U(r, t) +
3

4π
F(r, t) · s. (2.72)

Equation (2.72) is a good approximation for the specific intensity if the contribution of
higher-order spherical harmonics is negligible, which is usually verified when U(r, t) �
3F(r, t) · s (see Figure 2.5a).

Now we can use the spherical harmonic expansion (2.72) to simplify the relation that
we find multiplying the RTE by s and then integrating over the solid angle

1
v
∂

∂t
F(r, t) +

∫
Ω

(
s · ∇
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

])
s dΩ + µtotF(r, t)

− µtot

∫
Ω,Ω′

p(s, s′)
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

]
s dΩ′ dΩ =

∫
Ω

q(r, t, s)s dΩ . (2.73)

After some manipulation, this expression can be rewritten as (see Appendix A.2)
(

1
v
∂

∂t
+ (µa + µ

′
s)
)
F(r, t) +

∇U(r, t)
3

= 0 (2.74)

assuming an isotropic source q(r, t, s) = q(r, t)/4π.
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(b) extrapolated boundary condition for the slab geometry

Figure 2.5. Panel (a) depicts qualitatively the contribution of the first (isotropic) and second term of
the P1 expansion of the specific intensity, leading to the diffusive approximation. Panel (b) illustrates
the procedure used to solve light transport in an infinite plane-parallel scattering medium, using the
method of mirror images (see Section 2.2.3). The propagator for the average energy is plotted inside a
medium with L/l′s = 10 in blue for a point source placed in z = l′s and in orange for an array of sources
with exponentially decreasing intensity (black dashed line), mimicking the effect of an incoming
pencil beam. Extrapolating U(z) along its derivative at the boundaries defines the extrapolated length
ze (see Section 2.2.3).

At this stage, the second simplifying assumption leading to the diffusive equation is that
of neglecting the time variation of the diffuse flux F(r, t) over a time range l′s/v, assuming
that it is much smaller than the vector itself

1
µ′sv

∣∣∣∣∣
∂F(r, t)
∂t

∣∣∣∣∣ � |F(r, t)|. (2.75)

It is worth commenting further this approximation, since by removing the temporal depen-
dence of F(r, t) we are effectively invalidating one of the fundamental similarity relations
of the RTE, relating the specific intensity in the presence of absorption with the specific
intensity in a non-absorbing medium (2.53). This issue has been thoroughly discussed
by several authors [7, 57–59] eventually deriving an expression that varies depending on
whether the experimental measurements are performed in the spatial or in the temporal do-
main. Indeed, the diffusion approximation is expected to hold for light that has undergone a
multitude of scattering events, and therefore absorption obstructs the diffusive regime in that
it selectively extinguishes the light that could propagate into a deeply multiple scattering
regime. In a steady state detection scheme, the acquired signal would be dominated by
low-order scattering and be poorly modeled by the diffusive approximation. Turning to a
richer time-domain representation of transport, however, the problem becomes easier to
handle since by addressing separately different times we avoid mixing the contributions
of low-order and high-order scattered light. In this framework, which is the one relevant
for this work, it is more appropriate to derive the diffusive approximation considering a
non-absorbing medium, and then adding the effect of absorption separately, in a way that
preserves the original symmetry of the RTE [7, 44, 60].
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where
Q(r, t) =

∫
Ω

q(r, t, s) dΩ [W m−3] (2.68)

is the source energy density. If we identify the term
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∫
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using the normalization of the phase function (2.28) and the definition for the average
intensity (2.44) and and flux density (2.46), we can write

1
v
∂

∂t
U(r, t) + ∇ · F(r, t) + µtotU(r, t) − µsU(r, t) = Q(r, t)

→ 1
v
∂

∂t
U(r, t) + ∇ · F(r, t) + µaU(r, t) = Q(r, t) (2.70)

where eventually the total energy is of course independent of the scattering strength.
In the general case of time-dependent sources, obtaining the diffusive equation requires

that we apply two simplifying assumptions. The first one assumes that the radiance inside
a diffusive medium is almost isotropic, with a slightly unbalanced flux towards s j. The
simplest approximation that can be made for the diffuse intensity I(r, t, s) is to assume a
series expansion in spherical harmonics

I(r, t, s) � f0(r, t) + f1(r, t)s j · s, (2.71)

where the expression for f0 and f1 can be readily found looking at the definitions (2.44)
and (2.46) for the energy and flux densities (see also Appendix A.2), yielding

I(r, t, s) � 1
4π

U(r, t) +
3

4π
F(r, t) · s. (2.72)

Equation (2.72) is a good approximation for the specific intensity if the contribution of
higher-order spherical harmonics is negligible, which is usually verified when U(r, t) �
3F(r, t) · s (see Figure 2.5a).

Now we can use the spherical harmonic expansion (2.72) to simplify the relation that
we find multiplying the RTE by s and then integrating over the solid angle

1
v
∂

∂t
F(r, t) +

∫
Ω

(
s · ∇
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

])
s dΩ + µtotF(r, t)

− µtot

∫
Ω,Ω′

p(s, s′)
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

]
s dΩ′ dΩ =

∫
Ω

q(r, t, s)s dΩ . (2.73)

After some manipulation, this expression can be rewritten as (see Appendix A.2)
(

1
v
∂

∂t
+ (µa + µ

′
s)
)
F(r, t) +

∇U(r, t)
3

= 0 (2.74)

assuming an isotropic source q(r, t, s) = q(r, t)/4π.
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(b) extrapolated boundary condition for the slab geometry

Figure 2.5. Panel (a) depicts qualitatively the contribution of the first (isotropic) and second term of
the P1 expansion of the specific intensity, leading to the diffusive approximation. Panel (b) illustrates
the procedure used to solve light transport in an infinite plane-parallel scattering medium, using the
method of mirror images (see Section 2.2.3). The propagator for the average energy is plotted inside a
medium with L/l′s = 10 in blue for a point source placed in z = l′s and in orange for an array of sources
with exponentially decreasing intensity (black dashed line), mimicking the effect of an incoming
pencil beam. Extrapolating U(z) along its derivative at the boundaries defines the extrapolated length
ze (see Section 2.2.3).

At this stage, the second simplifying assumption leading to the diffusive equation is that
of neglecting the time variation of the diffuse flux F(r, t) over a time range l′s/v, assuming
that it is much smaller than the vector itself

1
µ′sv

∣∣∣∣∣
∂F(r, t)
∂t

∣∣∣∣∣ � |F(r, t)|. (2.75)

It is worth commenting further this approximation, since by removing the temporal depen-
dence of F(r, t) we are effectively invalidating one of the fundamental similarity relations
of the RTE, relating the specific intensity in the presence of absorption with the specific
intensity in a non-absorbing medium (2.53). This issue has been thoroughly discussed
by several authors [7, 57–59] eventually deriving an expression that varies depending on
whether the experimental measurements are performed in the spatial or in the temporal do-
main. Indeed, the diffusion approximation is expected to hold for light that has undergone a
multitude of scattering events, and therefore absorption obstructs the diffusive regime in that
it selectively extinguishes the light that could propagate into a deeply multiple scattering
regime. In a steady state detection scheme, the acquired signal would be dominated by
low-order scattering and be poorly modeled by the diffusive approximation. Turning to a
richer time-domain representation of transport, however, the problem becomes easier to
handle since by addressing separately different times we avoid mixing the contributions
of low-order and high-order scattered light. In this framework, which is the one relevant
for this work, it is more appropriate to derive the diffusive approximation considering a
non-absorbing medium, and then adding the effect of absorption separately, in a way that
preserves the original symmetry of the RTE [7, 44, 60].
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By doing so, we can rewrite the two expressions (2.70) and (2.74) as

1
v
∂U(r, t)
∂t

+ ∇F(r, t) = Q(r, t) (2.76)

F(r, t) = −1
v

D∇U(r, t) (2.77)

where we have introduced a diffusion coefficient

D =
v

3µ′s
(2.78)

independent of absorption, which allows us to treat the dependence on absorption in
accordance with the RTE without the additional approximations intrinsic to the diffusion
framework.

The diffusion equation for a homogeneous medium is finally obtained by substituting
equation (2.77) into (2.76), yielding

1
v

(
∂

∂t
− D∇2

)
U(r, t) = Q(r, t). (2.79)

whose solution, assuming a simple point source Q(r, t) = E0δ(r)δ(t), is given by an
expanding Gaussian profile

U(r, t) =
vE0

(4πDt)3/2 exp
(
− r2

4Dt

)
(2.80)

for an unbounded medium.

2.2.2. Diffusion reloaded: the random walk picture

Before we sum up the approximations that we used to derive the diffusive equation and
its validity range, it is useful to review an alternative derivation based on the random walk
model. To this purpose, let us consider an ensemble of random walkers taking steps of
random length � in d dimensions, assuming that the direction of each step is completely
uncorrelated with the previous one. The position rn that a walker will reach after n steps
will be given by

rn =
n∑

i=1

xi =

n∑
i=1

�ixi (2.81)

where xi = �ixi is a set of random identically distributed variables according to some
function p(x) = p(|x|) which depends only on the magnitude of the step length. For
symmetry reasons, in the limit of many repetitions, the expectation value for the sum (2.81)
will still be centered in 〈r〉 = 0. Conversely, the expectation value of the mean square
displacement (MSD) will be

〈
r2
n

〉
=

〈 n∑
i=1

xi ·
n∑

j=1

x j

〉
=

n∑
i=1

〈
x2

i

〉
+

〈 n∑
i=1

n∑
j�i

xi · x j

〉
= n
〈
�2
〉
, (2.82)
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where the cross terms vanishes on average due to the absence of correlations between
steps. If we introduce the probability density function (PDF) Pn(r) associated with the final
position r after n steps, we can define the following recursion relation

Pn+1(r) =
∫

p(x)Pn(r − x) dd x (2.83)

exploiting the fact that for uncorrelated steps we can factorize the integrand. Equation
(2.83), which in d = 1 is sometimes referred to as Bachelier’s equation, can be seen as a
continuity equation for the total number of random walkers: the probability of being in r
after n + 1 steps is equal to the probability of being at r − x at the previous step, multiplied
by the probability of reaching r in one step. In the limit of a large number of steps, we can
assume that Pn(r) will be a rather smooth distribution, with significant variations over a
length scale much longer than the typical step size. This allows us to expand it around r as

Pn+1(r) =
∫

p(x)
[
Pn(r) − x · ∇Pn(r) +

1
2

x · ∇∇Pn(r) · x + · · ·
]

dd x

= Pn(r) +

〈
�2
〉

2d
∇2Pn(r) + · · · (2.84)

where only the even terms will survive integration. If we limit to the first two terms of the
expansion and divide by the average time 〈∆t〉 = 〈�〉 /v needed to complete one step we
obtain

Pn+1(r) − Pn(r)
∆t

=

〈
�2
〉

2d∆t
∇2Pn(r). (2.85)

In the limit n→ ∞ the distribution Pn(r)→ ψ(r, t = n∆t) satisfies a diffusion equation

∂ψ(r, t)
∂t

= D∇2ψ(r, t) (2.86)

whose solution is the same of equation (2.80)

ψ(r, t) =
e−r2/4Dt

(4πDt)d/2 (2.87)

with

D =
〈�2〉

2d∆t
=

v
2d
〈�2〉
〈�〉 (2.88)

as the diffusion coefficient of the random walk process. If we consider, as in our Monte
Carlo simulations, an exponential step length distribution

p(�) = µse−µs� (2.89)

which has 〈�〉 = µ−1
s and

〈
�2
〉
= 2µ−2

s we recover exactly the same expression (2.78) that
we have found in d = 3 with the P1 approximation of the RTE.

This alternative derivation of the diffusion equation reveals valuable information on
the approximations and simplifications that are not obvious when taking the conventional
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which has 〈�〉 = µ−1
s and
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s we recover exactly the same expression (2.78) that
we have found in d = 3 with the P1 approximation of the RTE.

This alternative derivation of the diffusion equation reveals valuable information on
the approximations and simplifications that are not obvious when taking the conventional
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approach. Firstly, we can now establish a connection between diffusion and the Central
limit Theorem, which states that the sum of a large number of independent random variables
with finite first and second moments tends to a Gaussian distribution. In this respect, the
diffusion equation is just a representation of the same principle. In both cases, the first
requirement is that the number of steps must be n � 1. Secondly, this alternative derivation
allows us to shed light on the implications of the P1 approximation, which, in the random
walk model, amounts to neglecting moments of the step length distribution higher than the
third (equation (2.84)). In this framework, we also obtain a measure of the breakdown of
the diffusive approximation by evaluating the excess kurtosis

γ2 =
〈�4〉〈
�2
〉2 − 3 (2.90)

of the time-resolved density/intensity distributions [60]. Finally, the random walk derivation
gives us some complementary insight over the role of absorption. The fundamental re-
quirement for diffusion theory is that the number of step must be large, or equivalently that
only late times can be considered. Absorption attenuates late light and should be therefore
be preferably small, but this is just a practical limitation dictated by the sensitivity of an
experiment, rather than by diffusion theory itself. This is confirmed by the very definition
of the diffusion coefficient, which describes how the variance of the spatial distribution
grows in time. In the limit of a large number of steps (i.e., the discrete and continuous time
domain are equivalent), adding absorption does not change the shape of the distribution
since at any given time the particles will have walked the same distance. It is therefore
clear that the variance of the spatial distribution, and therefore the diffusion coefficient, is
independent of absorption.

2.2.3. Diffusion in bounded media

Light propagation in finite geometries introduces the problem of appropriately handling
boundaries between different media, where the almost-isotropic assumption of the P1
approximation is violated. For a diffusive medium bounded by a convex or flat surface Σ at
the interface with a non-scattering region, the exact boundary condition for the radiance
I(r, t, s) is that there should be no diffuse light entering the medium from outside through
the interface Σ. Any intensity at r ∈ Σ coming from a direction s directed towards the
diffusive medium can only originate from reflection at the boundary

I(r, t, s) = R(s′ · q = cos θi)I(r, t, s′) (2.91)

where q is the unit vector normal to Σ and R(cos θi) is the Fresnel reflection coefficient for
unpolarized light (2.65). With the simple angular distribution assumed in the expansion
(2.72), the requirement (2.91) cannot be satisfied exactly, and approximate boundary condi-
tions must be considered. It is assumed that the condition (2.91) is verified on average for
all inward pointing directions s

−
∫

s·q<0

I(r, t, s)(s · q) dΩ =
∫

s·q>0

R(θi)I(r, t, s)(s · q) dΩ (2.92)
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which is a boundary condition for the total radiation coming from the boundary surface.
Making use of the angular distribution for the specific intensity (2.72) and calculating the
integrals of equation (2.92), the boundary condition for the fluence rate can be written as
(see Appendix A.3) [

U(r, t) − 2AF(r, t) · q]r∈Σ = 0 (2.93)

with

A =
1 + 3

∫ π/2
0 R(θi) cos2 θi sin θi dθi

1 − 2
∫ π/2

0 R(θi) cos θi sin θi dθi
(2.94)

representing a coefficient that depends only on the relative refractive index n = ni/ne, which
is A = 1 if ni = ne and A > 1 otherwise. This boundary condition is denoted as the partial
current boundary condition (PCBC) and represents the most accurate boundary condition
for light diffusion at a boundary. The PCBC can be recast differently in terms of the fluence
alone using Fick’s law (2.77) to write

[
U(r, t) − 2AD

v
∂

∂q
U(r, t)

]

r∈Σ
= 0. (2.95)

According to this condition (which is sometimes called Robin boundary condition), the
derivative of U(r, t) along the direction normal to the boundary is proportional to U(r, t)
itself. An extrapolated decrement of U(r, t) inside the non-scattering region is obtained if
the derivative of U(r, t) is assumed to remain constant in the non-scattering region to the
value on the boundary (see Figure 2.5b). The distance from the geometrical boundary at
which U(r, t) is extrapolated to zero is denoted as the extrapolated distance ze

ze =
2AD

v
=

2
3

Al′s. (2.96)

The boundary condition that assumes U = 0 on the surface at the extrapolated distance ze is
denoted as the extrapolated boundary condition (EBC) [44, 61].

When describing light propagation in bounded media, a few words must be spent on
how to model the source term, which will be usually placed outside the turbid medium.
Moreover, so far we have always assumed perfectly isotropic point sources, which are very
far from usual experimental conditions. If we consider a collimated beam of light incident
on a scattering medium or being delivered through an optical fiber, in each of these cases
light starts propagating with a well defined initial direction. The most common way of
modeling this situation is to approximate the directed source with an isotropic point source
inside the medium, placed at a depth zsrc = l′s along the direction of the beam (see Figure
2.5b). This is motivated by the fact that zsrc represents the mean depth at which the first
(isotropic-equivalent) scattering event occurs in the case of the exponential distribution
[56]. This approximation is of course acceptable only if we perform our measurements very
far (both in time and space) from the source. A better approximation is that of modeling
the directed source as a distribution of isotropic sources with intensities proportional to
exp
(−zµ′s

)
, where z is the distance from the interface.

One of the most relevant bounded configuration that has been widely studied in the
past decades is the infinitely extended plane-parallel slab. Indeed, an array of different
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denoted as the extrapolated boundary condition (EBC) [44, 61].

When describing light propagation in bounded media, a few words must be spent on
how to model the source term, which will be usually placed outside the turbid medium.
Moreover, so far we have always assumed perfectly isotropic point sources, which are very
far from usual experimental conditions. If we consider a collimated beam of light incident
on a scattering medium or being delivered through an optical fiber, in each of these cases
light starts propagating with a well defined initial direction. The most common way of
modeling this situation is to approximate the directed source with an isotropic point source
inside the medium, placed at a depth zsrc = l′s along the direction of the beam (see Figure
2.5b). This is motivated by the fact that zsrc represents the mean depth at which the first
(isotropic-equivalent) scattering event occurs in the case of the exponential distribution
[56]. This approximation is of course acceptable only if we perform our measurements very
far (both in time and space) from the source. A better approximation is that of modeling
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)
, where z is the distance from the interface.

One of the most relevant bounded configuration that has been widely studied in the
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physical systems are often represented as a layer or a combination of layers, ranging
from atmospheric physics [4] to geosciences [8], paint and coatings applications [62] and
biological tissues [6], to name a few. For this reason, the solution of the diffusion problem
in the slab geometry is one of the most relevant and widely used in light transport studies.

To obtain the solution to this particular problem we follow the method of mirror images
[44, 56]. The method involves the use of boundary conditions that assume a vanishing
fluence at some distance from the physical boundary (e.g., at ze = 2AD for the EBC).
For geometries with regular boundaries such as the slab, the method of images allows to
assemble the solution for the fluence inside the medium as a superposition of (infinite)
solutions for the infinite medium. As a matter of fact, the series converges extremely
quickly, and a few terms are sufficient in almost all applications of interest. In a sense,
the EBC can be seen as a mapping from a sample of thickness L to a sample with an
effective thickness Leff = L + 2ze such that the new effective sample can be considered as
infinitely extended (i.e., fluence goes to 0 at its ‘effective’ boundaries). The flux exiting the
diffusive medium, representing in this case the reflectance and transmittance from the slab,
is obtained by applying Fick’s law at the boundary of the medium.

An hybrid heuristic approach, based both on the EBC and the PCBC (also sometimes
named extrapolated boundary partial current (EBPC) [63]) has also emerged more recently
in the literature [64], and will be briefly reviewed at the end of the subsection.

The geometry of the problem with a description of the notation used is shown in Figure
2.5b. We consider an isotropic point source of unit strength q(r, t) = δ3(r − rsrc)δ(t) placed
at rsrc = (0, 0, l′s) and L > l′s thickness of the slab. According to the EBC, the fluence
is assumed equal to 0 at two extrapolated flat surfaces outside the turbid medium at the
extrapolated distance ze from the physical boundaries of the slab. This condition is enforced
by the method of images by using, in addition to the real source in rsrc, an infinite number
of pairs of positive and negative sources in an infinite diffusive medium having the same
optical properties of the slab. The locations r±m of the first few positive and negative sources
is shown in Figure 2.5b, and is such that the fluence of each source is balanced by an image
source of opposite sign placed at a symmetric position with respect to both extrapolated
surfaces. The only real source is placed at z+0 = l′s. All other sources are image sources, and
are placed along the z-axis at


z+m = 2m(L + 2ze) + l′s
z−m = 2m(L + 2ze) − 2ze − l′s

for m = ±1,±2, · · · ± ∞. Adding the contributions of all the source pairs, the Green’s
function for the fluence rate at r = (x, y, z) results in

U(r, t) =
v exp

(
− ρ2

4Dt − µavt
)

(4πDt) 3/2

∞∑
m=−∞

{
exp
[
− (z − z+m)2
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]
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− (z − z−m)2

4Dt

]}
(2.97)

for 0 ≤ z ≤ L. The flux and the specific intensity can be calculated using (2.77) and (2.72),
allowing to retrieve the time-resolved transmittance and reflectance as

T (ρ, t) = −D
v
∂

∂z
U(ρ, z = L, t) [W m−1] (2.98)
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R(ρ, t) =
D
v
∂

∂z
U(ρ, z = 0, t). [W m−1] (2.99)

In a random walk picture, given the fact that the functions R(ρ, t) and T (ρ, t) correspond to
a unit energy point-like source, they can also be considered as the probability per unit of
time and area that a walker emitted at rsrc at t = 0, exits at time t at a distance ρ from the
z-axis. Making use of equation (2.97) we obtain
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with 

z1,m = (1 − 2m)L − 4mze − l′s
z2,m = (1 − 2m)L − (4m − 2)ze + l′s
z3,m = −2mL − 4mze − l′s
z4,m = −2mL − (4m − 2)ze + l′s

(2.102)

and ρ =
√

x2 + y2. Equations (2.100) and (2.101) are infinite series and should be truncated
for practical applications. Since the distance of the mirror sources from the boundaries
increases with increasing m, the contribution of high-m sources is expected to be significant
only of large values of ρ and/or t. Figures 2.6a and 2.6b show the transmittance and
reflectance profiles, respectively, calculated at different times for a non-absorbing slab
sample in air with L = 10 mm, l′s = ls = 0.1 mm and nin = 1.5. Data simulated with the
Monte Carlo method relative to a sample with anisotropic scattering (g = 0.6034) are
plotted together for comparison, showing the good agreement with the theory, the validity
of the similarity relation (2.38) and of the point source approximation (in the simulation,
a pencil beam source is used). Figure 2.7 shows how the transmittance T (ρ, t) (the case
for R(ρ, t) is analogous) depends on various parameters at a fixed delay. According to the
diffusive approximation, most parameters, including the thickness L and the refractive index
contrast n, only affect the amplitude of the time-resolved profile, while only a change in l′s
modifies its shape.

This is reflected in the prediction cast by diffusion theory for the temporal expansion of
the mean square width of T (ρ, t) (and analogously for R(ρ, t)), defined as

w2(t) =

∫ ∞
0 ρ

2T (ρ, t)ρ dρ∫ ∞
0 T (ρ, t)ρ dρ

=

∫ ∞
0 ρ

2T (ρ, t)ρ dρ

T (t)
(2.103)

which, for a Gaussian profile with standard deviation σ, is simply given by

w2(t) = 2σ = 4Dt. (2.104)

We should stress, however, that the linear growth of the mean square width (MSW) with
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for practical applications. Since the distance of the mirror sources from the boundaries
increases with increasing m, the contribution of high-m sources is expected to be significant
only of large values of ρ and/or t. Figures 2.6a and 2.6b show the transmittance and
reflectance profiles, respectively, calculated at different times for a non-absorbing slab
sample in air with L = 10 mm, l′s = ls = 0.1 mm and nin = 1.5. Data simulated with the
Monte Carlo method relative to a sample with anisotropic scattering (g = 0.6034) are
plotted together for comparison, showing the good agreement with the theory, the validity
of the similarity relation (2.38) and of the point source approximation (in the simulation,
a pencil beam source is used). Figure 2.7 shows how the transmittance T (ρ, t) (the case
for R(ρ, t) is analogous) depends on various parameters at a fixed delay. According to the
diffusive approximation, most parameters, including the thickness L and the refractive index
contrast n, only affect the amplitude of the time-resolved profile, while only a change in l′s
modifies its shape.

This is reflected in the prediction cast by diffusion theory for the temporal expansion of
the mean square width of T (ρ, t) (and analogously for R(ρ, t)), defined as
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Figure 2.6. (a)–(b) Spatially-resolved transmittance and reflectance at different times as calculated
for a homogeneous scattering slab with L = 10 mm, µa = 0, µ′s = 10 mm−1, zsrc = 1/µ′s and nin = 1.5.
At each instant the profiles for T (ρ, t) and R(ρ, t) are two identical Gaussian profiles (except for
their amplitude) with a mean square width linearly increasing with time as 4Dt. Panel (c) shows
the spatially-integrated transmittance and reflectance for the same set of parameters. Note that, in
principle, both equations (2.100) and (2.105) can be formally calculated for any t > 0 and give
a non-null intensity up to ρ → ∞, which is unphysical given that light propagates at finite speed.
The output of a MC simulation for a similar sample with g = 0.6034 and µs = 10/(1 − g) mm−1

(µ′s = 10 mm−1) is shown for comparison.

time is not limited to the Gaussian profiles predicted by the diffusion approximation for a
slab, but lies rather at the very definition of diffusive transport, as we will discuss further in
the following chapters. Figure 2.8 shows a comparison between the diffusion approximation
and the output of a Monte Carlo simulation of a sample satisfying the similarity relation,
representing the exact solution of the scalar RTE, showing excellent agreement both for the
linear MSW growth and the vanishing excess kurtosis γ2 (2.90).

By integrating equations (2.100) and (2.101) over the infinitely extended exit surfaces,
the total time-resolved transmittance and reflectance are obtained as

T (t) =
exp (−µavt)

2(4πD) 1/2 t 3/2

∞∑
m=−∞

z1,m exp

−
z2

1,m

4Dt

 − z2,m exp

−
z2

2,m

4Dt


 (2.105)

R(t) = − exp (−µavt)
2(4πD) 1/2 t 3/2

∞∑
m=−∞

z3,m exp

−
z2

3,m

4Dt

 − z4,m exp

−
z2

4,m

4Dt


 (2.106)

and are plotted in Figure 2.6c for the same illustrative sample. The functions (2.105)
and (2.106) represent the Green’s functions for an infinitely extended detector. For the
reciprocity principle, the functions T (t) and R(t) can be used to describe the time-resolved
transmittance and reflectance when an infinitely wide beam with constant radiance impinges
perpendicularly on the surface of the slab. At late times, the two curves tend to the same
value, meaning that the walkers eventually have the same probability to leave the sample
from either side of the slab. This happens because at late times the energy density inside the
slab tends to a spatial distribution that is symmetric with respect to the middle of the slab.
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Figure 2.7. Dependence of the transmittance T (ρ, t) in the diffusive approximation on (a) the thickness
of the slab L, (b) the reduced scattering mean free path l′s, (c) the refractive index contrast n and (d)
the absorption length la. In the diffusive approximation, the only parameter that affects the shape of
the profile is l′s ∝ D, while all others modify only its amplitude.

Perhaps the most characterizing feature of the spatially-integrated transmittance and
reflectance is their asymptotic decay. The time constant τ of this exponential represents an
important time-scale associated with the transport process. Its definition in terms of the
optical parameters becomes apparent by recasting equation (2.105) and (2.106) using the
Poisson summation rule [65] to obtain

T (t) = −2πD
Leff

∞∑
m=1

m sin
(mπ(l′s + ze)

Leff

)
cos
(mπ(L + ze)

Leff

)
exp
(
− m2π2Dt

L2
eff

− µavt
)

(2.107)
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2πD
Leff
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m=1

m sin
(mπ(l′s + ze)

Leff

)
cos
(mπze

Leff

)
exp
(
− m2π2Dt

L2
eff

− µavt
)

(2.108)

where it can be seen that, at late times, only the term with m = 1 survives since all other
terms decay exponentially faster. The decay constant associated with such term is the
asymptotic decay time of T (t) and R(t) and is given by

1
τ
=

π2D
(L + 2ze)2 + µav. (2.109)

Figure 2.9 shows how T (t) (and its asymptotic decay time τ) depends on the optical and
geometric parameters of our example slab. As can be seen, the spatially integrated fluxes
have a more complex dependence with time, and all parameters can affect both their shape
and amplitude in similar ways, which makes it more difficult to use these functions alone to
retrieve more than one such parameters at once.

Throughout this thesis work, a hybrid heuristic approach has been followed to calculate
the outgoing time-dependent fluxes, based on the more recently developed EBPC condition.
Following this method, the outgoing flux Fout(r, t) is obtained simply by applying the PCBC
relation (2.93) to the solution for the fluence obtained using the EBC (2.97), resulting in
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Figure 2.6. (a)–(b) Spatially-resolved transmittance and reflectance at different times as calculated
for a homogeneous scattering slab with L = 10 mm, µa = 0, µ′s = 10 mm−1, zsrc = 1/µ′s and nin = 1.5.
At each instant the profiles for T (ρ, t) and R(ρ, t) are two identical Gaussian profiles (except for
their amplitude) with a mean square width linearly increasing with time as 4Dt. Panel (c) shows
the spatially-integrated transmittance and reflectance for the same set of parameters. Note that, in
principle, both equations (2.100) and (2.105) can be formally calculated for any t > 0 and give
a non-null intensity up to ρ → ∞, which is unphysical given that light propagates at finite speed.
The output of a MC simulation for a similar sample with g = 0.6034 and µs = 10/(1 − g) mm−1

(µ′s = 10 mm−1) is shown for comparison.

time is not limited to the Gaussian profiles predicted by the diffusion approximation for a
slab, but lies rather at the very definition of diffusive transport, as we will discuss further in
the following chapters. Figure 2.8 shows a comparison between the diffusion approximation
and the output of a Monte Carlo simulation of a sample satisfying the similarity relation,
representing the exact solution of the scalar RTE, showing excellent agreement both for the
linear MSW growth and the vanishing excess kurtosis γ2 (2.90).

By integrating equations (2.100) and (2.101) over the infinitely extended exit surfaces,
the total time-resolved transmittance and reflectance are obtained as
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and are plotted in Figure 2.6c for the same illustrative sample. The functions (2.105)
and (2.106) represent the Green’s functions for an infinitely extended detector. For the
reciprocity principle, the functions T (t) and R(t) can be used to describe the time-resolved
transmittance and reflectance when an infinitely wide beam with constant radiance impinges
perpendicularly on the surface of the slab. At late times, the two curves tend to the same
value, meaning that the walkers eventually have the same probability to leave the sample
from either side of the slab. This happens because at late times the energy density inside the
slab tends to a spatial distribution that is symmetric with respect to the middle of the slab.
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Figure 2.7. Dependence of the transmittance T (ρ, t) in the diffusive approximation on (a) the thickness
of the slab L, (b) the reduced scattering mean free path l′s, (c) the refractive index contrast n and (d)
the absorption length la. In the diffusive approximation, the only parameter that affects the shape of
the profile is l′s ∝ D, while all others modify only its amplitude.

Perhaps the most characterizing feature of the spatially-integrated transmittance and
reflectance is their asymptotic decay. The time constant τ of this exponential represents an
important time-scale associated with the transport process. Its definition in terms of the
optical parameters becomes apparent by recasting equation (2.105) and (2.106) using the
Poisson summation rule [65] to obtain
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where it can be seen that, at late times, only the term with m = 1 survives since all other
terms decay exponentially faster. The decay constant associated with such term is the
asymptotic decay time of T (t) and R(t) and is given by

1
τ
=

π2D
(L + 2ze)2 + µav. (2.109)

Figure 2.9 shows how T (t) (and its asymptotic decay time τ) depends on the optical and
geometric parameters of our example slab. As can be seen, the spatially integrated fluxes
have a more complex dependence with time, and all parameters can affect both their shape
and amplitude in similar ways, which makes it more difficult to use these functions alone to
retrieve more than one such parameters at once.

Throughout this thesis work, a hybrid heuristic approach has been followed to calculate
the outgoing time-dependent fluxes, based on the more recently developed EBPC condition.
Following this method, the outgoing flux Fout(r, t) is obtained simply by applying the PCBC
relation (2.93) to the solution for the fluence obtained using the EBC (2.97), resulting in
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Figure 2.8. (a) Comparison between the MSW of the T (ρ, t) and R(ρ, t) profiles, growing linearly
as 4Dt, and the output of a MC simulation. (b) Both transmittance and reflectance profiles become
quickly Gaussian, as shown by the vanishing value of γ2. (c) Comparison between the (steady-state)
angular distribution predicted by the diffusive approximation F(cos θe) (see subsection 2.2.4) and
the output of the MC simulation. The angular distribution for a Lambertian surface (F = 1/π ) is
plotted as a dashed line for comparison. The simulated angular distribution for reflected light exhibits
a slight deviation from the theory, due to the proximity to the (pencil beam) source. Deviations are
progressively reduced as early-reflected light is rejected from integration.

the expression

Fout(r, t) =
U(r, t)

2A
(2.110)

which can be applied to any point of the boundary. Since the PCBC is expected to be
less approximated than Fick’s law, equation (2.110) should provide more accurate results
than the previously derived equations. As a matter of fact, the discontinuity in the optical
properties occurring at a boundary may determine strong variations of the flux that might
depart, near the physical boundaries, from the assumptions (2.72) and (2.75) needed to
obtain the diffusion equation from the RTE. Consequently, Fick’s law (2.77) might be
compromised near the boundaries. Equation (2.110) is also undoubtedly simpler to use,
since the same expression is applicable to any point of the boundary. As an example,
for the slab, the same expression (2.110) can be used to evaluate both the time-resolved
transmittance and reflectance writing

T (ρ, t) =
U(ρ, z = L, t)

2A
(2.111)

R(ρ, t) =
U(ρ, z = 0, t)

2A
(2.112)

and the spatially integrated fluxes

T (t) =
U(z = L, t)

2A
(2.113)
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Figure 2.9. Dependence of the integrated transmittance T (t) in the diffusive approximation on (a) the
thickness of the slab L, (b) the reduced scattering mean free path l′s, (c) the refractive index contrast n
and (d) the absorption length la. Each parameter contributes differently to change both the amplitude
and the shape of the profile.
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respectively. As for the solutions obtained using Fick’s law, for a non-absorbing medium
the above expressions verify energy conservation between the total transmitted and reflected
energy. It should be pointed out that, in spite of the different expressions obtained following
the two different approaches to evaluate the outgoing flux, the final results are in many cases,
including the ones previously plotted, indistinguishable. Extremely small differences are
appreciable at very early times and are more pronounced in the presence of a high refractive
index contrast. Compared with MC simulations, the EBPC solution provides a slightly
better description of the time-resolved outgoing flux, especially for the reflectance at short
distances from the source. Therefore, the solution is preferable for inversion procedures
aimed at retrieving the optical properties of the medium from time-resolved measurements,
and as such it has been used throughout the rest of the thesis. For all practical situations
described in this work, though, the difference between equation (2.105) and (2.113) is
completely negligible and using either model would result in the same output. Considering
late times only, it can in fact be shown that the ratio between the two solutions converges
exactly to 1.
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Figure 2.8. (a) Comparison between the MSW of the T (ρ, t) and R(ρ, t) profiles, growing linearly
as 4Dt, and the output of a MC simulation. (b) Both transmittance and reflectance profiles become
quickly Gaussian, as shown by the vanishing value of γ2. (c) Comparison between the (steady-state)
angular distribution predicted by the diffusive approximation F(cos θe) (see subsection 2.2.4) and
the output of the MC simulation. The angular distribution for a Lambertian surface (F = 1/π ) is
plotted as a dashed line for comparison. The simulated angular distribution for reflected light exhibits
a slight deviation from the theory, due to the proximity to the (pencil beam) source. Deviations are
progressively reduced as early-reflected light is rejected from integration.
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respectively. As for the solutions obtained using Fick’s law, for a non-absorbing medium
the above expressions verify energy conservation between the total transmitted and reflected
energy. It should be pointed out that, in spite of the different expressions obtained following
the two different approaches to evaluate the outgoing flux, the final results are in many cases,
including the ones previously plotted, indistinguishable. Extremely small differences are
appreciable at very early times and are more pronounced in the presence of a high refractive
index contrast. Compared with MC simulations, the EBPC solution provides a slightly
better description of the time-resolved outgoing flux, especially for the reflectance at short
distances from the source. Therefore, the solution is preferable for inversion procedures
aimed at retrieving the optical properties of the medium from time-resolved measurements,
and as such it has been used throughout the rest of the thesis. For all practical situations
described in this work, though, the difference between equation (2.105) and (2.113) is
completely negligible and using either model would result in the same output. Considering
late times only, it can in fact be shown that the ratio between the two solutions converges
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2.2.4. Angular dependence of outgoing radiance

Measurements of diffused light aimed at characterizing turbid media are often based on
detection of scattered light emerging from its outer surface. The flux is commonly collected
using optical elements and detectors having a limited numerical aperture. Therefore, for
many different reasons the quantity actually measured per unit area is the outgoing radiance
accepted by the detection apparatus, which can be written as

P(t) =
∫
Ωd

Ie(r, se, t)se · q dΩd , (2.116)

where Ωd is the acceptance solid angle of the detection system, Ie(r, se, t) is the specific
intensity on the external boundary of the medium, q is the outwardly directed normal and
se is the unit vector pointing outside of the medium with se · q = cos θe. Knowing the
angular distribution of the outgoing randiance is key to understanding if the previously
reported solutions for the flux are suitable to describe the actually measured quantity. An
analytical expression based on the diffusion approximation and the PCBC can be obtained
for the angular dependence of the radiance outgoing from a diffusive medium bounded
by a non-scattering region [66]. According to the diffusion approximation, the radiance is
assumed to be almost isotropic taking only the first two terms of the spherical harmonic
expansion (2.72). The radiance on the external surface can be represented as the fraction of
internal radiance Ii that is transmitted in the external medium

Ie(r, se, t) =
n2

e

n2
i

[1 − R(θi)]Ii(r, si, t), (2.117)

where R(θi) is the Fresnel coefficient for unpolarized light (2.65), se and si are related by
Snell’s law and the term (ne/ni )2 accounts for the refraction of the solid angle. If we write
(see also Figure A.1)
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the normal component of the flux Fu,i averages out with the azimuthal angle, and we arrive
to the expression
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where we have used the PCBC at the interface (2.93) to express everything in terms of
U(r, t). Substituting this expression into equation (2.116) we obtain
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Since integration over the solid semi-angle leads to the total outgoing flux (2.110), equations
(2.119) and (2.120) can be rewritten as

Ie(r, se, t) =
Ui(r, t)

2A
F(θe) → P(t) =

Ui(r, t)
2A

∫
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(2.122)

and ∫
2π

F(θe) cos θe dΩe = 1. (2.123)

Therefore, the angular dependence of the outgoing randiance (averaged over the azimuthal
angle) is completely separated from the spatial and temporal dependence and is fully
described by F(θe). This function is independent of the geometry considered for the
boundary and represents the distribution function for the direction of the outgoing radiation,
depending only on the refractive index contrast n = ni

ne
. Still, it should be pointed out

that equation (2.122) has been obtained using Snell’s law, and therefore it is rigorously
applicable only if the external surface of the diffusive medium is sufficiently smooth. Figure
2.8c shows the dependence of F(cos θe) for the test sample with n = 1.5. As can be seen,
the distribution is quite different from that of a Lambertian surface (considering Lambert’s
cosine law, i.e., a surface emitting a radiance independent of the direction, for which
F = 1/π ). It could be expected that the angular distribution of light predicted using the
simple P1 decomposition is a rough approximation of the actual distribution since near the
boundary, due to the discontinuous variation of the optical properties, strong variations of
the flux are likely causing the simple approximations (2.72) and (2.77) to fail. However,
comparisons with the results of experiments and MC simulations have shown that the
angular distribution predicted by the diffusion approximation has a surprisingly large range
of validity. The equations (2.121) are particularly relevant for practical applications, since
they state that both time-resolved and steady-state measurements of outgoing radiation are
affected by the acceptance angle of the detection system by a factor that is independent of
both time t and the exit time ρ. If needed, this factor can be calculated integrating F(cos θe)
on the numerical aperture of the detection system. However, for many applications the
knowledge of this factor is not necessary, since measurements are available only in relative
units. As long as the angular dependence of the outgoing randiance can be represented
by equation (2.122), the solutions for the total outgoing flux can be used to analyze
experimental data without introducing any approximation.

2.2.5. Validity of the diffusive approximation

The study of how accurate the diffusion approximation (DA) is and of its validity range has
been going on since its origin and still represents an active research field, largely motivated
by the appealing power and simplicity of the diffusion theoretical framework [67–72]. The
fundamental assumptions at the base of the DA are the validity of the P1 expansion (2.72)
and the assumption of stationary flux over time scales comparable to l′s/v (2.75). These
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assumptions are expected to fail very close to surfaces and sources, both of which would,
in principle, invalidate the simple angular dependence imposed on I(r, t, s) and possibly the
magnitude of ∂F/∂t .

Nonetheless, many of these limits have proven to be quite flexible, and as a matter of
fact, the breakdown of the DA can occur in different ways and to different degrees depending
on the experimental observable of choice. Moreover, in the past decades, a continuous effort
has been devoted to deriving and refining the theoretical framework of diffusion theory, in
order to make it more robust, clarify the nature of its underlying assumption and extend its
validity range [61, 63, 70, 73–77]. Indeed, when carefully applied, diffusion theory often
yields very good experimental results, in most cases much better than what was expected.
The only rigorously defined limit for the validity of diffusion theory, as was the case with
the RTE, is that it does not make much sense to apply it to distances smaller of the average
distance between scatterers (and its corresponding time scale). Additionally, as for the
RTE, significant deviations will arise in cases where there is a high coherent contribution
(which, in a scattering system, occurs typically near the source). For this reason, reflection
measurements are more prone to deviate from the diffusion prediction since reflected light
will contain a significant contribution coming regions/times closer to the source modulation,
with features depending heavily on the adopted source model. In all our derivations, we
assumed an isotropic point source placed at a depth zsrc = l′s as an approximation of a
pencil beam source coming from outside the material, which in turn is an approximation
of an experimental beam. All these models become eventually indistinguishable both in
transmission and reflection, provided that the measurement is performed sufficiently far
and at a sufficiently large delay from the source emission [78, 79].

A separate but directionality-related problem is that of the validity of the similarity
relation, which accounts to equating arbitrarily complex phase functions to a simpler one
with the same first moment. When the anisotropy factor g approaches its upper limit (as it
is the case for most biological samples, where often g � 1 [6, 80]), the length scales over
which the P1 expansion can be considered valid grow proportionally casting a stronger
constraint on the validity range of the DA, and can give rise to appreciable deviations
especially near the boundaries [76, 81].

The interplay between the presence of absorption, the definition of the diffusion constant
and the validity range of the diffusion approximation has been the subject of a long debate
[57–59, 82], and as such it deserves a few words within the scope of this work. When
looking at transport problems in the time domain, as it is the case for this thesis, the role of
absorption becomes much clearer and factorizes out of the problem. This holds irrespective
of the validity of the diffusion approximation, as long as coherent effects can be disregarded
in the scattering system of interest. Regarding the diffusion approximation, its validity
remains unaffected provided that we consider time scales that are orders of magnitude
longer than l′s/v. As long that we have access to this time range (either experimentally
or numerically), the presence of absorption does not affect the validity of the diffusion
approximation nor the definition of the diffusion constant. The situation is completely
different in a steady-state configuration, where the presence of absorption directly causes
low-order scattered light to dominate the integrated signal. This of course breaks the validity
assumptions of diffusion, and the definition of the diffusion constant must be modified
to take into account the presence of absorption [59, 74, 83]. In the general time-domain
picture, however, diffusion and absorption can be considered as two unrelated parameters, as
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discussed in subsection 2.2.2. The growth of the spatial variance of the profiles, which lies
at the very definition of the concept of diffusion, is completely unaffected by the presence
of absorption, which can be therefore regarded as an irrelevant parameter as long as the
validity of the diffusion approximation is concerned.

Based on these remarks, when considering the validity of the diffusive approximation
in a slab geometry for transmitted light, an important figure of merit driving the transition
from the diffusive to the ballistic regime is, unsurprisingly, the distance between the source
and the distal boundary of the slab where the measurement is performed [70, 72, 84–86].
One common way to parametrize it is to introduce the so-called reduced optical thickness
or simply optical thickness (OT) L/l′s. The usual assumption is that the thickness of the
medium should be at least one order of magnitude larger than the reduced transport mean
free path (a few authors give a rule-of-thumb factor of 8 [72, 87]). As a matter of fact,
already at OT = 10 (to be compared with the illustrative example with OT = 100 shown
the previous subsection), small deviations from the DA start to appear as shown in Figure
2.10, where the simulated distributions for a sample with L = 1 mm, g = 0.6034 and
ls = 39.66 µm (l′s = 100 µm) are compared with the results of the DA equations. As can be
seen, all observables exhibit deviations of different entity at early times, and qualitatively
analogue results are obtained when looking at the reflectance. At high refractive index
contrast, some deviations can persist also at late times, signaling the failure of the diffusive
approximation. This happens in particular for the total transmittance T (t), where diffusion
theory is not able to reproduce correctly the asymptotic decay constant, while notably the
mean square width growth is less affected in spite of the very slow convergence of the
excess kurtosis towards 0.

Finally, the bottom panels of Figure 2.10 illustrate how the angular distribution of
transmitted light evolves in time and eventually converges towards the distribution predicted
by diffusion theory (2.122). In general, the distribution will exhibit a more or less pro-
nounced forward peak towards cos θ = 1 due to the fact that early transmitted walkers/light
will necessarily have gone through the sample perpendicularly. Few, well documented
deviations at grazing exit angles remain even at long times for the index-matched case, due
to the presence of a scattering anisotropy g � 0. The interesting thing to notice here is,
however, that the final distribution becomes quickly stable, ceasing to evolve in time (and
space), which is fundamental to guarantee that radiometric measurement taken on a finite
aperture/detector are nonetheless representative of the intensity integrated over the whole
solid angle.
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mean square width growth is less affected in spite of the very slow convergence of the
excess kurtosis towards 0.

Finally, the bottom panels of Figure 2.10 illustrate how the angular distribution of
transmitted light evolves in time and eventually converges towards the distribution predicted
by diffusion theory (2.122). In general, the distribution will exhibit a more or less pro-
nounced forward peak towards cos θ = 1 due to the fact that early transmitted walkers/light
will necessarily have gone through the sample perpendicularly. Few, well documented
deviations at grazing exit angles remain even at long times for the index-matched case, due
to the presence of a scattering anisotropy g � 0. The interesting thing to notice here is,
however, that the final distribution becomes quickly stable, ceasing to evolve in time (and
space), which is fundamental to guarantee that radiometric measurement taken on a finite
aperture/detector are nonetheless representative of the intensity integrated over the whole
solid angle.
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Figure 2.10. Breakdown of the diffusion approximation for a slab sample with reduced optical
thickness L/l′s = 10 for the (a) index-matched and (b) index-mismatched case. For the sake of brevity,
the distributions obtained via MC simulations are compared with those predicted using the DA only
for transmitted light. From top to bottom, the time-resolved flux at long times is poorly modeled with
increasing refractive index contrast; on the contrary, the MSW is almost unaffected, even if the excess
kurtosis vanishes slowly. The angular distributions converge quickly and accurately towards the DA
prediction (simulated distributions have been shifted vertically for better visibility). As expected,
early times are generally associated with higher deviations.
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Figure 3.1. From left to right: classification of available experimental techniques for optical charac-
terization of turbid media in terms of the measurement domain. An external stimulus is shown on the
left side of a block representing the investigated medium. The initial (typically narrow) distribution
undergoes a modification in some domain following interaction with the sample, resulting in an
attenuated, broader signal on the distal side of the block.

though, depends both on the absorption and scattering coefficients and is not separable
unless, again, absolute fluence levels are recorded. Alternatively, measurements should be
taken close to the source, where the diffusion approximation breaks down. Other steady-
state schemes involve patterned illumination, which can conveniently provide single-shot,
wide-field characterization of the local properties of scattering as seen from outside a
medium [98, 99]. In general, however, the common downside of CW techniques is that
their accuracy and validity is usually restricted to a limited range of optical parameters and
sample geometries.

The second main class of techniques exploits intensity modulation of the source. In the
frequency domain, this is done by recording the diffuse waves propagating when the source
is modulated at a typical frequency between 100 MHz and 1 GHz [100, 101]. In response
to the external modulation stimulus, the medium attenuates the signal and introduces a
phase shift relative to the input signal. On the other hand, in time resolved techniques,
a short pulse of light is launched into the medium at a selected point and time. As it
propagates through the medium, the pulse undergoes attenuation and broadening that can
be used to extract parameters through fitting of a suitable forward model [56, 102]. It
should be noted that in principle the time and frequency domains are formally equivalent
and simply related to each other via a Fourier transform operation. However, different
practical limitations exists associated to both techniques, determining their preferred use
depending on the situation. Frequency-domain measurements typically offer lower noise
compared to time-resolved measurement, but on the other hand the information content
is lower unless the measurements are performed at many modulation frequencies. The
maximum bandwidth is also usually lower for a frequency-resolved system than a time-
resolved, which is important especially for small distances or sample geometries. In this
respect, time-domain approaches are most comprehensive, since a short laser pulse in the
fs range implicitly contains all the modulation frequencies, including the zero-frequency
component [103]. In comparison, modulation frequencies of the order of a GHz correspond
to a resolution of the order of a ns and to density wavelengths of the order of tens of cm
and therefore are unsuited to study smaller specimens or the finer details of transport.

The major advantage of time-resolved measurements is that the analysis of the pulse
shape, rather than the fluence levels, obviates the need for absolute calibration. Even though
the equipment needed to perform a time-domain experiment is more complex and costly
than CW-based methods, time-of-flight measurements allows straightforward separation
of scattering and absorption contributions from a single measurement, and are virtually
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capable of handling any combination of optical properties and sample geometry, provided
that a suitable model of light propagation is used.

In this chapter we will describe and review the components and performance of a
time-domain characterization technique and its major upgrade to include spatially-resolved
information. As a matter of fact, in recent years, a clear trend is emerging to take advantage
of multi-domain optical characterization, even if partially, and the rigid classification of
experimental techniques in terms of their domain is becoming fuzzier. Notable examples
include mixing of spatial and angular domains (e.g., exploiting spatial filtering, collimated
detection or more complex configurations [89, 104]) or of spatial and temporal information,
which has been typically done by moving a collection fiber at different points of a sample
[105, 106]. In most cases, though, only few bits of cross-domain information are collected,
or different single-domain measurements are compared separately. As we will demonstrate
through this and the next Chapter, gaining access to the full spatial and temporal information
enables new strategies for accurate optical characterization that are not possible with partial
multi-domain information or multiple single-domain measurements.

3.1.2. Time-domain techniques and sub-ps optical gating

Several experimental configurations are documented in the literature to implement time-of-
flight measurements, each with different advantages and typical time scales of operation.
The most common technique is represented by time-correlated single-photon counting
(TCSPC), which has the advantage of working at very low intensity levels and is based
on individual photon statistics. A constant fraction discriminator is used to accurately
determine the arrival of pulses with a resolution that can be around few tens of picoseconds,
well below the rise time of the detector [56, 107, 108]. Gated CCD cameras have also been
used to obtain time-resolved detection systems, having the major advantage of yielding
parallel measurements over a wide field of view, even though with a temporal resolution
limited to few hundreds of ps [109, 110]. On the other hand, a resolution of the order of
just few ps is typically obtainable using streak cameras, which have been also largely used
in the past for optical characterization of turbid media [69, 111, 112], despite their high
cost and limited dynamic range.

A completely different approach is needed to study transport on much shorter time
scales, a challenging experimental task which rules out electronic-based devices because
of their inherently limited response time. Several ultrafast shuttering techniques have
been exploited in the past decades to effectively time-gate reflected or transmitted light
at fixed delays, either by amplifying it or attenuating the signal at different exit times.
From a historical perspective, the development of these techniques was mainly driven by
transillumination applications, which have the sole aim of suppressing scattering from turbid
media in order to see through them, rather than to characterize it. For this reason, a large part
of the literature available on ultrafast gating techniques is influenced or is somehow related
to this separate field [113, 114]. Quite surprisingly, the vast characterization potential of
sub-ps gating wide-field techniques was never exploited, to our knowledge, to obtain a
multi-domain characterization of the optical properties of scattering media, supposedly
because of the difficulties in controlling or even assessing their quantitative reliability.

Several strategies exist in order to achieve an all-optical gating operation. A first notable
example is that enabled by the Kerr effect. A Kerr cell placed in between crossed polarizers
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Figure 3.1. From left to right: classification of available experimental techniques for optical charac-
terization of turbid media in terms of the measurement domain. An external stimulus is shown on the
left side of a block representing the investigated medium. The initial (typically narrow) distribution
undergoes a modification in some domain following interaction with the sample, resulting in an
attenuated, broader signal on the distal side of the block.

though, depends both on the absorption and scattering coefficients and is not separable
unless, again, absolute fluence levels are recorded. Alternatively, measurements should be
taken close to the source, where the diffusion approximation breaks down. Other steady-
state schemes involve patterned illumination, which can conveniently provide single-shot,
wide-field characterization of the local properties of scattering as seen from outside a
medium [98, 99]. In general, however, the common downside of CW techniques is that
their accuracy and validity is usually restricted to a limited range of optical parameters and
sample geometries.

The second main class of techniques exploits intensity modulation of the source. In the
frequency domain, this is done by recording the diffuse waves propagating when the source
is modulated at a typical frequency between 100 MHz and 1 GHz [100, 101]. In response
to the external modulation stimulus, the medium attenuates the signal and introduces a
phase shift relative to the input signal. On the other hand, in time resolved techniques,
a short pulse of light is launched into the medium at a selected point and time. As it
propagates through the medium, the pulse undergoes attenuation and broadening that can
be used to extract parameters through fitting of a suitable forward model [56, 102]. It
should be noted that in principle the time and frequency domains are formally equivalent
and simply related to each other via a Fourier transform operation. However, different
practical limitations exists associated to both techniques, determining their preferred use
depending on the situation. Frequency-domain measurements typically offer lower noise
compared to time-resolved measurement, but on the other hand the information content
is lower unless the measurements are performed at many modulation frequencies. The
maximum bandwidth is also usually lower for a frequency-resolved system than a time-
resolved, which is important especially for small distances or sample geometries. In this
respect, time-domain approaches are most comprehensive, since a short laser pulse in the
fs range implicitly contains all the modulation frequencies, including the zero-frequency
component [103]. In comparison, modulation frequencies of the order of a GHz correspond
to a resolution of the order of a ns and to density wavelengths of the order of tens of cm
and therefore are unsuited to study smaller specimens or the finer details of transport.

The major advantage of time-resolved measurements is that the analysis of the pulse
shape, rather than the fluence levels, obviates the need for absolute calibration. Even though
the equipment needed to perform a time-domain experiment is more complex and costly
than CW-based methods, time-of-flight measurements allows straightforward separation
of scattering and absorption contributions from a single measurement, and are virtually

50

capable of handling any combination of optical properties and sample geometry, provided
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In this chapter we will describe and review the components and performance of a
time-domain characterization technique and its major upgrade to include spatially-resolved
information. As a matter of fact, in recent years, a clear trend is emerging to take advantage
of multi-domain optical characterization, even if partially, and the rigid classification of
experimental techniques in terms of their domain is becoming fuzzier. Notable examples
include mixing of spatial and angular domains (e.g., exploiting spatial filtering, collimated
detection or more complex configurations [89, 104]) or of spatial and temporal information,
which has been typically done by moving a collection fiber at different points of a sample
[105, 106]. In most cases, though, only few bits of cross-domain information are collected,
or different single-domain measurements are compared separately. As we will demonstrate
through this and the next Chapter, gaining access to the full spatial and temporal information
enables new strategies for accurate optical characterization that are not possible with partial
multi-domain information or multiple single-domain measurements.

3.1.2. Time-domain techniques and sub-ps optical gating

Several experimental configurations are documented in the literature to implement time-of-
flight measurements, each with different advantages and typical time scales of operation.
The most common technique is represented by time-correlated single-photon counting
(TCSPC), which has the advantage of working at very low intensity levels and is based
on individual photon statistics. A constant fraction discriminator is used to accurately
determine the arrival of pulses with a resolution that can be around few tens of picoseconds,
well below the rise time of the detector [56, 107, 108]. Gated CCD cameras have also been
used to obtain time-resolved detection systems, having the major advantage of yielding
parallel measurements over a wide field of view, even though with a temporal resolution
limited to few hundreds of ps [109, 110]. On the other hand, a resolution of the order of
just few ps is typically obtainable using streak cameras, which have been also largely used
in the past for optical characterization of turbid media [69, 111, 112], despite their high
cost and limited dynamic range.

A completely different approach is needed to study transport on much shorter time
scales, a challenging experimental task which rules out electronic-based devices because
of their inherently limited response time. Several ultrafast shuttering techniques have
been exploited in the past decades to effectively time-gate reflected or transmitted light
at fixed delays, either by amplifying it or attenuating the signal at different exit times.
From a historical perspective, the development of these techniques was mainly driven by
transillumination applications, which have the sole aim of suppressing scattering from turbid
media in order to see through them, rather than to characterize it. For this reason, a large part
of the literature available on ultrafast gating techniques is influenced or is somehow related
to this separate field [113, 114]. Quite surprisingly, the vast characterization potential of
sub-ps gating wide-field techniques was never exploited, to our knowledge, to obtain a
multi-domain characterization of the optical properties of scattering media, supposedly
because of the difficulties in controlling or even assessing their quantitative reliability.

Several strategies exist in order to achieve an all-optical gating operation. A first notable
example is that enabled by the Kerr effect. A Kerr cell placed in between crossed polarizers
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can be in fact operated as a fast shutter triggering its birefringence by means of short laser
pulses [115, 116]. A Kerr gate can be thought of as the analogue of a mechanical shutter in
the ps range. As such, it is not wavelength nor angle dependent, and in fact it can be used to
collect light with broad spectral and angular distributions. Unfortunately, its performance is
ultimately limited by the dynamic range of the transmission opacity of the cell, which can
hardly exceed 104, meaning that only sufficiently intense signals can be measured. Similar
limitations exist for amplification obtained by means of stimulated Raman scattering (SRS)
occurring in materials such as hydrogen gas, where a long-wavelength (Stokes) beam is
amplificated by a shorter-wavelength pump beam [117].

Turning to high-gain ultrafast amplifying gates, applications are mostly based on
second-harmonic generation (SHG) or, more in general, on optical parametric amplification
(OPA) [117–123]. Different laser pulses can be combined spatially and temporally on
certain nonlinear crystals to generate light at frequencies equal to the sum and difference of
the incoming beams. Typically, the frequency upconversion occurring in sum-frequency
generation (SFG) can be profitably exploited to perform the experiment at longer wave-
lengths of interest (typically in the near infrared range) while detecting the resulting signal
at shorter wavelength at which detectors are more efficient. Despite the high gain and
excellent temporal resolution, however, these optical gating techniques have been often
overlooked by the transillumination community because of the extremely narrow angular
selection dictated by the phase-matching condition. As we will discuss in the following
sections, this rigid constrain does not pose a significant limitation when studying light
transport in turbid media.

3.2. Cross-correlation optical gating

In this Section we describe the experimental properties and working principles of an optical
apparatus based on the cross-correlation gating technique [118, 119]. In a typical optical
gating apparatus, represented schematically in Figure 3.2, two synchronous, collinear probe
and gate pulses are made to impinge on a nonlinear crystal. The probe pulse at frequency
ω1 (interpreted as the central frequency of the pulse bandwidth) impinges on the scattering
sample and interacts with its structure, emerging with a broadened intensity distribution
Iω1 (t). Conversely, the gate pulse propagates unaltered in free space preserving its original
temporal profile Iω2 (t). When the two pulses eventually reach the crystal, an upconverted
signal at frequency ω1 + ω2 is generated depending on the degree of spatial and temporal
overlap. This frequency mixing process is known as sum-frequency generation (SFG) or
upconversion and occurs in nonlinear crystals with finite second-order susceptibility χ(2).
The intensity profile of the sum-frequency signal is given by the convolution integral of the
intensities

Iω3 (∆τ) =
∫ ∞

0
Iω1 (t)Iω2 (t − ∆τ) dt (3.1)

where ∆τ represents the relative delay between the two pulses, which can be set using
a translation stage. For a fixed delay, the resulting train of signal pulses Iω3 (∆τ) has
now a stationary intensity which can be detected and integrated with a slow detector. By
scanning over the delay ∆τ it is possible to sample the temporal evolution of Iω1 (t) using
the unperturbed Iω2 (t) pulse as a temporal gate (hence the name of the technique), by
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Figure 3.2. Working principle of an optical gating setup. A sub-ps probe pulse (in red) with central
frequency ω1 is broadened in time following interaction with a scattering medium. The resulting
broadened signal impinges on a nonlinear crystal (NLC) together with a narrow gate pulse (grey).
The relative delay between the two can be tuned using a translation stage. At each position/delay, a
sum-frequency signal is generated at the crystal with an intensity proportional to their convolution
integral (3.1).

performing a deconvolution operation. The problem simplifies if we can assume that I2(t)
has a much shorter duration than any signal it is convoluted with, as it is well the case for all
the measurements presented in this work. In this case, the gate pulse can be approximated
by a δ(t) pulse, yielding

Iω3 (∆τ) � Iω1 (∆τ)Iω2 (0) (3.2)

meaning that the time evolution of the sum-frequency signal represents directly that of
the investigated signal. On a side note, equation (3.2) also shows an interesting point: the
intensity of the measured signal Iω3 (and hence the signal-to-noise ratio) can be enhanced
by transferring energy from either the probe or the reference pulse (which does not interact
with the sample).

The temporal resolution that can be obtained with this setup is influenced by the width
of the gate pulse (if its temporal shape is unknown and therefore cannot be deconvolved) and
on the minimum spatial displacement that can be accurately performed by the translation
stage. Displacements of 1 µm can be easily obtained (corresponding to an increase of the
total path length of 2 µm), yielding a sampling rate of ∼ 6.7 fs ∼ 1.5 × 1014 samples/s.
Moreover, by using a probe and gate pulse pair generated synchronously by the same laser
source, the final resolution is exactly unaffected by fluctuations in the repetition rate or
timing jitter of the pulses, which makes the setup inherently more stable and robust to
undesired drifts.

3.2.1. Phase-matching and angular acceptance

The upconversion process at the core of optical gating is a delicate process which de-
pends critically on the phase-matching between the interacting pulses, as required by the
conservation of momentum

∆k = 0 → kω1 + kω2 = kω3 , (3.3)
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performing a deconvolution operation. The problem simplifies if we can assume that I2(t)
has a much shorter duration than any signal it is convoluted with, as it is well the case for all
the measurements presented in this work. In this case, the gate pulse can be approximated
by a δ(t) pulse, yielding

Iω3 (∆τ) � Iω1 (∆τ)Iω2 (0) (3.2)

meaning that the time evolution of the sum-frequency signal represents directly that of
the investigated signal. On a side note, equation (3.2) also shows an interesting point: the
intensity of the measured signal Iω3 (and hence the signal-to-noise ratio) can be enhanced
by transferring energy from either the probe or the reference pulse (which does not interact
with the sample).

The temporal resolution that can be obtained with this setup is influenced by the width
of the gate pulse (if its temporal shape is unknown and therefore cannot be deconvolved) and
on the minimum spatial displacement that can be accurately performed by the translation
stage. Displacements of 1 µm can be easily obtained (corresponding to an increase of the
total path length of 2 µm), yielding a sampling rate of ∼ 6.7 fs ∼ 1.5 × 1014 samples/s.
Moreover, by using a probe and gate pulse pair generated synchronously by the same laser
source, the final resolution is exactly unaffected by fluctuations in the repetition rate or
timing jitter of the pulses, which makes the setup inherently more stable and robust to
undesired drifts.

3.2.1. Phase-matching and angular acceptance

The upconversion process at the core of optical gating is a delicate process which de-
pends critically on the phase-matching between the interacting pulses, as required by the
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Figure 3.3. (a) Reference frame for a uniaxial birefringent crystal in a sum-frequency interaction
(not to scale). The optic axis of the crystal lies along ẑ. (b) Geometric sketch showing how the
phase-matching condition results in different angular acceptances along the ordinary and extraordinary
directions. A slightly misaligned ke and a largely misaligned ko may result in the same angular
mismatch ∆θ.

where the kωi are the wave vectors of the mixing beams at angular frequency ωi. Equation
(3.3) becomes scalar in the simple case of collinear geometry, yielding

ω1n(ω1) + ω2n(ω2) − (ω1 + ω2)n(ω3) = 0, (3.4)

where n(ωi) is the refractive index of the crystal at ωi. It is generally not possible to satisfy
the condition (3.4) in isotropic media or in centrosymmetric solids, but one can exploit
the birefringence of some anisotropic crystals to obtain the right combination of refractive
indexes depending on the angle of incidence and polarization of the incoming beams. In a
uniaxial birefringent crystal with optic axis ẑ, both ordinary (polarization in the x̂ŷ plane)
and extraordinary (polarization perpendicular to the x̂ŷ plane) rays are defined, seeing
refractive indexes of no and ne respectively. Each intermediate combination will yield a
correspondingly weighted value of the effective refractive index along that direction, which
allows to satisfy (3.4) by tuning the angle of incidence. Uniaxial crystals are classified as
‘negative’ if ne < no and ‘positive’ otherwise. In the former case the possible polarization
combinations are o + o → e or o + e → e with the sum-frequency necessarily polarized
along the extraordinary direction, while for positive crystals it must be ordinarily polarized,
i.e., e + o→ o or e + e→ o. Irrespective of the sign of the birefringence, the interaction is
termed of type I if the incident beams have parallel polarization, and type II otherwise.

In our experimental setup, we use a square 5 mm × 5 mm × 2 mm β-Barium borate
(BBO) crystal (Figure 3.3a). BBO is a negative crystal, which we use in a o + o → e
(type I) configuration. The angle θ̂ between the optic axis and the incidence direction must
therefore satisfy the phase-matching relation

ω1no(ω1) + ω2no(ω2) − (ω1 + ω2)n(ω3, θ̂) = 0, (3.5)
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with

n(ω3, θ) =

√
n2

o(ω3)n2
e(ω3)

n2
o(ω3) sin2 θ + n2

e(ω3) cos2 θ
. (3.6)

For a BBO crystal the relevant refractive indexes can be calculated using empirical Sell-
maier’s equations with coefficients

n2
o = 2.7405 +

0.0184
λ2 − 0.0179

− 0.0155λ2

n2
e = 2.3730 +

0.0128
λ2 − 0.0156

− 0.0044λ2

which give the required n(ω3, θ̂) through equation (3.5) for the specific pair of probe and
gate frequencies used, which, in our experimental case, correspond to λ1 = 810 nm and
λ2 = 1.51 µm (λ3 = 527 nm). Our crystal is cut at an angle θ̂ = 22.96° in order to
give maximum conversion efficiency for this combination of wavelengths at perpendicular
incidence. If different wavelengths are used, the incidence angle can be adjusted accordingly
by slightly tilting the crystal appropriately.

Once that the correct geometry is set, a certain efficiency is associated to the upconver-
sion process, which can be defined though the generated power [124]

Pω3 = ηPω1 Pω2 (3.7)

and depends critically on the phase mismatch ∆k = |∆k|, with a typical decay behavior

η(∆k) = η(0)
sin2(L∆k)

(L∆k)2 , (3.8)

where L represents the thickness of the nonlinear crystal. The efficiency will drop by
a factor 2 when L∆k � ±1.3916 rad, which helps us defining a spectral and an angular
acceptance bandwidths beyond which the upconversion efficiency falls off. The frequency
bandwidth is due to chromatic dispersion, and is related to the group velocity mismatch
of the mixing waves which will reduce the spatial overlap between the two pulses as they
propagate along the crystal. If we consider, for example, a variation of the probe frequency,
the associated full bandwidth can be calculated as (ω3 varies automatically with ω1 to
preserve energy conservation)

∂∆k
∂ω1

=
∂kω1

∂ω1
− ∂kω3

∂ω3
=

1
vg,1
− 1

vg,3
→ ∆ω1 =

2.7831
|v−1

g,3 − v−1
g,1| L
, (3.9)

which, comparing the group indexes at our probe and gate frequencies, yields a relative
delay of roughly 90 fs along a crystal length of 2 mm, corresponding to a phase-matching
bandwidth of ∼ 10 nm [125]. For this reason, a 2 mm-thick crystal represents a sensible
choice for pump and gate pulses of roughly the same bandwidth and duration (compare
Figure 3.4). Similar considerations hold for the angular acceptance, with a few differences.
In a type I configuration, the spatial walk-off related to the angular acceptance affects only
the (extraordinary) sum-frequency signal, leaving the total interaction length between the
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Figure 3.3. (a) Reference frame for a uniaxial birefringent crystal in a sum-frequency interaction
(not to scale). The optic axis of the crystal lies along ẑ. (b) Geometric sketch showing how the
phase-matching condition results in different angular acceptances along the ordinary and extraordinary
directions. A slightly misaligned ke and a largely misaligned ko may result in the same angular
mismatch ∆θ.

where the kωi are the wave vectors of the mixing beams at angular frequency ωi. Equation
(3.3) becomes scalar in the simple case of collinear geometry, yielding

ω1n(ω1) + ω2n(ω2) − (ω1 + ω2)n(ω3) = 0, (3.4)

where n(ωi) is the refractive index of the crystal at ωi. It is generally not possible to satisfy
the condition (3.4) in isotropic media or in centrosymmetric solids, but one can exploit
the birefringence of some anisotropic crystals to obtain the right combination of refractive
indexes depending on the angle of incidence and polarization of the incoming beams. In a
uniaxial birefringent crystal with optic axis ẑ, both ordinary (polarization in the x̂ŷ plane)
and extraordinary (polarization perpendicular to the x̂ŷ plane) rays are defined, seeing
refractive indexes of no and ne respectively. Each intermediate combination will yield a
correspondingly weighted value of the effective refractive index along that direction, which
allows to satisfy (3.4) by tuning the angle of incidence. Uniaxial crystals are classified as
‘negative’ if ne < no and ‘positive’ otherwise. In the former case the possible polarization
combinations are o + o → e or o + e → e with the sum-frequency necessarily polarized
along the extraordinary direction, while for positive crystals it must be ordinarily polarized,
i.e., e + o→ o or e + e→ o. Irrespective of the sign of the birefringence, the interaction is
termed of type I if the incident beams have parallel polarization, and type II otherwise.

In our experimental setup, we use a square 5 mm × 5 mm × 2 mm β-Barium borate
(BBO) crystal (Figure 3.3a). BBO is a negative crystal, which we use in a o + o → e
(type I) configuration. The angle θ̂ between the optic axis and the incidence direction must
therefore satisfy the phase-matching relation

ω1no(ω1) + ω2no(ω2) − (ω1 + ω2)n(ω3, θ̂) = 0, (3.5)
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For a BBO crystal the relevant refractive indexes can be calculated using empirical Sell-
maier’s equations with coefficients

n2
o = 2.7405 +

0.0184
λ2 − 0.0179

− 0.0155λ2

n2
e = 2.3730 +

0.0128
λ2 − 0.0156

− 0.0044λ2

which give the required n(ω3, θ̂) through equation (3.5) for the specific pair of probe and
gate frequencies used, which, in our experimental case, correspond to λ1 = 810 nm and
λ2 = 1.51 µm (λ3 = 527 nm). Our crystal is cut at an angle θ̂ = 22.96° in order to
give maximum conversion efficiency for this combination of wavelengths at perpendicular
incidence. If different wavelengths are used, the incidence angle can be adjusted accordingly
by slightly tilting the crystal appropriately.

Once that the correct geometry is set, a certain efficiency is associated to the upconver-
sion process, which can be defined though the generated power [124]

Pω3 = ηPω1 Pω2 (3.7)

and depends critically on the phase mismatch ∆k = |∆k|, with a typical decay behavior

η(∆k) = η(0)
sin2(L∆k)

(L∆k)2 , (3.8)

where L represents the thickness of the nonlinear crystal. The efficiency will drop by
a factor 2 when L∆k � ±1.3916 rad, which helps us defining a spectral and an angular
acceptance bandwidths beyond which the upconversion efficiency falls off. The frequency
bandwidth is due to chromatic dispersion, and is related to the group velocity mismatch
of the mixing waves which will reduce the spatial overlap between the two pulses as they
propagate along the crystal. If we consider, for example, a variation of the probe frequency,
the associated full bandwidth can be calculated as (ω3 varies automatically with ω1 to
preserve energy conservation)

∂∆k
∂ω1

=
∂kω1

∂ω1
− ∂kω3

∂ω3
=

1
vg,1
− 1

vg,3
→ ∆ω1 =

2.7831
|v−1

g,3 − v−1
g,1| L
, (3.9)

which, comparing the group indexes at our probe and gate frequencies, yields a relative
delay of roughly 90 fs along a crystal length of 2 mm, corresponding to a phase-matching
bandwidth of ∼ 10 nm [125]. For this reason, a 2 mm-thick crystal represents a sensible
choice for pump and gate pulses of roughly the same bandwidth and duration (compare
Figure 3.4). Similar considerations hold for the angular acceptance, with a few differences.
In a type I configuration, the spatial walk-off related to the angular acceptance affects only
the (extraordinary) sum-frequency signal, leaving the total interaction length between the
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probe and gate pulses unmodified. In turn, this slightly reduces the beam quality of the sum-
frequency beam, which will be slightly elongated along the walk-off direction and therefore
affect the spatial point spread function. The walk-off angle � for the sum-frequency beam
can be calculated using the definition of n(ω3, θ) (3.6) as

� = − 1
n(ω3)

∂n(ω3)
∂θ

=

(
n2

e(ω3) − n2
o(ω3)

)
sin θ cos θ

n2
o(ω3) sin2 θ + n2

e(ω3) cos2 θ
(3.10)

which yields � � 3°, corresponding to a broadening of the sum-frequency spot at the exit
surface of the 2 mm crystal to a width of roughly 100 µm. Finally, an important role is
played by the phase mismatch induced by an angular misalignment between the probe
and the gate pulse. This is of particular relevance for our application since, while our gate
beam propagates collimated to the crystal, our probe signal will comprise multiply scattered
light distributed over a broad range of incoming angles (see, for example, the simulated
distributions of Figure 2.10). This means that we will effectively upconvert only a fraction
of the light transmitted by our samples, depending on the angular filtering actuated by the
phase-matching condition. The full-angle-half-maximum width can be calculated similarly
to the frequency case, considering a mismatch θ between the probe and the gate beams

∂∆k
∂θ
=
ω3

c
∂n(ω3, θ)
∂θ

→ ∂∆k
∂θ
= −ω3

c
n3(ω3, θ)

[
1

n2
e(ω3)

− 1
n2

o(ω3)

]
sin θ cos θ (3.11)

which leads to

∆θ =
2.783c

Lω3
∣∣∣n3(ω3, θ)

[
n−2

e (ω3) − n−2
o (ω3)

]
sin θ cos θ

∣∣∣ � 0.1°. (3.12)

As can be seen, the value of the angular acceptance for our experimental configuration is
extremely small using our experimental wavelengths. This is a well known property of
critical phase-matching optical gating, which in fact found application as a transillumination
technique where the narrow collinear filtering can be beneficial to the selection of ballistic
light.

From an experimental point of view, it is important to be aware of the possible effects
of this spatial filtering when comparing measured data with a given forward model. Two
points in particular are worth discussing. The first one regards the fact that the value that
we obtained for the full-angle-half-maximum ∆θ refers naturally to the x̂ŷẑ crystalline
reference frame, which is tilted by an angle θ̂ with respect to the faces of the crystal. This
means that a certain misalignment in the xyz reference of the plane surfaces of the crystal
might result in very different values of ∆θ depending on whether we are moving away from
θ̂ of tangentially to it. This difference can be qualitatively appreciated by looking at the
sketches shown in Figure 3.3b, and will introduce an anisotropic angular acceptance in
the xy plane of the crystal. This effect must be taken into account and corrected for when
moving to upconversion imaging applications, as we will discuss further in the following
subsections.

The second point concerns how this narrow angular selection affects evaluation of
time-resolved data depending on the model used. In the literature, when the diffusive
approximation is used to evaluate a spatially-integrated time-resolved dataset obtained
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with a similar setup, it is always tacitly assumed that there is a simple proportionality
between the total time-resolved transmittance and any angularly filtered fraction, as shown
explicitly in subsection 2.2.4. However, at early times this assumption fails more markedly
in proximity of the direction of collimated transmission, which is the only one that is
effectively upconverted. While this is not a problem when the diffusive approximation
is used (early transmitted light should be discarded anyways), care has to be taken also
when using the gold-standard method of Monte Carlo simulations. As a matter of fact,
it has been demonstrated that the breakdown of the diffusive approximation occurring at
early times when measuring in transmission can be profitably exploited to retrieve the
otherwise degenerate scattering anisotropy factor g [102]. However, as it is apparent from
the simulations shown in Figure 2.10 for a sample of comparable thickness, the shape of
the angular distribution at early times is fairly time-dependent, which should be taken in
account also in the forward model, e.g., by considering only the walkers that are transmitted
within a narrow angular range close to cos θ = 1. As regards the results presented in
this thesis work, experimental data are compared with MC simulations performed with
a custom software suite (described in Chapter 5) capable of taking into account arbitrary
angular filtering conditions. As a matter of fact, however, all the data and numerical
evaluation techniques that we describe in the following are based on the late-time behavior
of transmittance, where we have tested that the net effect of the angular selection applied
by the effective numerical aperture of our optical gating setup is completely negligible.

3.2.2. Sources characterization

A detailed characterization of the laser sources used in the experiment is of paramount
importance to assess the correct functioning of the gating application, its temporal resolution,
and the correct modeling of the source term in the direct and inverse models of light transport
discussed in the previous chapter. In our experiment, the probe and gate pulses are at two
different wavelengths. Although the working principle of optical gating is still valid in
a second-harmonic generation scheme, employing different wavelengths offers several
practical advantages such as the compatibility with a collinear illumination scheme and
the ability to easily remove background signal spectrally. Moreover, the ‘probe’ and ‘gate’
roles are perfectly interchangeable between the two arms, that are perfectly symmetric.
This allows to investigate any sample in two different wavelength regions, enabling a
multi-spectral characterization without the need to modify the setup.

The laser sources employed in our experiment are arranged as follows: a Spectra-
Physics® Millennia diode-pumped solid-state (DPSS) CW laser emitting at 532 nm with
a power of 8.6 W pumps a Tsunami Ti:Sa mode-locked laser which generates a train of
pulses at λ1 = 810 nm with a repetition rate of 82 MHz and an average power of 1.65 W.
The output of the Tsunami is fed into an Opal optical parametric oscillator (OPO) to yield
a pair of downconverted beams of which only the shorter wavelength one (λ2 = 1.51 µm)
is used as the gate beam (see Figure 3.5). Different frequencies can be obtained if desired
via temperature tuning of the downconverting crystal, in the 1.4–1.6 µm range. The probe
beam, conversely, is provided by the non converted residual at 810 nm. The average power
of the two beams at the output apertures of the Opal is of 0.20 W and 0.28 W, respectively.

A temporal characterization of the probe pulse and a spectral characterization of
both beams is performed at the beginning of each measurement session using a compact
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probe and gate pulses unmodified. In turn, this slightly reduces the beam quality of the sum-
frequency beam, which will be slightly elongated along the walk-off direction and therefore
affect the spatial point spread function. The walk-off angle � for the sum-frequency beam
can be calculated using the definition of n(ω3, θ) (3.6) as
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sin θ cos θ
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o(ω3) sin2 θ + n2

e(ω3) cos2 θ
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which yields � � 3°, corresponding to a broadening of the sum-frequency spot at the exit
surface of the 2 mm crystal to a width of roughly 100 µm. Finally, an important role is
played by the phase mismatch induced by an angular misalignment between the probe
and the gate pulse. This is of particular relevance for our application since, while our gate
beam propagates collimated to the crystal, our probe signal will comprise multiply scattered
light distributed over a broad range of incoming angles (see, for example, the simulated
distributions of Figure 2.10). This means that we will effectively upconvert only a fraction
of the light transmitted by our samples, depending on the angular filtering actuated by the
phase-matching condition. The full-angle-half-maximum width can be calculated similarly
to the frequency case, considering a mismatch θ between the probe and the gate beams
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which leads to
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n−2

e (ω3) − n−2
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]
sin θ cos θ
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As can be seen, the value of the angular acceptance for our experimental configuration is
extremely small using our experimental wavelengths. This is a well known property of
critical phase-matching optical gating, which in fact found application as a transillumination
technique where the narrow collinear filtering can be beneficial to the selection of ballistic
light.

From an experimental point of view, it is important to be aware of the possible effects
of this spatial filtering when comparing measured data with a given forward model. Two
points in particular are worth discussing. The first one regards the fact that the value that
we obtained for the full-angle-half-maximum ∆θ refers naturally to the x̂ŷẑ crystalline
reference frame, which is tilted by an angle θ̂ with respect to the faces of the crystal. This
means that a certain misalignment in the xyz reference of the plane surfaces of the crystal
might result in very different values of ∆θ depending on whether we are moving away from
θ̂ of tangentially to it. This difference can be qualitatively appreciated by looking at the
sketches shown in Figure 3.3b, and will introduce an anisotropic angular acceptance in
the xy plane of the crystal. This effect must be taken into account and corrected for when
moving to upconversion imaging applications, as we will discuss further in the following
subsections.

The second point concerns how this narrow angular selection affects evaluation of
time-resolved data depending on the model used. In the literature, when the diffusive
approximation is used to evaluate a spatially-integrated time-resolved dataset obtained
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with a similar setup, it is always tacitly assumed that there is a simple proportionality
between the total time-resolved transmittance and any angularly filtered fraction, as shown
explicitly in subsection 2.2.4. However, at early times this assumption fails more markedly
in proximity of the direction of collimated transmission, which is the only one that is
effectively upconverted. While this is not a problem when the diffusive approximation
is used (early transmitted light should be discarded anyways), care has to be taken also
when using the gold-standard method of Monte Carlo simulations. As a matter of fact,
it has been demonstrated that the breakdown of the diffusive approximation occurring at
early times when measuring in transmission can be profitably exploited to retrieve the
otherwise degenerate scattering anisotropy factor g [102]. However, as it is apparent from
the simulations shown in Figure 2.10 for a sample of comparable thickness, the shape of
the angular distribution at early times is fairly time-dependent, which should be taken in
account also in the forward model, e.g., by considering only the walkers that are transmitted
within a narrow angular range close to cos θ = 1. As regards the results presented in
this thesis work, experimental data are compared with MC simulations performed with
a custom software suite (described in Chapter 5) capable of taking into account arbitrary
angular filtering conditions. As a matter of fact, however, all the data and numerical
evaluation techniques that we describe in the following are based on the late-time behavior
of transmittance, where we have tested that the net effect of the angular selection applied
by the effective numerical aperture of our optical gating setup is completely negligible.

3.2.2. Sources characterization

A detailed characterization of the laser sources used in the experiment is of paramount
importance to assess the correct functioning of the gating application, its temporal resolution,
and the correct modeling of the source term in the direct and inverse models of light transport
discussed in the previous chapter. In our experiment, the probe and gate pulses are at two
different wavelengths. Although the working principle of optical gating is still valid in
a second-harmonic generation scheme, employing different wavelengths offers several
practical advantages such as the compatibility with a collinear illumination scheme and
the ability to easily remove background signal spectrally. Moreover, the ‘probe’ and ‘gate’
roles are perfectly interchangeable between the two arms, that are perfectly symmetric.
This allows to investigate any sample in two different wavelength regions, enabling a
multi-spectral characterization without the need to modify the setup.

The laser sources employed in our experiment are arranged as follows: a Spectra-
Physics® Millennia diode-pumped solid-state (DPSS) CW laser emitting at 532 nm with
a power of 8.6 W pumps a Tsunami Ti:Sa mode-locked laser which generates a train of
pulses at λ1 = 810 nm with a repetition rate of 82 MHz and an average power of 1.65 W.
The output of the Tsunami is fed into an Opal optical parametric oscillator (OPO) to yield
a pair of downconverted beams of which only the shorter wavelength one (λ2 = 1.51 µm)
is used as the gate beam (see Figure 3.5). Different frequencies can be obtained if desired
via temperature tuning of the downconverting crystal, in the 1.4–1.6 µm range. The probe
beam, conversely, is provided by the non converted residual at 810 nm. The average power
of the two beams at the output apertures of the Opal is of 0.20 W and 0.28 W, respectively.

A temporal characterization of the probe pulse and a spectral characterization of
both beams is performed at the beginning of each measurement session using a compact
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Figure 3.4. (a) Autocorrelation measurement of the residual pulse. The envelope profile fringes
are fitted with the autoconvolution of two sech2(t) pulses. (b) Spectrum of the unconverted residual
(probe pulse) from the OPO, with a sech2(ω) fit. (c) Spectrum of the OPO signal (gate pulse) with a
sech2(ω) fit.

autocorrelator based on a Mach-Zehnder interferometer [126] and a spectrum analyzer. The
expected pulse shape for an actively mode-locked Ti:Sa laser is given by a hyperbolic-secant
function

f (t;∆τp) =

√
γp

2
sech
(
γpt
)
→ I(t;∆τp) =

γp

2
sech2(γpt), γp = 2 ln

(
1 +
√

2
)
/∆τp

(3.13)
where ∆τp is the full-width-half-maximum pulse duration. The sech2 pulse shape arises,
in spite of the active mode-locking, because of the pulse compression provided by the
negative group delay dispersion added in the cavity to make it stable [127, @128]. The
autocorrelation of two identical sech2 pulses can be derived analytically and is given by

Iac(t) = γac csch2(γact)
[
γac coth2(γact) − 1

]
, γac = 2 ln

(
1 +
√

2
)
/∆τac (3.14)

which we can use to fit the envelope of the autocorrelation trace (Figure 3.4a). The full-
width-half-maximum of the convoluted signal is equal to 144.6 fs, corresponding to a probe
pulse width of ∆τp = 93.7 fs. The pulse duration can be compared with its spectrum, which
also exhibits a sech2 dependence as can be found by a Fourier transform operation

Ĩ(ω;∆τp) =
π2

2γp
sech2

[
π

2γp
(ω − ωi)

]
. (3.15)

Figures 3.4b and 3.4c show typical spectra measured for the probe and gate beams, and
their respective fits with equation (3.15), yielding a central wavelength of 810.2 nm and
1510.5 nm, respectively. The values of ∆τp obtained from fitting the spectra correspond to
their associated Fourier limited pulse widths, which, in the case of the probe, would predict
a full-width-half-maximum duration of 74.7 fs. Comparing this value with that obtained
by the fit of the autocorrelation trace reveals that our experimental pulses are not strictly
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Figure 3.5. Schematic of the experimental setup. The output of a mode-locked Ti:Sa laser is fed into
an optical oscillator. The unconverted residual (red) and the synchronous downconverted signal (grey)
are used as the probe and gate pulses, respectively. The gate beam is collimated and expanded to
guarantee uniform illumination of the BBO crystal. A double-telecentric system (L2 and L3) collects
the light scattered from the sample, a diaphragm (FF) imposes isotropic angular acceptance. The
gate and probe beams are superimposed with a dichroic mirror (DM). The crystal and the detectors
are enclosed into a shielded box. A long-pass filter (LPF) at the entrance of the box ensures that
no visible light can enter from outside. Time-resolved detection can be performed either with a
photo-multiplier tube (PMT) or with a CCD camera. A chopper on the probe arm enables automatic
background subtraction when using a gated photon counter.

Fourier limited. Regarding the gate pulse, its duration cannot be measured directly, but we
can nonetheless retrieve it by adapting iteratively the a cross-correlation time trace to the
numerical convolution of the (known) pump pulse with a sech2 pulse of unknown duration.
The resulting fit is shown in Figure 3.6a, returning a gate pulse duration of 134 fs, to be
compared with a typical full-width-half-maximum of the whole cross-correlation signal of
roughly 170 fs. This value can be thought of as the analogue of the instrument response
time, and we assumed it as the duration of a pulsed sech2 excitation in all our Monte Carlo
simulations to be compared to experimental data.

3.3. Ultrafast imaging

The experimental setup that we developed to perform transmittance and reflectance mea-
surements both in the temporal and spatial domain builds upon a preexisting optical gating
setup described in [129], which has been improved and modified for this purpose as shown
in Figure 3.5. The setup is shown in a transmission configuration, but reflectance can be
measured as well by rearranging the illumination and collection geometry accordingly.

Several examples exist in the literature where the cross-correlation technique has been
used to characterize ultrafast pulse propagation [130, 131], generally disregarding the
spatial distribution of the converted signal (Figure 3.6a). Nevertheless, cross-correlation
gating offers several advantages, such as being unaffected by optical chirp (in contrast with
interferometric methods) and being compatible with a collinear excitation scheme because
spurious second harmonic contributions from gate/probe beams, if any, can still be spectrally
separated. Moreover, a collinear geometry is particularly convenient to mitigate possible
distortion of upconverted images passing through the BBO, which is a crucial aspect for
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Figure 3.4. (a) Autocorrelation measurement of the residual pulse. The envelope profile fringes
are fitted with the autoconvolution of two sech2(t) pulses. (b) Spectrum of the unconverted residual
(probe pulse) from the OPO, with a sech2(ω) fit. (c) Spectrum of the OPO signal (gate pulse) with a
sech2(ω) fit.

autocorrelator based on a Mach-Zehnder interferometer [126] and a spectrum analyzer. The
expected pulse shape for an actively mode-locked Ti:Sa laser is given by a hyperbolic-secant
function

f (t;∆τp) =
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sech
(
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)
→ I(t;∆τp) =
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sech2(γpt), γp = 2 ln

(
1 +
√

2
)
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(3.13)
where ∆τp is the full-width-half-maximum pulse duration. The sech2 pulse shape arises,
in spite of the active mode-locking, because of the pulse compression provided by the
negative group delay dispersion added in the cavity to make it stable [127, @128]. The
autocorrelation of two identical sech2 pulses can be derived analytically and is given by

Iac(t) = γac csch2(γact)
[
γac coth2(γact) − 1

]
, γac = 2 ln

(
1 +
√

2
)
/∆τac (3.14)

which we can use to fit the envelope of the autocorrelation trace (Figure 3.4a). The full-
width-half-maximum of the convoluted signal is equal to 144.6 fs, corresponding to a probe
pulse width of ∆τp = 93.7 fs. The pulse duration can be compared with its spectrum, which
also exhibits a sech2 dependence as can be found by a Fourier transform operation

Ĩ(ω;∆τp) =
π2

2γp
sech2

[
π

2γp
(ω − ωi)

]
. (3.15)

Figures 3.4b and 3.4c show typical spectra measured for the probe and gate beams, and
their respective fits with equation (3.15), yielding a central wavelength of 810.2 nm and
1510.5 nm, respectively. The values of ∆τp obtained from fitting the spectra correspond to
their associated Fourier limited pulse widths, which, in the case of the probe, would predict
a full-width-half-maximum duration of 74.7 fs. Comparing this value with that obtained
by the fit of the autocorrelation trace reveals that our experimental pulses are not strictly
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Figure 3.5. Schematic of the experimental setup. The output of a mode-locked Ti:Sa laser is fed into
an optical oscillator. The unconverted residual (red) and the synchronous downconverted signal (grey)
are used as the probe and gate pulses, respectively. The gate beam is collimated and expanded to
guarantee uniform illumination of the BBO crystal. A double-telecentric system (L2 and L3) collects
the light scattered from the sample, a diaphragm (FF) imposes isotropic angular acceptance. The
gate and probe beams are superimposed with a dichroic mirror (DM). The crystal and the detectors
are enclosed into a shielded box. A long-pass filter (LPF) at the entrance of the box ensures that
no visible light can enter from outside. Time-resolved detection can be performed either with a
photo-multiplier tube (PMT) or with a CCD camera. A chopper on the probe arm enables automatic
background subtraction when using a gated photon counter.

Fourier limited. Regarding the gate pulse, its duration cannot be measured directly, but we
can nonetheless retrieve it by adapting iteratively the a cross-correlation time trace to the
numerical convolution of the (known) pump pulse with a sech2 pulse of unknown duration.
The resulting fit is shown in Figure 3.6a, returning a gate pulse duration of 134 fs, to be
compared with a typical full-width-half-maximum of the whole cross-correlation signal of
roughly 170 fs. This value can be thought of as the analogue of the instrument response
time, and we assumed it as the duration of a pulsed sech2 excitation in all our Monte Carlo
simulations to be compared to experimental data.

3.3. Ultrafast imaging

The experimental setup that we developed to perform transmittance and reflectance mea-
surements both in the temporal and spatial domain builds upon a preexisting optical gating
setup described in [129], which has been improved and modified for this purpose as shown
in Figure 3.5. The setup is shown in a transmission configuration, but reflectance can be
measured as well by rearranging the illumination and collection geometry accordingly.

Several examples exist in the literature where the cross-correlation technique has been
used to characterize ultrafast pulse propagation [130, 131], generally disregarding the
spatial distribution of the converted signal (Figure 3.6a). Nevertheless, cross-correlation
gating offers several advantages, such as being unaffected by optical chirp (in contrast with
interferometric methods) and being compatible with a collinear excitation scheme because
spurious second harmonic contributions from gate/probe beams, if any, can still be spectrally
separated. Moreover, a collinear geometry is particularly convenient to mitigate possible
distortion of upconverted images passing through the BBO, which is a crucial aspect for
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accurate spatially resolved experiments [132]. Still, in order to adapt the experimental
configuration to an ultrafast imaging application, two main modifications have been adopted
to further improve its performance and quantitative accuracy, namely the addition of a
double-telecentric optical apparatus and of a tunable Fourier-space filter (diaphragm FF).
Together, they allow to transfer the paraxial component of transmitted light unaltered to the
BBO crystal, and to correct for its anisotropic angular acceptance.

The double telecentric system is implemented using two identical lenses (L2 and L3) in
a 4 f configuration, with f = 100 mm. Different lenses can be used if a higher magnification
is needed. In our case, the resulting magnification was approximately of 1×, allowing to
cover a field-of-view of a few mm in size. With respect to a fixed focal lens, a double
telecentric system offers lower distortion over the field of view, but most importantly
preserves the angles between the object and the image. As we have seen in subsection 3.2.1,
only an extremely narrow range of k vectors falls within the angular acceptance determined
by the phase-matching condition. In order to have a constant upconversion efficiency over
the whole field-of-view, which is fundamental to achieve a high quantitative accuracy, the
angular selection that is applied on the crystal (image) should be independent of the exit
point on the surface of the sample (object). Having both the entrance and exit pupils at
infinity guarantees that light that impinges perpendicularly on the BBO (and is therefore
upconverted with maximum intensity) has left the sample with the same perpendicular
angle irrespective of its exit point.

The presence of a tunable aperture in the back-focal plane of lens L2 allows to vary
the numerical aperture of the collection optics, which in turn affects the spatial resolution
of the system. As we have seen, the phase-matching condition already determines a rigid
constrain on the angular acceptance of the sum-frequency spatial frequencies, which is very
narrow and anisotropic along the xy image plane. A few words should be spent on how
this can alternatively impact the spatial resolution or the spatial uniformity of upconverted
image, depending on the experimental configuration. Several examples are reported in
the literature regarding full-frame imaging applications [120, 133–140], most of which
employ the non-linear crystal in the Fourier plane of the imaging optics rather than in the
image plane. Both configurations present different advantages and their adoption is to be
preferred depending on the specific application. In the common Fourier-plane configuration
the angular acceptance limits the upconversion uniformity over the whole field of view,
with a decreasing efficiency with increasing distance from the optical axis, while in our
case the image is formed with a cut-off set of k vectors (which lowers the resolution) while
guaranteeing a spatially uniform up-conversion efficiency. Despite of its low quantitative
fidelity, the Fourier configuration is typically preferred because of the sharper images that it
delivers, and because it allows to use a more tightly focused gate beam which enhances the
intensity of the sum-frequency signal. Conversely, we adopted an image-plane configuration
since our diffuse signal typically does not exhibit any fine spatial feature, while a spatially
uniform response represents a critical condition to attain our quantitative accuracy goal
over multiple orders of magnitude.

The effect of the spatial frequency cut-off can be appreciated by comparing the images
of a USAF 1951 resolution target obtained under direct illumination with a collimated
probe beam (Figure 3.6b) and its transient, sum-frequency replica (Figure 3.6c). As can
be seen, the overall resolution of the upconverted image is degraded due to the narrow
filtering, and it is slightly worse along the x axis (compare with Figure 3.3b) where the
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Figure 3.6. (a) Typical instrument response function obtained as the cross-correlation signal of the
probe and gate pulses propagating with no intervening scattering sample nor lenses. A fit with the
numerical convolution of two sech2 pulses returns a full-width-half-maximum of 174 fs. (c) Switching
the PMT detector with the CCD camera, the spatial information encoded in the signal is retrieved,
showing the spatial resolution achieved in the upconversion process. The resolution of the imaging
system under direct illumination is displayed in (b) for comparison.

cut-off sets in more steeply. The spatial resolution obtained along the two directions is of
11.3 lp/mm along x and 22.6 lp/mm along y, calculated at a contrast threshold of 0.5. An
isotropic angular acceptance of 11.3 lp/mm is finally achieved by closing the diaphragm
(FF) to an aperture below 1 mm, which is anyway comparable to what is typically achieved
in the literature [120, 136, 139, 140].

The rest of the setup is organized as follows: the laser sources, shown in the upper
part of Figure 3.5, are characterized using a spectrum analyzer and an autocorrelator (not
shown) as discussed previously. The unconverted residual from the Ti:Sa laser is used as
the probe beam while the OPO signal serves as the gate (the idler is discarded). The gate
and the probe pulses are perfectly interchangeable between the two arms of the setup, as
well as the position of the sample and of the delay line. A focusing lens L1 focuses the
probe beam on the entrance surface of the sample. The size of the focal spot does not
represent a particularly relevant parameter in the case of homogeneous turbid media. In
fact, total time-resolved transmittance curves do not depend on the excitation spot position
(and therefore on its size), and would yield the same result also for a plane wave excitation.
On the other hand, when considering the mean square width expansion of the spatial
profiles, a larger excitation spot would shift the retrieved values, but leave the expansion
rate unmodified. Therefore, the only strict requirement regarding the size of the excitation
is that the transmitted profile should fit within the field of view of the collection optics at
any delay. For the sake of convenience and for simpler modeling, we decided to work with a
rather tight focus of ∼ 10 µm, in order to assume a pencil beam configuration in the diffusive
approximation. MC simulations are performed with a spatially gaussian profile of the actual
experimental size. As regards the gate beam, a half-wave plate allows to turn its polarization
to ensure that it matches that of the probe beam as required in a type I upconversion scheme.
The beam is subsequently collimated and expanded to a size that is much larger than the
crystal free surface, in order to obtain a uniform upconversion efficiency over the whole
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accurate spatially resolved experiments [132]. Still, in order to adapt the experimental
configuration to an ultrafast imaging application, two main modifications have been adopted
to further improve its performance and quantitative accuracy, namely the addition of a
double-telecentric optical apparatus and of a tunable Fourier-space filter (diaphragm FF).
Together, they allow to transfer the paraxial component of transmitted light unaltered to the
BBO crystal, and to correct for its anisotropic angular acceptance.

The double telecentric system is implemented using two identical lenses (L2 and L3) in
a 4 f configuration, with f = 100 mm. Different lenses can be used if a higher magnification
is needed. In our case, the resulting magnification was approximately of 1×, allowing to
cover a field-of-view of a few mm in size. With respect to a fixed focal lens, a double
telecentric system offers lower distortion over the field of view, but most importantly
preserves the angles between the object and the image. As we have seen in subsection 3.2.1,
only an extremely narrow range of k vectors falls within the angular acceptance determined
by the phase-matching condition. In order to have a constant upconversion efficiency over
the whole field-of-view, which is fundamental to achieve a high quantitative accuracy, the
angular selection that is applied on the crystal (image) should be independent of the exit
point on the surface of the sample (object). Having both the entrance and exit pupils at
infinity guarantees that light that impinges perpendicularly on the BBO (and is therefore
upconverted with maximum intensity) has left the sample with the same perpendicular
angle irrespective of its exit point.

The presence of a tunable aperture in the back-focal plane of lens L2 allows to vary
the numerical aperture of the collection optics, which in turn affects the spatial resolution
of the system. As we have seen, the phase-matching condition already determines a rigid
constrain on the angular acceptance of the sum-frequency spatial frequencies, which is very
narrow and anisotropic along the xy image plane. A few words should be spent on how
this can alternatively impact the spatial resolution or the spatial uniformity of upconverted
image, depending on the experimental configuration. Several examples are reported in
the literature regarding full-frame imaging applications [120, 133–140], most of which
employ the non-linear crystal in the Fourier plane of the imaging optics rather than in the
image plane. Both configurations present different advantages and their adoption is to be
preferred depending on the specific application. In the common Fourier-plane configuration
the angular acceptance limits the upconversion uniformity over the whole field of view,
with a decreasing efficiency with increasing distance from the optical axis, while in our
case the image is formed with a cut-off set of k vectors (which lowers the resolution) while
guaranteeing a spatially uniform up-conversion efficiency. Despite of its low quantitative
fidelity, the Fourier configuration is typically preferred because of the sharper images that it
delivers, and because it allows to use a more tightly focused gate beam which enhances the
intensity of the sum-frequency signal. Conversely, we adopted an image-plane configuration
since our diffuse signal typically does not exhibit any fine spatial feature, while a spatially
uniform response represents a critical condition to attain our quantitative accuracy goal
over multiple orders of magnitude.

The effect of the spatial frequency cut-off can be appreciated by comparing the images
of a USAF 1951 resolution target obtained under direct illumination with a collimated
probe beam (Figure 3.6b) and its transient, sum-frequency replica (Figure 3.6c). As can
be seen, the overall resolution of the upconverted image is degraded due to the narrow
filtering, and it is slightly worse along the x axis (compare with Figure 3.3b) where the
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Figure 3.6. (a) Typical instrument response function obtained as the cross-correlation signal of the
probe and gate pulses propagating with no intervening scattering sample nor lenses. A fit with the
numerical convolution of two sech2 pulses returns a full-width-half-maximum of 174 fs. (c) Switching
the PMT detector with the CCD camera, the spatial information encoded in the signal is retrieved,
showing the spatial resolution achieved in the upconversion process. The resolution of the imaging
system under direct illumination is displayed in (b) for comparison.

cut-off sets in more steeply. The spatial resolution obtained along the two directions is of
11.3 lp/mm along x and 22.6 lp/mm along y, calculated at a contrast threshold of 0.5. An
isotropic angular acceptance of 11.3 lp/mm is finally achieved by closing the diaphragm
(FF) to an aperture below 1 mm, which is anyway comparable to what is typically achieved
in the literature [120, 136, 139, 140].

The rest of the setup is organized as follows: the laser sources, shown in the upper
part of Figure 3.5, are characterized using a spectrum analyzer and an autocorrelator (not
shown) as discussed previously. The unconverted residual from the Ti:Sa laser is used as
the probe beam while the OPO signal serves as the gate (the idler is discarded). The gate
and the probe pulses are perfectly interchangeable between the two arms of the setup, as
well as the position of the sample and of the delay line. A focusing lens L1 focuses the
probe beam on the entrance surface of the sample. The size of the focal spot does not
represent a particularly relevant parameter in the case of homogeneous turbid media. In
fact, total time-resolved transmittance curves do not depend on the excitation spot position
(and therefore on its size), and would yield the same result also for a plane wave excitation.
On the other hand, when considering the mean square width expansion of the spatial
profiles, a larger excitation spot would shift the retrieved values, but leave the expansion
rate unmodified. Therefore, the only strict requirement regarding the size of the excitation
is that the transmitted profile should fit within the field of view of the collection optics at
any delay. For the sake of convenience and for simpler modeling, we decided to work with a
rather tight focus of ∼ 10 µm, in order to assume a pencil beam configuration in the diffusive
approximation. MC simulations are performed with a spatially gaussian profile of the actual
experimental size. As regards the gate beam, a half-wave plate allows to turn its polarization
to ensure that it matches that of the probe beam as required in a type I upconversion scheme.
The beam is subsequently collimated and expanded to a size that is much larger than the
crystal free surface, in order to obtain a uniform upconversion efficiency over the whole
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field-of-view. If properly collimated, the gate beam can be approximated as a plane wave
impinging on the BBO with a perpendicular wave-vector.

The intensity of the sum-frequency generated signal typically spans a very large
dynamic range, and the detection part of the setup must be shielded against ambient light to
avoid spurious signal in the photon counting regime. Detection is performed either by using
a photo-multiplier tube (PMT) in a spatially-integrated configuration (see, for example,
Figure 3.6a) in combination with a gated photon counter and a chopper for automatic
background subtraction, or by taking an image with a back-illuminated Andor iKon M912
CCD camera (Figure 3.6c). Inside the detection box, two independent imaging systems
(not shown) can be switched to form an image of the BBO surface optimized for the probe
(for alignment purposes) or the sum-frequency wavelength. Isolation of the sum-frequency
wavelength is obtained with a long-pass filter (LPF) at the entrance of the detection box,
and using a cascade of a dichroic mirror and band-pass filters obtaining an optical density
exceeding 15 at the probe wavelength and above 10 at the second harmonic of the probe
and third harmonic of the gate. The delay line and the sample positioning systems are
motorized and controlled by a PC routine. Several sequences can be easily set to repeat
automatically the measurement multiple times at different positions of the sample, or to
move it while integrating the signal at each fixed delay to obtain a measurement that is
more representative of its average properties.

To conclude, it is interesting to comment on the overall sensitivity of the upconversion
process in terms of absolute fluence. Previous measurements performed with the same
setup give an estimate of the signal attenuation at which the noise level is eventually
reached [131]. We find that starting from a typical pulse energy of ∼ 1 nJ at a probe
wavelength, an upconverted signal can still be detected after a damping of 8 decades, which
already takes into account the fraction of the probe beam that is lost by diffuse reflection
and the limited solid angle subtended by the collection optics. In addition, several other
parameters can be adjusted to further enhance sensitivity, such as increasing the integration
time of the detector, using a non-linear crystal with a higher upconversion efficiency and
a larger angular acceptance (such as bismuth triborate) or increasing the fluence on the
crystal. To this purpose, it is particularly convenient to increase the gate beam intensity as
much as possible, since it does not interact with the sample and therefore does not present
any alteration or damaging risk (in comparison, the crystal has a damage threshold of
∼ 100 MW mm−1).
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Figure 4.1. (a) Top and side view of typical glass-enclosed samples. The glass slides are glued
together at a controlled distance using the Norland adhesive (transparent regions). Successively, the
opaque paste is sucked by capillary forces inside the central air gap and UV-cured. (b) By spin-coating
in advance the glass slides, they can be later removed to get a free-standing scattering sample. (c)
Cross-section of the free-standing slab sample observed at the scanning electron microscope. The
spatial distribution of scattering particles shows small-scale clusters homogeneously dispersed across
the sample thickness. As confirmed by our experimental characterization and by the literature on
TiO2 nanoparticles [142], light propagates perceiving an effective, homogeneous scatterer density
even in the presence of small local clusters.

used procedure, in fact, cannot be removed from the enclosing glass slides. In principle,
this configuration is compatible with a diffusion-based model with matched boundary
conditions (the polymer has roughly the same refractive index of the glass slides), but in
practice the finite thickness of the enclosing slides makes data evaluation more complex. In
fact, the sample is effectively a 3-layer slab embedded in air, which causes a large fraction
of light being reflected back into the sample from air-glass boundaries. Using 1 mm-thick
slides, the reflection-free time window is defined by the ballistic time that diffused light
takes to be reflected back into the sample 2 × 1 mm/vglass ∼ 10 ps, meaning that all spatial
and temporal information collected after this delay will be deformed by the presence of
this highly convoluted extra contribution. While a 3-layer configuration could be easily
accounted for in MC simulation, data evaluation with the diffusive approximation on a time
scale longer than few ps becomes much less straightforward.

A few ways of reducing this problem have been attempted in the past, such as glu-
ing thicker glass layers of even absorbing filters to suppress internal reflections [129].
Eventually, a new sample fabrication technique has been developed, allowing to produce
free-standing scattering samples with well-defined flat interfaces. By using a spin coater,
a controlled sub-µm layer of polyvynil alcohol (PVA) is deposited on both glass slides
before they are glued together and infiltrated with the opaque paste. Polyvynil alcohol is
a water-soluble polymer, and can be dissolved after curing the sample to release it from
the glass slides (Figure 4.1b). Figure 4.1c shows a cross-section of the turbid region of the
sample. As can be qualitatively seen, the TiO2 nanoparticles are dispersed in small clusters
homogeneously distributed across the thickness of the sample. It has been experimentally
demonstrated that this slight level of inter-particle clustering does not differ substantially
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from a perfectly homogeneously dispersed mixture [142]. Our optical characterization, as
described in the following, confirms that light perceives an effective, homogeneous scatterer
density even in the presence of small clusters.

4.1.2. Data evaluation models

The second critical element in our validation procedure is represented by the correct
implementation of the fitting models. In our investigation, the experimental data is compared
both with the diffusion approximation and with the Monte Carlo model of light transport.
In the latter case, due to the flexibility of the simulation software, an accurate configuration
can be implemented, including the actual spatial and temporal distribution of the probe
beam. As regards the diffusive approximation, care has to be taken when adapting the
actual experimental configuration to the simplifications of the model. A few points in
particular are worth discussing. As we discussed in Section 2.2.3, the relations that we
obtained for the transmittance from a slab refer to an isotropic point source situated at
a depth zsrc rather than to a pencil beam emitting a δ-like pulse at t = 0 s. In order to
use a relation for the total transmittance such as equation (2.113), the experimental time
scale of the measurement must be translated integrally to match the origin of the time
axis. Determining the correct time origin is a critical task which can affect dramatically
the accuracy of an optical characterization technique. If the time origin is set too early
or too late, unphysical results might arise (such as pre-ballistic transmission), and the
characterization of the scattering properties would be heavily affected because even a
slightly anticipated or delayed rising time in the transmittance curves can be associated to
higher or lower scattering probabilities.

The steps involved in determining the correct origin of the time axis are depicted
in Figure 4.2 for a typical sample. The starting reference is of course provided by a
cross-correlation measurement taken without any intervening sample, which will reach its
maximum at a given position of the translation stage (Figure 4.2a). This delay does not
represent yet the origin of the time axis because, even in the cross-correlation case, the probe
pulse arrives at the crystal after passing through an effective ‘sample’ made of air with the
same thickness L as the actual sample. By knowing in advance the thickness of the sample,
it is therefore possible to anticipate the cross-correlation signal (or, equivalently, delay the
transmittance) by an offset of L/c to account for it (Figure 4.2c). To our knowledge, this is
the only correction, if any, that is usually applied in the literature in order to set the time
axis. However, a finer adjustment is still required to match the assumption of the DA model,
relating to the fact that the pulse should be emitted from within the sample, not from its
outer surface (Figure 4.2d). As a matter of fact, the DA requires that the isotropic source is
placed at a depth zsrc = l′s. Clearly, this extra step compromises any optical characterization
procedure in the first place: strictly speaking, it is not even possible to set the time axis of
the measurement without knowing in advance the scattering mean free path. To circumvent
this issue, in our analysis we developed a new iterative fitting technique for the retrieval of
the optical properties. Starting from a reasonable guess for l′s, the time axis is iteratively
shifted by l′s/c until the result of this self-consistent fit converge to the previous guess within
a fixed tolerance. By doing so, variations of a few percent are to be found with respect to the
previous procedure even for samples with an optical thickness � 20, well in the diffusive
regime. Still, any procedure devised to evaluate the total transmittance curve necessarily
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Figure 4.1. (a) Top and side view of typical glass-enclosed samples. The glass slides are glued
together at a controlled distance using the Norland adhesive (transparent regions). Successively, the
opaque paste is sucked by capillary forces inside the central air gap and UV-cured. (b) By spin-coating
in advance the glass slides, they can be later removed to get a free-standing scattering sample. (c)
Cross-section of the free-standing slab sample observed at the scanning electron microscope. The
spatial distribution of scattering particles shows small-scale clusters homogeneously dispersed across
the sample thickness. As confirmed by our experimental characterization and by the literature on
TiO2 nanoparticles [142], light propagates perceiving an effective, homogeneous scatterer density
even in the presence of small local clusters.

used procedure, in fact, cannot be removed from the enclosing glass slides. In principle,
this configuration is compatible with a diffusion-based model with matched boundary
conditions (the polymer has roughly the same refractive index of the glass slides), but in
practice the finite thickness of the enclosing slides makes data evaluation more complex. In
fact, the sample is effectively a 3-layer slab embedded in air, which causes a large fraction
of light being reflected back into the sample from air-glass boundaries. Using 1 mm-thick
slides, the reflection-free time window is defined by the ballistic time that diffused light
takes to be reflected back into the sample 2 × 1 mm/vglass ∼ 10 ps, meaning that all spatial
and temporal information collected after this delay will be deformed by the presence of
this highly convoluted extra contribution. While a 3-layer configuration could be easily
accounted for in MC simulation, data evaluation with the diffusive approximation on a time
scale longer than few ps becomes much less straightforward.

A few ways of reducing this problem have been attempted in the past, such as glu-
ing thicker glass layers of even absorbing filters to suppress internal reflections [129].
Eventually, a new sample fabrication technique has been developed, allowing to produce
free-standing scattering samples with well-defined flat interfaces. By using a spin coater,
a controlled sub-µm layer of polyvynil alcohol (PVA) is deposited on both glass slides
before they are glued together and infiltrated with the opaque paste. Polyvynil alcohol is
a water-soluble polymer, and can be dissolved after curing the sample to release it from
the glass slides (Figure 4.1b). Figure 4.1c shows a cross-section of the turbid region of the
sample. As can be qualitatively seen, the TiO2 nanoparticles are dispersed in small clusters
homogeneously distributed across the thickness of the sample. It has been experimentally
demonstrated that this slight level of inter-particle clustering does not differ substantially
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from a perfectly homogeneously dispersed mixture [142]. Our optical characterization, as
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represent yet the origin of the time axis because, even in the cross-correlation case, the probe
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this issue, in our analysis we developed a new iterative fitting technique for the retrieval of
the optical properties. Starting from a reasonable guess for l′s, the time axis is iteratively
shifted by l′s/c until the result of this self-consistent fit converge to the previous guess within
a fixed tolerance. By doing so, variations of a few percent are to be found with respect to the
previous procedure even for samples with an optical thickness � 20, well in the diffusive
regime. Still, any procedure devised to evaluate the total transmittance curve necessarily
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Figure 4.2. Procedure followed to match the origin of the absolute time scale to that of the isotropic
point source of the DA model. (a) Raw output for the total transmittance and cross-correlation counts
of a typical sample as a function of the translation stage position. (b) Conversion to relative delay
using the relation ∆t = 2∆z/c. (c) Correction of the relative delay by the time taken by the probe
pulse to cross the empty region corresponding to the sample thickness. (d) Correction of the relative
delay by the depth at which the DA assumes to have an isotropic point source. (e) Final time shift of
both measurements to set time time origin at the obtained delay for the cross-correlation.

requires the knowledge of the effective refractive index, refractive index contrast and exact
thickness of the slab. These parameters are often not known to a high precision, or maybe
not even well defined when the sample presents a more complex heterogeneous structure.

In the case of our reference samples, determining the thickness and the refractive
index can be conveniently performed on an all-optical basis. By detecting both the main
cross-correlation signal and its first replica corresponding to an additional round-trip inside
the slab, both the refractive index of the polymer and the thickness of the slab can be
retrieved. The former can be estimated by comparing the ratio of the integral of the two
peaks, which are proportional to (1 − r)2 and (1 − r)2r2, with r =

(1−n
1+n
)2 assuming normal

incidence, while the latter is retrieved directly by the raw distance of the two peaks as
L = ∆z/n. The obtained values are in excellent agreement with the specs of the polymer
and the scanning electron microscope (SEM) images of the sample (Figure 4.1c).

The second main data evaluation model that we will use in this chapter is represented
by Monte Carlo simulations, which we perform using a new C++ software library called
MCPlusPlus [@143] that was developed from scratch during this thesis work in close
collaboration with Dr. G. Mazzamuto (see also Chapter 5). Similarly to other available
software packages [53, 144], MCPlusPlus allows to model a sample as a stack of layers
of different properties. Additionally, few others unique features are available which are
dedicated to an accurate modeling of the light source. Unlike other available libraries,
our software offers several angular, temporal and spatial distributions to choose from as
regards the source term. In particular, a stochastic sech2(t) pulse shape model is available
exploiting the analytical inverse of its cumulative distribution [@145], which allows to
model with extreme accuracy the temporal evolution of the probe pulse and the instrument
response. Analogously, among several simpler models, MCPlusPlus offers a simple
and extremely efficient algorithm to model accurately a gaussian beam, which has been
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Figure 4.3. Example of Gaussian ray bundle source with a beam waist of 8 µm, focused in (0, 0, 0).
At each cross-section along z the intensity is gaussian.

developed following reference [146]. Figure 4.3 shows an example of the trajectories that
form a gaussian ray bundle focused on the entrance surface of the sample. The model
allows to select the waist of the beam at the focusing lens, the waist in the focus, and
the working distance of the lens itself. The resulting beam satisfies the correct gaussian
intensity profile at each cross-cut along z. As a further validation of the validity of this
approach, propagating the beam through several non-scattering layers of different refractive
indexes, results in the correct refocusing distance and waist by simply applying Snell’s law
or ray transfer matrices to each of the trajectories. Therefore, this source model can also be
used for the case of samples enclosed in glass slides or containers, assuming that, as it is
commonly the case, the probe beam is focused at the interface of the sample rather than of
the container.

If not stated otherwise, all simulations performed to describe our scattering samples
have been performed assuming a gaussian-ray-bundle source term with a spatial full-width-
half-maximum of 10 µm and a temporal width of ∆τp = 170 fs. For the polymer samples, a
scattering anisotropy of g = 0.6 has been assumed, as calculated for a 280 nm-sized TiO2
nanoparticle using Mie theory [@26].

4.2. Unveiling data evaluation artifacts

4.2.1. Limited thickness vs absorption

The first set of measurements that we present refers to the simplest sample possible, i.e., a
plane parallel homogeneous scattering slab as depicted in Figures 4.1b and 4.1c. The initial
characterization consist of measuring the total transmittance using the PMT as an integrated
photon counter. A fit of the experimental data point is performed using equation (2.113)
to retrieve the scattering properties of the slab. In the fitting routine, relative rather than
absolute residuals are minimized, in order to weigth properly both the early part of the curve
and its asymptotic decay. As discussed previously, the experimental data can be normalized
since all the information can be retrieved from the shape of the curve rather than from
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requires the knowledge of the effective refractive index, refractive index contrast and exact
thickness of the slab. These parameters are often not known to a high precision, or maybe
not even well defined when the sample presents a more complex heterogeneous structure.

In the case of our reference samples, determining the thickness and the refractive
index can be conveniently performed on an all-optical basis. By detecting both the main
cross-correlation signal and its first replica corresponding to an additional round-trip inside
the slab, both the refractive index of the polymer and the thickness of the slab can be
retrieved. The former can be estimated by comparing the ratio of the integral of the two
peaks, which are proportional to (1 − r)2 and (1 − r)2r2, with r =
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)2 assuming normal

incidence, while the latter is retrieved directly by the raw distance of the two peaks as
L = ∆z/n. The obtained values are in excellent agreement with the specs of the polymer
and the scanning electron microscope (SEM) images of the sample (Figure 4.1c).

The second main data evaluation model that we will use in this chapter is represented
by Monte Carlo simulations, which we perform using a new C++ software library called
MCPlusPlus [@143] that was developed from scratch during this thesis work in close
collaboration with Dr. G. Mazzamuto (see also Chapter 5). Similarly to other available
software packages [53, 144], MCPlusPlus allows to model a sample as a stack of layers
of different properties. Additionally, few others unique features are available which are
dedicated to an accurate modeling of the light source. Unlike other available libraries,
our software offers several angular, temporal and spatial distributions to choose from as
regards the source term. In particular, a stochastic sech2(t) pulse shape model is available
exploiting the analytical inverse of its cumulative distribution [@145], which allows to
model with extreme accuracy the temporal evolution of the probe pulse and the instrument
response. Analogously, among several simpler models, MCPlusPlus offers a simple
and extremely efficient algorithm to model accurately a gaussian beam, which has been
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developed following reference [146]. Figure 4.3 shows an example of the trajectories that
form a gaussian ray bundle focused on the entrance surface of the sample. The model
allows to select the waist of the beam at the focusing lens, the waist in the focus, and
the working distance of the lens itself. The resulting beam satisfies the correct gaussian
intensity profile at each cross-cut along z. As a further validation of the validity of this
approach, propagating the beam through several non-scattering layers of different refractive
indexes, results in the correct refocusing distance and waist by simply applying Snell’s law
or ray transfer matrices to each of the trajectories. Therefore, this source model can also be
used for the case of samples enclosed in glass slides or containers, assuming that, as it is
commonly the case, the probe beam is focused at the interface of the sample rather than of
the container.

If not stated otherwise, all simulations performed to describe our scattering samples
have been performed assuming a gaussian-ray-bundle source term with a spatial full-width-
half-maximum of 10 µm and a temporal width of ∆τp = 170 fs. For the polymer samples, a
scattering anisotropy of g = 0.6 has been assumed, as calculated for a 280 nm-sized TiO2
nanoparticle using Mie theory [@26].

4.2. Unveiling data evaluation artifacts

4.2.1. Limited thickness vs absorption

The first set of measurements that we present refers to the simplest sample possible, i.e., a
plane parallel homogeneous scattering slab as depicted in Figures 4.1b and 4.1c. The initial
characterization consist of measuring the total transmittance using the PMT as an integrated
photon counter. A fit of the experimental data point is performed using equation (2.113)
to retrieve the scattering properties of the slab. In the fitting routine, relative rather than
absolute residuals are minimized, in order to weigth properly both the early part of the curve
and its asymptotic decay. As discussed previously, the experimental data can be normalized
since all the information can be retrieved from the shape of the curve rather than from
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Figure 4.4. Set of measurements on the reference sample. (a) Optical measurement of the thickness
and refractive index of the polymer slab. The delay between the main peak and its internally reflected
replica gives directly nL, while the ratio between the integral of the two pulses depends only on n.
We obtain a thickness of the slab of 203.4 µm, in perfect agreement with the SEM image of Figure
4.1c. (b) Experimental transmittance data (black squares) acquired with the PMT compared to an
exponential fit of the asymptotic decay time (dashed line). Two different DA fits are shown, forcing
null absorption and leaving it as a free parameter. As shown in panel (c), the obtained decay time is
not compatible with a non-absorbing sample according to the DA.

absolute fluence levels. In principle, we expect that the sample is purely scattering, with no
absorption. Yet, a DA fit with µa = 0 mm−1 gives actually a poor agreement with the data,
as we are able to appreciate thanks to the high dynamic range of the detector (Figure 4.4b).
It is worth noting that this failure cannot be attributed to the selection of a non-optimal
fitting range (which can potentially affect the results of the fit to a substantial extent [147]).
In fact, as Figure 4.4c clearly demonstrates, the experimental asymptotic decay time is
altogether incompatible with the DA, unless some absorption is included. Conversely, a
perfect agreement between the model and the data is obtained with a two-parameter fit,
returning l′s = (24.1 ± 0.6) µm and la = (12.0 ± 1.1) mm, corresponding to an albedo of
�0 = 0.998.

A few comments on the reliability of the obtained results are in order. The value of
the absorption coefficient returned by the fitting routine is indeed very small, as underlined
by the high albedo. The predicted optical thickness of the slab would be of ∼ 8.4, with
8 being usually considered the rule-of-thumb lower limit above which the DA can be
regarded as an acceptable approximation [72]. Yet, the total integrated absorbed energy
associated to the slab would be equal to A = 1 − T − R � 8 %, which is definitely higher
than expected for this sample. We should note that the apparent inconsistency of the results
arises from the fact we are testing a reference sample of known properties, while it would
be unreasonable to question a similar measurement performed on a truly unknown medium,
given the exceptional agreement of the fit, the high albedo and acceptable optical thickness.

The inconsistency of the retrieved optical parameters can be completely resolved by
means of a full spatio-temporal investigation and non-approximated modeling. In fact, the
analysis of the time evolution of the mean square width (MSW) of the transmitted profile
is particularly interesting in that it is inherently free from this absorption-to-scattering
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Figure 4.5. Set of time-resolved frames acquired at different delays with our ultrafast imaging setup.
Each frame is averaged over different disorder realizations (different regions of the sample) and is
displayed normalized to its own maximum intensity.

crosstalk effect [110, 148, 149]. The MSW, defined as the variance of the spatial profile
(2.103), can be directly determined if the full spatio-temporal evolution of the T (ρ, t) (or
R(ρ, t)) profile is known. Due to the inherently normalized definition of the MSW, any
amplitude factor (such as absorption) applied to the profile will cancel out exactly at any
time, leaving its shape unmodified (see Figure 2.7). We therefore further investigated the
same sample recording a set of transmittance profiles at different delays with the setup in
the imaging configuration (Figure 4.5). As can be seen, the experimental T (ρ, t) profiles
broaden in time as predicted by the diffusive approximation. The time-dependent values of
the variance can be extracted assuming a diffusive profile shape (gaussian), or by directly
calculating it through its general definition (2.103) which does not rely on any profile-shape
hypothesis. The linear growth of the MSW is plotted in Figure 4.6a, and can easily be
interpreted within the diffusive approximation using its characteristic prediction w2(t) = 4Dt
(2.104).

The slope retrieved experimentally corresponds to a Dexp = (1746 ± 21) µm2 ps−1 →
l′s = (26.6 ± 0.3) µm, which is appreciably larger than the value retrieved from the time-
resolved curve (Figure 4.4b). In order to resolve this discrepancy, we resort to a full MC
modeling of the problem. By performing a MC fit of both the w2(t) and T (t) curves, we
eventually succeeded in simultaneously reproducing both experimental data sets using a
single transport parameter l′s (Figure 4.6). The numerical inversion procedure returns a
value of l′s = (25.5 ± 0.5) µm, which is perfectly compatible with both curves without the
need to add any absorption contribution.

It should be noted that, as compared to MC simulations, the two independent DA-based
estimates of the scattering properties that we obtained return both a wrong value, but by
a different amount and for very different reasons. As regards the transmittance decay,
the result is particularly far from the actual value both because of the intermediate level
of turbidity and due to the cross-talk effect with absorption, which overcompensates the
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and refractive index of the polymer slab. The delay between the main peak and its internally reflected
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exponential fit of the asymptotic decay time (dashed line). Two different DA fits are shown, forcing
null absorption and leaving it as a free parameter. As shown in panel (c), the obtained decay time is
not compatible with a non-absorbing sample according to the DA.

absolute fluence levels. In principle, we expect that the sample is purely scattering, with no
absorption. Yet, a DA fit with µa = 0 mm−1 gives actually a poor agreement with the data,
as we are able to appreciate thanks to the high dynamic range of the detector (Figure 4.4b).
It is worth noting that this failure cannot be attributed to the selection of a non-optimal
fitting range (which can potentially affect the results of the fit to a substantial extent [147]).
In fact, as Figure 4.4c clearly demonstrates, the experimental asymptotic decay time is
altogether incompatible with the DA, unless some absorption is included. Conversely, a
perfect agreement between the model and the data is obtained with a two-parameter fit,
returning l′s = (24.1 ± 0.6) µm and la = (12.0 ± 1.1) mm, corresponding to an albedo of
�0 = 0.998.

A few comments on the reliability of the obtained results are in order. The value of
the absorption coefficient returned by the fitting routine is indeed very small, as underlined
by the high albedo. The predicted optical thickness of the slab would be of ∼ 8.4, with
8 being usually considered the rule-of-thumb lower limit above which the DA can be
regarded as an acceptable approximation [72]. Yet, the total integrated absorbed energy
associated to the slab would be equal to A = 1 − T − R � 8 %, which is definitely higher
than expected for this sample. We should note that the apparent inconsistency of the results
arises from the fact we are testing a reference sample of known properties, while it would
be unreasonable to question a similar measurement performed on a truly unknown medium,
given the exceptional agreement of the fit, the high albedo and acceptable optical thickness.

The inconsistency of the retrieved optical parameters can be completely resolved by
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analysis of the time evolution of the mean square width (MSW) of the transmitted profile
is particularly interesting in that it is inherently free from this absorption-to-scattering
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crosstalk effect [110, 148, 149]. The MSW, defined as the variance of the spatial profile
(2.103), can be directly determined if the full spatio-temporal evolution of the T (ρ, t) (or
R(ρ, t)) profile is known. Due to the inherently normalized definition of the MSW, any
amplitude factor (such as absorption) applied to the profile will cancel out exactly at any
time, leaving its shape unmodified (see Figure 2.7). We therefore further investigated the
same sample recording a set of transmittance profiles at different delays with the setup in
the imaging configuration (Figure 4.5). As can be seen, the experimental T (ρ, t) profiles
broaden in time as predicted by the diffusive approximation. The time-dependent values of
the variance can be extracted assuming a diffusive profile shape (gaussian), or by directly
calculating it through its general definition (2.103) which does not rely on any profile-shape
hypothesis. The linear growth of the MSW is plotted in Figure 4.6a, and can easily be
interpreted within the diffusive approximation using its characteristic prediction w2(t) = 4Dt
(2.104).

The slope retrieved experimentally corresponds to a Dexp = (1746 ± 21) µm2 ps−1 →
l′s = (26.6 ± 0.3) µm, which is appreciably larger than the value retrieved from the time-
resolved curve (Figure 4.4b). In order to resolve this discrepancy, we resort to a full MC
modeling of the problem. By performing a MC fit of both the w2(t) and T (t) curves, we
eventually succeeded in simultaneously reproducing both experimental data sets using a
single transport parameter l′s (Figure 4.6). The numerical inversion procedure returns a
value of l′s = (25.5 ± 0.5) µm, which is perfectly compatible with both curves without the
need to add any absorption contribution.

It should be noted that, as compared to MC simulations, the two independent DA-based
estimates of the scattering properties that we obtained return both a wrong value, but by
a different amount and for very different reasons. As regards the transmittance decay,
the result is particularly far from the actual value both because of the intermediate level
of turbidity and due to the cross-talk effect with absorption, which overcompensates the
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Figure 4.6. (a) Linear growth of the experimental mean square width of the profiles (circles), compared
with the result of a MC simulation with l′s = 25.5 µm and µa = 0 mm−1 (solid line). A linear fit of
the experimental data (not shown) returns a value of l′s = 26.6 µm according to equation (2.104). (b)
Experimental transmittance data (black squares) acquired with the PMT compared with the result
of the same non-absorbing MC simulation. The integrated intensity of the UFI frames is plotted as
empty circles, showing the excellent linearity of the CCD detector as compared to the PMT.

failure of the DA to some (uncontrolled) extent. On the contrary, the reduced scattering
mean free path obtained from the MSW slope results in just a 4 % overestimation of the
actual best MC estimate. A comparable level of accuracy is acceptable for a wide array
of applications, where ultrafast imaging (UFI) techniques could be exploited to extend
the applicability of the DA in this intermediate thickness range. Moreover, as widely
suggested in the literature [148, 149], estimating transport properties from the mean square
width rather than from time-resolved data is much more accurate and straightforward
because in the former case, a priori knowledge of the absorption coefficient, refractive
index contrast and sample thickness is not required. Likely, the DA holds more robustly
against a high refractive index contrast and a low optical thickness for in-plane transport,
because effects coming from thickness truncation are less relevant for light propagating
along the slab rather than perpendicularly to it. This reflects in the fact that the simple 4Dt
dependence does not even involve any parameter other than the diffusion constant, including
the geometry of the sample or its extrapolated boundary conditions. Most importantly, the
simple determination of D enabled by the measurement of w2(t) is also insensitive to the
exact determination of the time axis origin and the exact time-window considered for the
fitting, both of which represent long-standing issues in the evaluation of time-resolved data
[147, 150], as discussed previously.

In addition, for the same reason that the MSW is independent of the absorption,
it is also effectively independent of the integration time, as well as of any laser power
fluctuations, which makes the technique inherently more robust to drifts and variations in the
experimental conditions. Moreover, as shown in Figure 4.6b, our UFI technique is capable
of replacing completely integrated measurements with comparable sensitivity. In this
respect, a single measurement session is capable of providing two almost orthogonal data
sets: indeed, the former does not depend on the integrated intensity of the individual frames,
while the latter is primarily linked to the transport along the z-axis. The independence of
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Figure 4.7. (a) DA-based analysis of the total time-resolved transmittance measured on the second
sample. An excellent agreement is obtained only with a two-parameter fit including absorption. (b)
Linear growth of the MSW as retrieved from the frames of Figure 4.8. A linear fit is shown as a guide
for the eye.

w2(t) from the integration time represents a strong advantage from an experimental point of
view, allowing to optimize the exposure time on a per-frame basis. As regards the frames
of Figure 4.5, each frame has been integrated for a time of the order of a minute, which
was kept constant in this circumstance to allow a direct comparison also of the integrated
intensity so to verify the linearity of the CCD. Nonetheless, the fluence transmitted by
the sample at this optical thickness was entirely sufficient to cover a remarkable time
span of roughly 5τ. Our perfectly matching Monte Carlo validation, which is conducted
independently on two experimental curves that depend differently on different sets of
parameters, is a clear indication of the quantitative accuracy and reliability of our setup
over many orders of magnitude in both the temporal and spatial domains.

4.2.2. Layered heterogeneities vs anisotropic transport

A second relevant sample that we analyzed with our combined UFI and total transmittance
description is a new polymer slab with similar thickness (190 µm) and doubled scatterer
density. As opposed to the previous sample, this slab falls well within the diffusive
regime in terms of its final turbidity. Also in this case, a DA fit of the time-resolved
curve yielded a perfect agreement (Figure 4.7) only when accounting for the presence of a
small but unexpected amount of absorption. The values returned by the fitting routine are
l′s = (12.0 ± 0.4) µm and la = (13.2 ± 1.2) mm, which together determine a total absorption
of A ∼ 7 % despite the extremely high albedo.

From the analysis of the UFI frames (Figure 4.8), a perfectly linear MSW growth is
obtained, as shown in Figure 4.7b. Nonetheless, the retrieved slope of Dexp = (1050 ± 13)
µm2 ps−1 is much steeper than expected from the time-resolved data, yielding a l′s of
(16.0 ± 0.2) µm as if the diffusion process was enhanced along the in-plane directions.

In sharp contrast with the previous experiment, in this case a non-absorbing Monte
Carlo fit was unable to reproduce the time-resolved data, even when the observed experi-
mental decay time or the MSW slope were perfectly matched (Figure 4.9).
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Figure 4.6. (a) Linear growth of the experimental mean square width of the profiles (circles), compared
with the result of a MC simulation with l′s = 25.5 µm and µa = 0 mm−1 (solid line). A linear fit of
the experimental data (not shown) returns a value of l′s = 26.6 µm according to equation (2.104). (b)
Experimental transmittance data (black squares) acquired with the PMT compared with the result
of the same non-absorbing MC simulation. The integrated intensity of the UFI frames is plotted as
empty circles, showing the excellent linearity of the CCD detector as compared to the PMT.

failure of the DA to some (uncontrolled) extent. On the contrary, the reduced scattering
mean free path obtained from the MSW slope results in just a 4 % overestimation of the
actual best MC estimate. A comparable level of accuracy is acceptable for a wide array
of applications, where ultrafast imaging (UFI) techniques could be exploited to extend
the applicability of the DA in this intermediate thickness range. Moreover, as widely
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it is also effectively independent of the integration time, as well as of any laser power
fluctuations, which makes the technique inherently more robust to drifts and variations in the
experimental conditions. Moreover, as shown in Figure 4.6b, our UFI technique is capable
of replacing completely integrated measurements with comparable sensitivity. In this
respect, a single measurement session is capable of providing two almost orthogonal data
sets: indeed, the former does not depend on the integrated intensity of the individual frames,
while the latter is primarily linked to the transport along the z-axis. The independence of
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Figure 4.7. (a) DA-based analysis of the total time-resolved transmittance measured on the second
sample. An excellent agreement is obtained only with a two-parameter fit including absorption. (b)
Linear growth of the MSW as retrieved from the frames of Figure 4.8. A linear fit is shown as a guide
for the eye.

w2(t) from the integration time represents a strong advantage from an experimental point of
view, allowing to optimize the exposure time on a per-frame basis. As regards the frames
of Figure 4.5, each frame has been integrated for a time of the order of a minute, which
was kept constant in this circumstance to allow a direct comparison also of the integrated
intensity so to verify the linearity of the CCD. Nonetheless, the fluence transmitted by
the sample at this optical thickness was entirely sufficient to cover a remarkable time
span of roughly 5τ. Our perfectly matching Monte Carlo validation, which is conducted
independently on two experimental curves that depend differently on different sets of
parameters, is a clear indication of the quantitative accuracy and reliability of our setup
over many orders of magnitude in both the temporal and spatial domains.

4.2.2. Layered heterogeneities vs anisotropic transport

A second relevant sample that we analyzed with our combined UFI and total transmittance
description is a new polymer slab with similar thickness (190 µm) and doubled scatterer
density. As opposed to the previous sample, this slab falls well within the diffusive
regime in terms of its final turbidity. Also in this case, a DA fit of the time-resolved
curve yielded a perfect agreement (Figure 4.7) only when accounting for the presence of a
small but unexpected amount of absorption. The values returned by the fitting routine are
l′s = (12.0 ± 0.4) µm and la = (13.2 ± 1.2) mm, which together determine a total absorption
of A ∼ 7 % despite the extremely high albedo.

From the analysis of the UFI frames (Figure 4.8), a perfectly linear MSW growth is
obtained, as shown in Figure 4.7b. Nonetheless, the retrieved slope of Dexp = (1050 ± 13)
µm2 ps−1 is much steeper than expected from the time-resolved data, yielding a l′s of
(16.0 ± 0.2) µm as if the diffusion process was enhanced along the in-plane directions.

In sharp contrast with the previous experiment, in this case a non-absorbing Monte
Carlo fit was unable to reproduce the time-resolved data, even when the observed experi-
mental decay time or the MSW slope were perfectly matched (Figure 4.9).
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∆t = 0.33 ps

Figure 4.8. Set of time-resolved frames acquired for the second diffusive sample. Each frame
is averaged over different disorder realizations (different regions of the sample) and is displayed
normalized to its own maximum intensity.

Driven by this discrepancy and by the characterization capabilities enabled by the UFI
setup, we inspected the cross-section of this sample under optical and electronic microscopy.
This revealed a heavily layered modulation of the scatterer density compared to the more
homogeneously dispersed one of our first sample (compare Figures 4.10a and 4.1c).

Taking advantage of the versatility of MC simulations, we modeled our sample after the
SEM images as being composed of five layers of three different thicknesses and densities,
arranged symmetrically with respect to the central layer. A new MC brute-force fit assuming
a fixed geometry and only l′s,1, l′s,2 and l′s,3 as free parameters, was eventually able to perfectly
reproduce both the time-resolved and MSW curves simultaneously as shown in Figure 4.11.
The absorption coefficients were all set to µa = 0 mm−1. We obtained mean free paths of
l′s,1 = (3.5 ± 0.5) µm, l′s,2 = (21.5 ± 0.5) µm and l′s,3 = (11.0 ± 0.5) µm, respectively, for the
high, low and intermediate-density layers. In this case, the combined MSW/time-resolved
decomposition clearly allowed us to reveal an unexpected degree of complexity, signaling
the inconsistency of the homogeneity assumption. Together, the two data sets cast a rigid
constraint on the inverse problem solution, involving both longitudinal and transverse
propagation dynamics. The analysis that we performed assumed a known structure, but
there are indeed many practical circumstances where the geometry of the problem is
known, and the investigation is focused in retrieving the optical properties of each layer.
Moreover, layered structures can often be associated with anisotropic transport, and vice
versa. In this sample, we could study the effect of a layered structure separately from that
of anisotropic transport, since a homogeneous pattern of unconnected point scatterers is
inherently isotropic.

Interestingly, resolving this composite structure showed that a layered heterogeneity
can, in principle, mimic the effects of anisotropic transport which, to our knowledge, is an
effect still unaddressed in the literature. This is especially relevant given the pervasiveness of
layered media (for example in coatings industry, atmospheric physics and biological tissues),
which often exhibit counter-intuitive features that standard time-resolved techniques are
still unable to explain, as in the case of light transport across the human forehead [151].
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Figure 4.9. Comparison of experimental data with two MC simulations matching, respectively, the
experimental asymptotic decay time (dash-dotted line) and the MSW growth rate (dashed line). The
two simulations return l′s = 14.2 µm and l′s = 15.7 µm. (a) Both simulations reproduce poorly the
experimental time-resolved data, as can be better appreciated in the linear-scale inset. (b) The high
in-plane diffusion rate can be matched using a long mean free path close to that found with the simple
DA prediction.

4.3. A novel transport regime in ultra-thin samples

In the previous section, we have explored the advantages offered by a decomposition of
the transmittance data into a total time-resolved curve and a MSW growth. Nonetheless,
it is clear that the raw, non-integrated frames provide an irreducible set of information. A
dramatic illustration of this point is obtained by studying a thin biological sample, such
as a small strip cut from the dried skin of a slice of grapefruit. As the SEM image reveals
(Figure 4.10b), its structure consists of a conglomerate of small flakes forming a corrugated
slab ∼ 85 µm-thick. The dried sample appears to be a brittle, almost transparent membrane,
as shown in Figure 4.12a.

In this range of optical (and absolute) thicknesses, standard experimental techniques
fall short because of the extreme time scales involved, causing common diffusive modeling
to fail drastically. Furthermore, most of the signal will be ballistically transmitted, carrying
almost no information regarding the optical properties of the sample. As Figure 4.12b shows,
the fraction of light that is scattered inside the grapefruit membrane is less than 1/50th of
the original intensity. Nonetheless, our ultrafast imaging technique allows us to selectively
address the light that was retained for a longer time inside the sample whereas at the same
time spatially inspecting it as it propagates along the main (transverse) slab extension.
Figure 4.13 shows a collection of frames acquired over a time-window of ∼ 5 ps after pulse
injection, corresponding to a total path length greater than 13 times the sample thickness.
We see that the light spreads through the membrane with a well-defined wavefront traveling
inside its main plane, resulting in a dramatic departure from any prediction compatible with
the diffusive framework. However, standard time-resolved or steady-state investigations
would still just measure a single decay time and a bell-shaped profile, respectively, which
could deceptively support an inappropriate interpretation in terms of the DA. Additionally,
the investigated sample exhibits various signatures of anisotropic light transport, with the
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Figure 4.8. Set of time-resolved frames acquired for the second diffusive sample. Each frame
is averaged over different disorder realizations (different regions of the sample) and is displayed
normalized to its own maximum intensity.

Driven by this discrepancy and by the characterization capabilities enabled by the UFI
setup, we inspected the cross-section of this sample under optical and electronic microscopy.
This revealed a heavily layered modulation of the scatterer density compared to the more
homogeneously dispersed one of our first sample (compare Figures 4.10a and 4.1c).

Taking advantage of the versatility of MC simulations, we modeled our sample after the
SEM images as being composed of five layers of three different thicknesses and densities,
arranged symmetrically with respect to the central layer. A new MC brute-force fit assuming
a fixed geometry and only l′s,1, l′s,2 and l′s,3 as free parameters, was eventually able to perfectly
reproduce both the time-resolved and MSW curves simultaneously as shown in Figure 4.11.
The absorption coefficients were all set to µa = 0 mm−1. We obtained mean free paths of
l′s,1 = (3.5 ± 0.5) µm, l′s,2 = (21.5 ± 0.5) µm and l′s,3 = (11.0 ± 0.5) µm, respectively, for the
high, low and intermediate-density layers. In this case, the combined MSW/time-resolved
decomposition clearly allowed us to reveal an unexpected degree of complexity, signaling
the inconsistency of the homogeneity assumption. Together, the two data sets cast a rigid
constraint on the inverse problem solution, involving both longitudinal and transverse
propagation dynamics. The analysis that we performed assumed a known structure, but
there are indeed many practical circumstances where the geometry of the problem is
known, and the investigation is focused in retrieving the optical properties of each layer.
Moreover, layered structures can often be associated with anisotropic transport, and vice
versa. In this sample, we could study the effect of a layered structure separately from that
of anisotropic transport, since a homogeneous pattern of unconnected point scatterers is
inherently isotropic.

Interestingly, resolving this composite structure showed that a layered heterogeneity
can, in principle, mimic the effects of anisotropic transport which, to our knowledge, is an
effect still unaddressed in the literature. This is especially relevant given the pervasiveness of
layered media (for example in coatings industry, atmospheric physics and biological tissues),
which often exhibit counter-intuitive features that standard time-resolved techniques are
still unable to explain, as in the case of light transport across the human forehead [151].

72

0 20 40 60 80 100

100

102

104

0 5 10 15 20 25 30
0

5 × 104

105

t [ps]

T
(t

)[
a.

u.
]

data (PMT)
τ-matching MC sim.

w2-matching MC sim.

(a)

0 10 20
0

0.05

0.1

t [ps]

w
2 (t

)[
m

m
2 ]

UFI
τ-matching MC sim.

w2-matching MC sim.

(b)

Figure 4.9. Comparison of experimental data with two MC simulations matching, respectively, the
experimental asymptotic decay time (dash-dotted line) and the MSW growth rate (dashed line). The
two simulations return l′s = 14.2 µm and l′s = 15.7 µm. (a) Both simulations reproduce poorly the
experimental time-resolved data, as can be better appreciated in the linear-scale inset. (b) The high
in-plane diffusion rate can be matched using a long mean free path close to that found with the simple
DA prediction.

4.3. A novel transport regime in ultra-thin samples

In the previous section, we have explored the advantages offered by a decomposition of
the transmittance data into a total time-resolved curve and a MSW growth. Nonetheless,
it is clear that the raw, non-integrated frames provide an irreducible set of information. A
dramatic illustration of this point is obtained by studying a thin biological sample, such
as a small strip cut from the dried skin of a slice of grapefruit. As the SEM image reveals
(Figure 4.10b), its structure consists of a conglomerate of small flakes forming a corrugated
slab ∼ 85 µm-thick. The dried sample appears to be a brittle, almost transparent membrane,
as shown in Figure 4.12a.

In this range of optical (and absolute) thicknesses, standard experimental techniques
fall short because of the extreme time scales involved, causing common diffusive modeling
to fail drastically. Furthermore, most of the signal will be ballistically transmitted, carrying
almost no information regarding the optical properties of the sample. As Figure 4.12b shows,
the fraction of light that is scattered inside the grapefruit membrane is less than 1/50th of
the original intensity. Nonetheless, our ultrafast imaging technique allows us to selectively
address the light that was retained for a longer time inside the sample whereas at the same
time spatially inspecting it as it propagates along the main (transverse) slab extension.
Figure 4.13 shows a collection of frames acquired over a time-window of ∼ 5 ps after pulse
injection, corresponding to a total path length greater than 13 times the sample thickness.
We see that the light spreads through the membrane with a well-defined wavefront traveling
inside its main plane, resulting in a dramatic departure from any prediction compatible with
the diffusive framework. However, standard time-resolved or steady-state investigations
would still just measure a single decay time and a bell-shaped profile, respectively, which
could deceptively support an inappropriate interpretation in terms of the DA. Additionally,
the investigated sample exhibits various signatures of anisotropic light transport, with the
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Figure 4.10. (a) Montage of optical and SEM images of the second, heterogeneously disordered
sample. The central inset shows a transverse section, which exhibits a layered symmetric structure
that we modeled with a high-density central layer (L1 = 26 µm), a low-density interstitial layer
(L2 = 60 µm) and an intermediate-density outer layer (L3 = 22 µm). The heterogeneity represented
by the core layer is also appreciable at the optical microscope (left inset). The right insets highlight
the density difference between regions 1 and 2. (b) Lateral section of third investigated sample, a
specimen of dried integument of a grapefruit segment.

luminous wavefront propagating differently along the x and y direction.
As we will show, the UFI experiment provides a deep insight into the light transport

properties of complex systems, which requires the development of a novel analysis method-
ology. As a proof-of-concept, we demonstrate a procedure to assess in-plane transport
properties in this extremely optically thin regime, an experimental task for which there are
basically no available characterization techniques up to date. For the sake of simplicity, we
will illustrate our investigation on a cross-cut of the profile assuming isotropic transport.
The general treatment is analogous and requires the use of an anisotropic transport model
(not to be confused with anisotropic scattering), such as anisotropic MC simulations were
D→ D is a tensor with different components along x, y and z [152]. Figure 4.14a shows
a comparison between experimental cross-cuts at different times and the corresponding
time evolution of an isotropic Monte Carlo simulation that succeeds in reproducing the
wavefront speed, intensity decay and overall shape at all given times. In order to achieve
this collective agreement at each different time, the anisotropic scattering coefficient g needs
to be considered as an additional parameter for the MC fitting procedure. Indeed, as shown
by Figure 4.14b, the measured intensity patterns exhibit a significant breakdown of the
typical DA degeneracy condition expressed by the similarity relation (2.38), with g playing
a substantial role in determining the overall shape and time evolution of the traveling wave-
front, even at fixed l′s. In particular, while traveling outwards, the instantaneous position
and peak intensity of the density wave vary appreciably with different combinations of g
and ls, therefore allowing both to be retrieved within an error of a few percent points. The
set of simulated curves shown in Figure 4.14a is obtained using g = 0.7 and ls = 150 µm,
corresponding to an in-plane l′s = 500 µm. Qualitatively accurate figures for this particular
specimen would require a numerical analysis involving fully anisotropic simulations, yet
the aim of this experiment was to demonstrate the existence and utility of this peculiar
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Figure 4.11. Comparison of experimental data with a 5-layer MC simulation modeled after Figure
4.10a. The fit returns the scattering properties associated to the 3 different densities of scatterers, in
good accordance with a qualitative inspection of the cross-section of the sample. Panel (a) shows the
superposition of integrated intensities obtained with the PMT and CCD camera.

in-plane transport regime and its onset in optically thin media.
This experiment showcases the characterization potential enabled by a rich time- and

space-resolved output. Our estimation of g results from a collective fitting involving mul-
tiple spatio-temporal profiles, standing in contrast with more common and less robust
characterization techniques involving a single scalar measurement, such as the attenuation
coefficient of a collimated beam [92, 153]. Accurate determination of single scattering
anisotropy is crucial to directly probe the shape, orientation and optical properties of single
microscopic scatterers and might therefore be of interest to a broad range of fields, from
realistic computer rendering of participating media [16, 154] to photo-therapeutic diagnos-
tics of biological tissues [155, 156]. Moreover, compared to other available techniques, the
determination of g and ls is achieved in a single measurement session, which also simplifies
the retrieval procedure. The peculiar wave-shaped intensity pattern that enables such a rich
characterization of the scattering properties is of course not unique to this particular sample,
and we observed it in a variety of different biological samples of both plant and animal
origin, usually differing only by the actual contour shape of the propagating wavefront.
Figure 4.15 shows qualitatively two such examples obtained for a dried onion skin specimen
and the wing of a Pieris rapae butterfly. This supports the general validity and usefulness of
our proof-of-concept evaluation technique in studying extremely complex media, included
biological tissues.

4.3.1. Outlook and open questions in the physics of light transport

To summarize, the optically-gated imaging technique that we developed offers several
advantages, such as a high qualitative fidelity over a large field of view with respect to
Fourier-plane configurations, and sub-ps time resolution compared to other electronically-
gated imaging solutions. The applicability of our technique is very general and non-invasive,
usable at different wavelengths, with a broad field of view and high temporal resolution. We
therefore envision that it could be applied to a wide range of photonic applications for both
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Figure 4.10. (a) Montage of optical and SEM images of the second, heterogeneously disordered
sample. The central inset shows a transverse section, which exhibits a layered symmetric structure
that we modeled with a high-density central layer (L1 = 26 µm), a low-density interstitial layer
(L2 = 60 µm) and an intermediate-density outer layer (L3 = 22 µm). The heterogeneity represented
by the core layer is also appreciable at the optical microscope (left inset). The right insets highlight
the density difference between regions 1 and 2. (b) Lateral section of third investigated sample, a
specimen of dried integument of a grapefruit segment.
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ology. As a proof-of-concept, we demonstrate a procedure to assess in-plane transport
properties in this extremely optically thin regime, an experimental task for which there are
basically no available characterization techniques up to date. For the sake of simplicity, we
will illustrate our investigation on a cross-cut of the profile assuming isotropic transport.
The general treatment is analogous and requires the use of an anisotropic transport model
(not to be confused with anisotropic scattering), such as anisotropic MC simulations were
D→ D is a tensor with different components along x, y and z [152]. Figure 4.14a shows
a comparison between experimental cross-cuts at different times and the corresponding
time evolution of an isotropic Monte Carlo simulation that succeeds in reproducing the
wavefront speed, intensity decay and overall shape at all given times. In order to achieve
this collective agreement at each different time, the anisotropic scattering coefficient g needs
to be considered as an additional parameter for the MC fitting procedure. Indeed, as shown
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characterization techniques involving a single scalar measurement, such as the attenuation
coefficient of a collimated beam [92, 153]. Accurate determination of single scattering
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microscopic scatterers and might therefore be of interest to a broad range of fields, from
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determination of g and ls is achieved in a single measurement session, which also simplifies
the retrieval procedure. The peculiar wave-shaped intensity pattern that enables such a rich
characterization of the scattering properties is of course not unique to this particular sample,
and we observed it in a variety of different biological samples of both plant and animal
origin, usually differing only by the actual contour shape of the propagating wavefront.
Figure 4.15 shows qualitatively two such examples obtained for a dried onion skin specimen
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our proof-of-concept evaluation technique in studying extremely complex media, included
biological tissues.

4.3.1. Outlook and open questions in the physics of light transport

To summarize, the optically-gated imaging technique that we developed offers several
advantages, such as a high qualitative fidelity over a large field of view with respect to
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Figure 4.12. (a) Picture of the grapefruit samples. The membranes have an almost transparent
appearance. (b) Optical delay introduced by the presence of the grapefruit membrane on the probe
beam path. By knowing its thickness from previous SEM images (Figure 4.10b), the effective
refractive index is found as n = 1 + c∆t/L ∼ 1.31.

1 mm

∆t = 0.33 ps

Figure 4.13. Set of time-resolved frames acquired for the weakly scattering biological sample. Each
frame is averaged over different disorder realizations (different regions of the sample) and normalized
to its own maximum intensity.

the sub-ps physics it allows to investigate and its convenient wide-field acquisition, which
does not require scanning over the region of interest. In particular, gaining direct access
to such time scales not only enables the study of optical properties in thin or inherently
minute specimens (e.g., the ocular fundus, vascular walls, skin dermis or dental enamel),
but is fundamental to investigate light transport at the mesoscopic level.

In this respect, the recent emergence of experimental alternatives to harness the full
potential of a complete spatio-temporal characterization of light transport [42, 110, 157],
holds promise for a new generation of experiments capable of tackling the many open
questions that are object of debate in the literature of light transport.

As we demonstrated in the previous subsections, gaining access to transverse and
axial transport combined allows to evaluate correctly the applicability of the common
diffusion framework to avoid the subtle pitfalls and artifacts that can arise under certain
circumstances. In particular, the direct measurement of the transient MSW expansion
enables a robust and simple interpretation. In sharp contrast to other common observables,
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Figure 4.14. (a) Horizontal cross-cuts of the wavefront and a MC fit with g and ls as free parameters.
The fit returns values of g = 0.7 and ls = 150 µm. (b) Simulated radial intensity profiles in this
extremely optically thin regime exhibit a significant breakdown of the similarity relation.

such as the total transmittance and its decay time, the MSW is independent of absorption and
largely unaffected by refractive index contrasts and sample thickness, therefore overcoming
long-standing problems posed by their precise assessment. One prominent case where this
feature could be decisive is that of the experimentally observed decrease in the diffusive
coefficient of a turbid slab with decreasing thickness [87], which was indirectly determined
through the transmittance decay time. A spatio-temporal measurement in terms of the mean
square width evolution would directly probe the diffusion coefficient irrespective of the
exact boundary conditions, the incorrect estimation of which has been cited as a possible
cause for this apparently anomalous behavior [71, 158].

Analogously, the study of structurally anisotropic media would be largely facilitated by
the three-dimensional characterization capabilities of a spatio-temporal investigation. This
class of samples is extremely important in many industrial and biomedical applications, yet
their theoretical modeling in terms of light transport is still object of debate in the literature
[152, 159]. Further interest arises from the fact that anisotropic transport seems to represent
a key factor in enhancing the scattering strength of a material beyond expectations [131,
160]. As a matter of fact, anistropic transport modeling is only one examples of numerical
effects still lacking a thorough experimental validation. Other interesting topics that might
be investigated with novel techniques include the polarization dependence predicted for the
diffusion coefficient [45], as well as the occurrence of a non-monotonic MSW evolution
in samples exhibiting Anderson localization [149] or the lateral expansion of Lévy-type
transport, where the experimental limit posed by the finite thickness of the sample might
be circumvented [29]. Similarly, an UFI measurement of intensity profiles reflected by
macro-porous bulk materials could access light spreading within the first few hundred fs,
from which the time-dependent diffusion constant could be determined [161], leading to
information concerning the structure factor of the material hardly obtainable at long times.

The wide-field parallel acquisition demonstrated by the setup might, however, find
applications in many different fields other than the study of disordered media and their
transport regimes. One prominent example is that of the characterization of waveguide
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Figure 4.13. Set of time-resolved frames acquired for the weakly scattering biological sample. Each
frame is averaged over different disorder realizations (different regions of the sample) and normalized
to its own maximum intensity.

the sub-ps physics it allows to investigate and its convenient wide-field acquisition, which
does not require scanning over the region of interest. In particular, gaining direct access
to such time scales not only enables the study of optical properties in thin or inherently
minute specimens (e.g., the ocular fundus, vascular walls, skin dermis or dental enamel),
but is fundamental to investigate light transport at the mesoscopic level.

In this respect, the recent emergence of experimental alternatives to harness the full
potential of a complete spatio-temporal characterization of light transport [42, 110, 157],
holds promise for a new generation of experiments capable of tackling the many open
questions that are object of debate in the literature of light transport.

As we demonstrated in the previous subsections, gaining access to transverse and
axial transport combined allows to evaluate correctly the applicability of the common
diffusion framework to avoid the subtle pitfalls and artifacts that can arise under certain
circumstances. In particular, the direct measurement of the transient MSW expansion
enables a robust and simple interpretation. In sharp contrast to other common observables,
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Figure 4.14. (a) Horizontal cross-cuts of the wavefront and a MC fit with g and ls as free parameters.
The fit returns values of g = 0.7 and ls = 150 µm. (b) Simulated radial intensity profiles in this
extremely optically thin regime exhibit a significant breakdown of the similarity relation.

such as the total transmittance and its decay time, the MSW is independent of absorption and
largely unaffected by refractive index contrasts and sample thickness, therefore overcoming
long-standing problems posed by their precise assessment. One prominent case where this
feature could be decisive is that of the experimentally observed decrease in the diffusive
coefficient of a turbid slab with decreasing thickness [87], which was indirectly determined
through the transmittance decay time. A spatio-temporal measurement in terms of the mean
square width evolution would directly probe the diffusion coefficient irrespective of the
exact boundary conditions, the incorrect estimation of which has been cited as a possible
cause for this apparently anomalous behavior [71, 158].

Analogously, the study of structurally anisotropic media would be largely facilitated by
the three-dimensional characterization capabilities of a spatio-temporal investigation. This
class of samples is extremely important in many industrial and biomedical applications, yet
their theoretical modeling in terms of light transport is still object of debate in the literature
[152, 159]. Further interest arises from the fact that anisotropic transport seems to represent
a key factor in enhancing the scattering strength of a material beyond expectations [131,
160]. As a matter of fact, anistropic transport modeling is only one examples of numerical
effects still lacking a thorough experimental validation. Other interesting topics that might
be investigated with novel techniques include the polarization dependence predicted for the
diffusion coefficient [45], as well as the occurrence of a non-monotonic MSW evolution
in samples exhibiting Anderson localization [149] or the lateral expansion of Lévy-type
transport, where the experimental limit posed by the finite thickness of the sample might
be circumvented [29]. Similarly, an UFI measurement of intensity profiles reflected by
macro-porous bulk materials could access light spreading within the first few hundred fs,
from which the time-dependent diffusion constant could be determined [161], leading to
information concerning the structure factor of the material hardly obtainable at long times.

The wide-field parallel acquisition demonstrated by the setup might, however, find
applications in many different fields other than the study of disordered media and their
transport regimes. One prominent example is that of the characterization of waveguide
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(c) Pieris rapae wing (d)

Figure 4.15. Examples of other specimens exhibiting a similar in-plane transport pattern as shown by
the grapefruit sample. (a)-(b) Dried onion skin layer with a thickness a few µm. The elongated shape
and alignment of the plant cells induce an anisotropic propagation of the luminous pattern (frames
are recorded with a ∆t = 0.67 ps). (c)-(d) Wing of a Pieris rapae butterfly (∆t = 0.33 ps).

devices, which are typically investigated using reflectometry methods, near-field scanning
optical microscopy or atomic-force microscopy. More recently, an ultrafast time-resolved
technique has also been proposed, allowing to address individual optical components in situ,
which is desirable with respect to other methods requiring additional fabrication steps or
test structures [162]. Still, to date, the study of single integrated optic elements is performed
by scanning point-by-point over the region of interest of the sample, which is extremely
time consuming. Conversely, taking advantage of our UFI technique, it is possible to
inspect and measure directly the light that is coupled out of the device (e.g., from a defect)
over a wide field-of-view. Figure 4.16 shows an illustrative measurement performed on a
simple optical circuit made of a polymer waveguide and a polymer ring resonator vertically
coupled together on a glass substrate. The samples have been fabricated using direct laser
writing by S. Nocentini.

Given the typical applications of optical circuits for telecommunications, the system is
optimized for a wavelength of 1550 nm. In the measurement (performed by D. Nuzhdin) we
have therefore exchanged the probe and gate beam, slightly changing the wavelength of the
latter to match the nominal working wavelength of the device. Figure 4.16b shows a typical
UFI frame acquired at the delay of maximum output intensity (direct-illumination image
of the sample is superimposed as a reference to recognize the output grating). However, a
much richer dynamics develops at later time, signaling the presence of the ring resonator
and its interplay with the waveguide. Measuring the signal recollected from the gratings,
or even the light that is leaked by other optical elements or unintentional defects, enables
to assess the correct functioning of the device and its specifications from the global to the
local scale. Further study on this topic is needed to better understand the full potential
of the technique and the role of its narrow optical acceptance with respect to this kind of
applications.
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Figure 4.16. Application of the UFI technique to the investigation of polymer photonic circuits. (a)
The system is composed by a waveguide vertically coupled to a ring resonator. Input and output
gratings are optimized for perpendicular injection and extraction of light. (b) UFI signal received
from the output grating. A direct-illumination image of the sample is superimposed as a reference.
(c) Time traces measured by spatially selecting the input and output gratings, respectively. A long
series of time-resolved replicas are emitted from the output grating, revealing the complex interplay
between the waveguide and the ring resonator.
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More recently, analytical solutions to the radiative transfer equation are also being devel-
oped which could streamline the inversion procedure, but are still limited to the steady-state
domain [50], or to infinite and semi-infinite media [51, 163]. Moreover, numerical stability
and performance issues still exist when manipulating these solutions, hindering their appli-
cation to the slab geometry [164]. On the other hand, the gold standard of Monte Carlo
(MC) simulations represents an ideal forward model in terms of accuracy, yet to a higher
computational cost. Nonetheless, the increasing availability of massively parallel computa-
tion capabilities is gradually fostering Monte Carlo simulations as a viable method to solve
the inverse problem. To reduce the computational burden of iterative procedures, MC fitting
routines to date have exploited rescaling properties of the radiative transfer equation to adapt
a limited set of pre-simulated Monte Carlo data to experimental measurements [91, 147,
165–172]. In order to limit the occurrence of ‘scaling artifacts’, rescaling must be typically
performed on a single-‘photon’ basis, thus requiring to store each exit time and position
separately [170, 171]. Bin-positioning strategies are also known to represent a possible
source of artifacts, requiring complex correction strategies to be deployed [172]. Finally,
while for the semi-infinite geometry a single dimensionless Monte Carlo simulation can
be rescaled both in terms of the absorption and scattering mean free paths using equations
(2.52) and (2.53), the computational cost increases in the case of finite thickness geometries,
where different scattering mean free paths values must be simulated separately. This is why
only few examples of MC-fitting routines can be found in the literature dealing with this
configuration [167].

Completely different strategies exist, though, that do not involve iterative fitting in
the first place. These include for example least-squares support vector machines, neural
networks, or simpler non-iterative fitting [173–177]. In addition to these, a large and
extremely general group of methods is represented by lookup table (LUT) approaches,
where the inverse problem for a given configuration is exhaustively solved in advance by
brute-force. In the literature, several lookup-table approaches have been proposed, based
on both experimental [178] and synthetic data [93, 104, 168, 179–182]. In the latter case,
the LUT routine is comprised of a database of pre-simulated realizations with different
optical parameters, that is then queried directly to solve the inverse problem. In sharp
contrast to fitting procedures, in this case the computational effort represents a on-time cost
concentrated in the compilation of the lookup table, which can be accessed instantaneously
later on.

As opposed to a standard fit, lookup-table routines rely on single scalar parameters
directly linked to transport properties. Typical examples are represented by the total
amount of transmitted/ballistic/reflected light from a slab. This triplet of observables,
often referred to as Ttot, Tcoll and Rtot, has been extensively exploited to retrieve optical
parameters through MC-LUT routines [93, 104, 179–183], despite the fact that such absolute
intensity measurements are extremely challenging [93, 104] and prone to unpredictable
systematic errors [181]. Moreover, while the natural propensity of MC-based data evaluation
techniques is towards the study of optically thin media, integrated transmittance/reflectance
quantities do actually loose their usefulness as the sample thickness decreases [91], since
the acquired signal will be eventually dominated by light that has been either specularly
reflected or ballistically transmitted through the sample, thus carrying almost no information
about its properties. Even more fundamentally, one of the main assumptions behind the
use of integrating spheres is that of a lambertian diffuse profile [179], which is clearly not
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holding for thinner systems.
In the following sections, we aim at improving the common LUT approach to the

inverse problem taking advantage of the robust observables made available through spatio-
temporal experimental techniques such as that described in Chapters 3 and 4. A lookup table
can be populated by actual measurements on calibrated samples or by accurate simulations
of the forward problem. In the former case the advantage is that unknown systematic
deviations of the experimental setup are automatically taken into account in the process.
On the downside, the applicability of an experimental LUT remains restricted to a specific
setup implementation, and its accuracy will be limited by that of the calibration of the
phantoms used. Monte Carlo simulations, on the other hand, offer absolute control and
flexibility on all the parameters, and can be used to explore large volumes of the parameter
space which could be less straightforward to access experimentally. In the next sections, we
describe the main features of a new Monte Carlo software (developed in close collaboration
with Dr. G. Mazzamuto) focused on the spatio-temporal description of light transport, and
how we used it to perform an in-depth characterization of the slab geometry case. While
enabling the study of a wide range of parameters, its flexible implementation streamlined
the building of an improved lookup-table for the retrieval of the optical properties of a
turbid layer in the scattering regime where the diffusive approximation starts to fail.

5.2. MCPlusPlus: a scriptable Monte Carlo library for radiative
transfer

All simulations performed in this work have been performed with a new Monte Carlo soft-
ware library called MCPlusPlus that was developed from scratch to improve over existing
Monte Carlo solutions. Indeed, several alternative implementations of the Monte Carlo
method have been presented in the literature, each with different strengths and features.
Notable examples include the early MCML [53] and its massively parallel reimplementa-
tions CUDAMCML and GPU-MCML [54, @184, 185] (on which MCPlusPlus is based),
as well as other softwares modeling light polarization [186] or complex meshes [187].
As a qualitative validation of MCPlusPlus, a comparison of data simulated with with
MCPlusPlus and CUDAMCML is shown in Figure 5.1.

From a software design perspective, light transport exhibits two main features that must
be considered. The first is represented by the structure of the building blocks of the problem,
which lend themselves perfectly to be described as distinct objects with similar properties.
For this reason, we developed our library in C++, an object-oriented programming (OOP)
language which has already been suggested as an ideal programming language for this
class of problems [188]. Since pieces of code can be encapsulated in reusable objects,
OOP offers several advantages including scalability, modularity, ease of maintenance and
abstraction. For example, taking advantage of the inheritance feature of OOP, creation
of multiple classes with similar or overlapping tasks can be easily avoided, while their
members and variables are easily shared, reducing redundant code. On the other hand,
polymorphism allows to keep a high abstraction level referring to functions as generic
entities rather than specific implementations (as in the case of different phase functions
or spatial/temporal distributions). Equally important, is the natural propensity of OOP to
describe a high-level interface to the software itself. Indeed, MCPlusPlus comes as a shared
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Figure 5.1. Comparison of the results obtained for a slab with L/l′s = 10 using MCPlusPlus and
CUDAMCML. The original CUDAMCML code [@184] has been modified to include the output
relative to w2(t) shown in panel (c).

library rather than an executable package. A python interface to the library is also provided
so that simulations can be easily set up and run through a simple script. Scriptability is one
fundamental feature of MCPlusPlus as it easily allows to loop over the parameter space,
which is particularly useful to automatize the building of a lookup-table or performing a fit.
With respect to other scripting languages such as MATLAB, python is free and open-source
software, yet offering a rich array of high-level libraries. Listing 5.1 shows an example of
a python script used to set up and run a simulation such as that used to generate Figure
2.10. If desired, the raw output of the simulation can be organized in histograms where
walkers emerging from the sample can be tallied up according to their point, angle or time
of exit. Bivariate histogramming is also available, which is needed for example to access
the spatio-temporal profiles. Walkers transmitted through the last boundary are classified
either as TRANSMITTED or BALLISTIC if they have undergone at least one or no scattering
events. Similarly, walkers leaving the sample from the first boundary are called REFLECTED
or SPECREFLECTED. More than one class of walkers can be merged in the statistics using
bitwise OR in the argument of setWalkerTypeFlags.

The sample is described as a sequence of layers of arbitrary materials. Exploiting
ray-optics matrices, beam sources such as the GaussianRayBundleSource (see Figure
4.3) can be focused exactly to the desired depth even in the presence of intervening layers.
Several utility distributions are implemented, that can be used to draw angles, entrance
positions and time delays according to the experimental configuration. The full hierarchy of
classes and the definition of their methods is described in the online documentation [@143].
The output of the simulation is saved in HDF5 format, a widely used format devised for
storing large datasets in binary form.

The second relevant point for the design of a Monte Carlo software is given by the
so-called ‘embarrassingly parallel’ nature of radiative transfer. All random walk trajectories
can be computed independently of each other, meaning that any increase in the number of
processing units contributes linearly to the efficiency of the simulation. For this reason,
virtually all modern MC software take advantage of parallelization heavily, especially
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Listing 5.1 Python script example setting and running the parallel simulation of 1010 walkers on 8
threads. As many output histograms can be defined and included in the output. Official units for
angles, lengths and angles are degrees, µm and ps, respectively.
from pymcplusplus import * # import bindings to the C++ library

mat = Material() # define scattering material
mat.n = 1.5 # set refractive index
mat.g = 0.6034 # set scattering anisotropy
mat.ls = 39.66 # set scattering mean free path

env = Material() # define external material
env.n = 1 # external refractive index

sample = Sample() # define sample instance
sample.addLayer(mat, 1000) # add 1000um-thick scattering layer
sample.setSurroundingEnvironment(env) # set external environment

source = PencilBeamSource() # define source type

sim = Simulation() # define simulation object
sim.setSample(sample) # add sample
sim.setSource(source) # add source
sim.setNWalkers(10000000000) # set number of walkers
sim.setNThreads(8) # set number of threads
sim.setSeed(0) # set seed for the PNRG

hist = Histogram() # define a histogram object
hist.setDataDomain(DATA_K, DATA_TIMES); # set (bivariate) domain
hist.setWalkerTypeFlags(FLAG_TRANSMITTED); # detect transmitted walkers
hist.setMax(90, 1000); # set histogram upper limits
hist.setBinSize(0.5, 1); # set bin size for each domain
hist.setName("k_vs_times_transm"); # set dataset label
sim.addHistogram(hist); # append histogram to the simulation

sim.setOutputFileName("example.h5") # set binary output filename
sim.run() # run simulation
sim.clear() # free memory

on GPUs where one can easily find thousands of cores. While offering multithreading
capabilities, we developed MCPlusPlus to be run on CPUs rather than GPUs. In fact,
while delivering the highest computing speed, graphical processing units present still few
difficulties and limitations with respect to conventional programs [54, 185]. Conversely,
the aim of MCPlusPlus was to deliver high precision, numerical accuracy, reliability
and reproducibility. In fact, in a LUT approach, simulations and data evaluation happen
asynchronously, and therefore computing speed does not represent a major limitation. We
must note however that, despite being CPU-based, MCPlusPlus still offers performances
close to GPU-based solutions by exploiting multithreading on e.g., a multi-core workstation.
Finally, CPU code also ensures complete hardware compatibility, while GPU software are
hardware or even vendor specific.

A final relevant consideration is related to the magnitude of the simulations to be
performed. The building of the LUT and the study of optically thin samples in particular,
requires the simulation of extremely large number of energy packets. As we have seen in
subsection 2.1.6, this involves the generation of a huge amount of random numbers, which
must be done carefully. Within a computer, pseudorandom numbers are more efficiently
produced using a pseudo-random number generator (PRNG), which is a deterministic

85



Lorenzo Pattelli

85

0 20 40 60 80

10−10

10−5

ρ [µm]

T
(ρ

)[
a.

u.
]

MCPlusPlus
CUDAMCML

(a)

0 2 4

10−8

10−5

10−2

t [ps]

T
(t

)[
a.

u.
]

MCPlusPlus
CUDAMCML

(b)

0 2 4

0

0.05

0.1

t [ps]

w
2 (t

)[
m

m
2 ]

MCPlusPlus
CUDAMCML

(c)

Figure 5.1. Comparison of the results obtained for a slab with L/l′s = 10 using MCPlusPlus and
CUDAMCML. The original CUDAMCML code [@184] has been modified to include the output
relative to w2(t) shown in panel (c).

library rather than an executable package. A python interface to the library is also provided
so that simulations can be easily set up and run through a simple script. Scriptability is one
fundamental feature of MCPlusPlus as it easily allows to loop over the parameter space,
which is particularly useful to automatize the building of a lookup-table or performing a fit.
With respect to other scripting languages such as MATLAB, python is free and open-source
software, yet offering a rich array of high-level libraries. Listing 5.1 shows an example of
a python script used to set up and run a simulation such as that used to generate Figure
2.10. If desired, the raw output of the simulation can be organized in histograms where
walkers emerging from the sample can be tallied up according to their point, angle or time
of exit. Bivariate histogramming is also available, which is needed for example to access
the spatio-temporal profiles. Walkers transmitted through the last boundary are classified
either as TRANSMITTED or BALLISTIC if they have undergone at least one or no scattering
events. Similarly, walkers leaving the sample from the first boundary are called REFLECTED
or SPECREFLECTED. More than one class of walkers can be merged in the statistics using
bitwise OR in the argument of setWalkerTypeFlags.

The sample is described as a sequence of layers of arbitrary materials. Exploiting
ray-optics matrices, beam sources such as the GaussianRayBundleSource (see Figure
4.3) can be focused exactly to the desired depth even in the presence of intervening layers.
Several utility distributions are implemented, that can be used to draw angles, entrance
positions and time delays according to the experimental configuration. The full hierarchy of
classes and the definition of their methods is described in the online documentation [@143].
The output of the simulation is saved in HDF5 format, a widely used format devised for
storing large datasets in binary form.

The second relevant point for the design of a Monte Carlo software is given by the
so-called ‘embarrassingly parallel’ nature of radiative transfer. All random walk trajectories
can be computed independently of each other, meaning that any increase in the number of
processing units contributes linearly to the efficiency of the simulation. For this reason,
virtually all modern MC software take advantage of parallelization heavily, especially
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Listing 5.1 Python script example setting and running the parallel simulation of 1010 walkers on 8
threads. As many output histograms can be defined and included in the output. Official units for
angles, lengths and angles are degrees, µm and ps, respectively.
from pymcplusplus import * # import bindings to the C++ library

mat = Material() # define scattering material
mat.n = 1.5 # set refractive index
mat.g = 0.6034 # set scattering anisotropy
mat.ls = 39.66 # set scattering mean free path

env = Material() # define external material
env.n = 1 # external refractive index

sample = Sample() # define sample instance
sample.addLayer(mat, 1000) # add 1000um-thick scattering layer
sample.setSurroundingEnvironment(env) # set external environment

source = PencilBeamSource() # define source type

sim = Simulation() # define simulation object
sim.setSample(sample) # add sample
sim.setSource(source) # add source
sim.setNWalkers(10000000000) # set number of walkers
sim.setNThreads(8) # set number of threads
sim.setSeed(0) # set seed for the PNRG

hist = Histogram() # define a histogram object
hist.setDataDomain(DATA_K, DATA_TIMES); # set (bivariate) domain
hist.setWalkerTypeFlags(FLAG_TRANSMITTED); # detect transmitted walkers
hist.setMax(90, 1000); # set histogram upper limits
hist.setBinSize(0.5, 1); # set bin size for each domain
hist.setName("k_vs_times_transm"); # set dataset label
sim.addHistogram(hist); # append histogram to the simulation

sim.setOutputFileName("example.h5") # set binary output filename
sim.run() # run simulation
sim.clear() # free memory

on GPUs where one can easily find thousands of cores. While offering multithreading
capabilities, we developed MCPlusPlus to be run on CPUs rather than GPUs. In fact,
while delivering the highest computing speed, graphical processing units present still few
difficulties and limitations with respect to conventional programs [54, 185]. Conversely,
the aim of MCPlusPlus was to deliver high precision, numerical accuracy, reliability
and reproducibility. In fact, in a LUT approach, simulations and data evaluation happen
asynchronously, and therefore computing speed does not represent a major limitation. We
must note however that, despite being CPU-based, MCPlusPlus still offers performances
close to GPU-based solutions by exploiting multithreading on e.g., a multi-core workstation.
Finally, CPU code also ensures complete hardware compatibility, while GPU software are
hardware or even vendor specific.

A final relevant consideration is related to the magnitude of the simulations to be
performed. The building of the LUT and the study of optically thin samples in particular,
requires the simulation of extremely large number of energy packets. As we have seen in
subsection 2.1.6, this involves the generation of a huge amount of random numbers, which
must be done carefully. Within a computer, pseudorandom numbers are more efficiently
produced using a pseudo-random number generator (PRNG), which is a deterministic
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algorithm that produces a deterministic sequence of numbers approximating the statistical
properties of a truly random sequence. A PRNG can be started from an arbitrary initial
condition using a seed state, and will always produce the same sequence while evolving its
internal state from a given seed state. After a certain predetermined number of iterations
(defined as its period) the algorithm will loop back to its initial state and start again to
output the same sequence.

One trivial problem that arises with this approach is of course that the amount of
random numbers drawn during the simulations should be kept way below the period of
the PRNG to avoid useless repetition of identical trajectories. This is usually not an issue
since state-of-the-art PRNGs such as the Mersenne Twister can have periods > 106000 at
the cost of a moderate memory footprint. Still, this somehow prevents a widespread use of
such high-level PRNGs on GPUs, where each thread has only a limited amount of memory
available. However, this limitation is being rapidly mitigated by the advancement of both
software and hardware platforms.

A much subtler issue, that to our knowledge has not been addressed yet in existing
MC solutions, is connected to how computers represent real numbers in floating-point
notation, which can heavily impact the generation of exponentially distributed numbers
needed for the step length distribution (2.89). In a computer, any number is represented as a
finite sequence of bits. Therefore, only a finite list of numbers can be represented and used
in calculations. The main strategy to generate random numbers in accordance to a given
distribution is to use its inverse cumulative distribution and feed it with random numbers
ξ ∈ [0, 1). Recalling the example of the exponential distribution, the useful relation for the
step length is given by equation (2.61)

� = −ls ln(1 − ξ). (5.1)

Due to the fact that only a finite number of representations 0 ≤ ξ < 1 can exist, the resulting
exponential distribution is necessarily truncated at some �max = −ls ln ε, where we have
assumed that 1 − ε is the closest number to 1 that can be represented. This truncation
becomes statistically significant if one draws a large number of steps. In all modern CPU
and GPU-based MC software implementations, the truncation length happens around 22.18
times the average step length (a thorough discussion of the truncation problem is contained
in Appendix B). This means that the probability of performing a step with � > 22.18 × ls is
identically null, while it should be

P(� > 22.18ls) =

∞∫

22.18ls

exp (−�/ls)/ls d� =

∞∫

22.18

e−� d� =
1

232 . (5.2)

Consequently, whenever we run a simulation where more than 232 ∼ 4 × 109 steps need to
be drawn, the standard implementation of the step-length distribution (SLD) will start to be
appreciably biased towards shorter step lengths. It should be noted that, by definition, the
number of steps drawn is always strictly bigger than the number of simulated energy packets
— often by a few orders of magnitude — so that this issue is not as remote as it might
seem. Nonetheless, for most applications, a smaller number of energy packets is usually
sufficient and this effect can be almost neglected. Driven by the more fundamental nature
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of our investigation, we developed MCPlusPlus providing it with the possibility to use an
exponential distribution where the truncation probability is pushed below 2−64, meaning
that more than ∼ 5 × 1020 steps can be generated without incurring in a biased step-length
distribution. As described in detail in Appendix B, this requires the use of a 64-bit PRNG
in combination with a 128-bit long double floating point representation for the uniform
random variate ξ. The implementation of these features ultimately determined our choice
to develop MCPlusPlus on the CPU, where they can be straightforwardly implemented.
In contrast, forcing GPU software to meet such massive scale and precision requirements
would be extremely unfavorable, given its specific vocation for lower-precision arithmetic.

5.3. Deconstructing light transport at the ballistic-to-diffusive
transition

As we discussed in the introduction, light is a particularly versatile tool to investigate the
optical properties of materials in many different fields of science, medicine and technology.
Each optical parameter provides different insights on the sample composition, such as
the density and scattering strength of its constituents, the concentration of pigments or
absorbing chromophores, and the shape and size of the single scatterers. Accurate retrieval
procedures for these parameters are therefore of paramount importance in a number of
applications.

When considering the slab geometry, the diffusion approximation (DA) represents
a straightforward and widely used theoretical framework, in that it provides a complete
set of analytical expressions to describe light transport both in the spatial and temporal
domain. However, as we have shown experimentally in Chapter 4 for a variety of samples,
its validity range is limited to highly turbid materials and DA-based inversion techniques
are affected by systematic errors especially when applied in the regime where the optical
thickness (OT) falls below ∼ 10. For this reason, despite the fact that intermediate-tubidity
layers are of large interest both in fundamental research [68, 84, 189, 190] and applications
[91, 191–194], this class of samples remains to date less studied given the need for non-
approximated numerical techniques. Additionally, even when dealing with turbid materials,
the samples may exist only in a small range of thicknesses and sizes, which is often the
case in the biomedical field when studying tissues as the ocular fundus [91], vascular walls
[195], cellular cultures [196], skin dermis [197], skull bones [198] or dental enamel [199]
— to name a few.

In all these circumstances, experimental data evaluation must rely on more accurate
methods such as refined approximations of the radiative transfer equation (RTE) or Monte
Carlo (MC) simulations. Nonetheless, due to its simplicity, the diffusion approximation
still retains a large appeal, and great efforts are constantly made to extend its validity range
introducing all sorts of ad-hoc modifications [70, 74, 77]. Still, an intriguing conundrum
exists when applying the diffusive picture to optically thin media. On one hand, in low-
turbidity samples the diffusion approximation is bound to breakdown in the sense that light
transport will be dominated by unscattered (ballistic) light, or light undergoing too few
scattering events. On the other hand, however, if a time-domain analysis is available, early
light can be rejected focusing solely on the fraction of light that propagated deeply in the
multiple scattering regime even in samples which would not be typically associated with
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algorithm that produces a deterministic sequence of numbers approximating the statistical
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A much subtler issue, that to our knowledge has not been addressed yet in existing
MC solutions, is connected to how computers represent real numbers in floating-point
notation, which can heavily impact the generation of exponentially distributed numbers
needed for the step length distribution (2.89). In a computer, any number is represented as a
finite sequence of bits. Therefore, only a finite list of numbers can be represented and used
in calculations. The main strategy to generate random numbers in accordance to a given
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ξ ∈ [0, 1). Recalling the example of the exponential distribution, the useful relation for the
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Consequently, whenever we run a simulation where more than 232 ∼ 4 × 109 steps need to
be drawn, the standard implementation of the step-length distribution (SLD) will start to be
appreciably biased towards shorter step lengths. It should be noted that, by definition, the
number of steps drawn is always strictly bigger than the number of simulated energy packets
— often by a few orders of magnitude — so that this issue is not as remote as it might
seem. Nonetheless, for most applications, a smaller number of energy packets is usually
sufficient and this effect can be almost neglected. Driven by the more fundamental nature
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that more than ∼ 5 × 1020 steps can be generated without incurring in a biased step-length
distribution. As described in detail in Appendix B, this requires the use of a 64-bit PRNG
in combination with a 128-bit long double floating point representation for the uniform
random variate ξ. The implementation of these features ultimately determined our choice
to develop MCPlusPlus on the CPU, where they can be straightforwardly implemented.
In contrast, forcing GPU software to meet such massive scale and precision requirements
would be extremely unfavorable, given its specific vocation for lower-precision arithmetic.

5.3. Deconstructing light transport at the ballistic-to-diffusive
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As we discussed in the introduction, light is a particularly versatile tool to investigate the
optical properties of materials in many different fields of science, medicine and technology.
Each optical parameter provides different insights on the sample composition, such as
the density and scattering strength of its constituents, the concentration of pigments or
absorbing chromophores, and the shape and size of the single scatterers. Accurate retrieval
procedures for these parameters are therefore of paramount importance in a number of
applications.

When considering the slab geometry, the diffusion approximation (DA) represents
a straightforward and widely used theoretical framework, in that it provides a complete
set of analytical expressions to describe light transport both in the spatial and temporal
domain. However, as we have shown experimentally in Chapter 4 for a variety of samples,
its validity range is limited to highly turbid materials and DA-based inversion techniques
are affected by systematic errors especially when applied in the regime where the optical
thickness (OT) falls below ∼ 10. For this reason, despite the fact that intermediate-tubidity
layers are of large interest both in fundamental research [68, 84, 189, 190] and applications
[91, 191–194], this class of samples remains to date less studied given the need for non-
approximated numerical techniques. Additionally, even when dealing with turbid materials,
the samples may exist only in a small range of thicknesses and sizes, which is often the
case in the biomedical field when studying tissues as the ocular fundus [91], vascular walls
[195], cellular cultures [196], skin dermis [197], skull bones [198] or dental enamel [199]
— to name a few.

In all these circumstances, experimental data evaluation must rely on more accurate
methods such as refined approximations of the radiative transfer equation (RTE) or Monte
Carlo (MC) simulations. Nonetheless, due to its simplicity, the diffusion approximation
still retains a large appeal, and great efforts are constantly made to extend its validity range
introducing all sorts of ad-hoc modifications [70, 74, 77]. Still, an intriguing conundrum
exists when applying the diffusive picture to optically thin media. On one hand, in low-
turbidity samples the diffusion approximation is bound to breakdown in the sense that light
transport will be dominated by unscattered (ballistic) light, or light undergoing too few
scattering events. On the other hand, however, if a time-domain analysis is available, early
light can be rejected focusing solely on the fraction of light that propagated deeply in the
multiple scattering regime even in samples which would not be typically associated with
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this transport regime [194, 200]. We would therefore expect that this late-time component
fulfills the validity assumptions of the DA even in the thin slab geometry.

In this section, we elucidate this point by performing an extensive Monte Carlo charac-
terization of light transport over a wide range of optical and geometric parameters, with the
aim of testing the validity of the diffusion approximation for decreasing optical thickness.
In paricular, as we have seen in Chapter 2, diffusion theory casts an incredibly simple
prediction on transverse transport which could be profitably applied in a thin slab geometry
(equation (2.104)), given that boundary and confinement effects are less relevant along
the slab’s main extension. As discussed in Chapter 4, strong numerical and experimental
evidence exist that studying transport along transverse directions enables a description that
is more robust against experimental uncertainties and easier to interpret within the diffusion
approximation [110, 157, 158, 201], as opposed to other methods based on the spatially
integrated transmission or its decay constant τ. Despite this, the vast literature available
for the slab geometry typically focuses on axial rather than transverse transport [68–70,
72, 84, 85, 102, 189], supposedly because the latter was difficult to access experimentally
in a direct way up to very recently. In this respect, our investigation fills the gap with the
extensive characterization already available in the literature regarding the breakdown of
the diffusion model along the axial direction, finally providing the richer 3-dimensional
picture of the transition between the ballistic and the diffusive regime. This characterization
allows to identify a set of transport descriptors enabling the building of a new, robust type
of lookup table whose advantages and working principles will be presented in the next
Section.

The typical configuration that we studied is that shown in Figure 5.2, with a pencil
beam pulse δ(r)δ(k− ki)δ(t) with ki = (0, 0, 1), impinging normally on a infinitely extended
scattering slab. According to the DA, this typically results in a Gaussian transmission
profile with a standard deviation growing linearly as w2(t) = 4DDAt with a slope determined
by the diffusion coefficient DDA = l′sv/3. This quantity is more generally referred to as the
mean square width (MSW), which can be defined for an arbitrary intensity distribution
I(ρ, t) through the relation (2.103)

w2(t) =

∫ ∞
0 ρ

2I(ρ, t)ρ dρ∫ ∞
0 I(ρ, t)ρ dρ

. (5.3)

Analogously, the integrated transmittance exhibits a typical exponential decay with a time
constant given by the relation (2.109)

1
τDA
=

π2DDA

(L0 + 2ze)2 + µav (5.4)

which depends explicitly on the physical thickness, the absorption coefficient, and the
boundary conditions through the extrapolated length ze.

In the simulations, energy packets propagate inside the scattering medium following a
standard random-walk algorithm for multi-layered structures implemented in MCPlusPlus.
Scattering step lengths are drawn following an exponential distribution while scattering
angles are generated using the well-known Heyney-Greenstein function (2.30). For each
transmitted and reflected packet, the time and point of exit from the sample is recorded.
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Figure 5.2. (a) Sketch of the investigated configuration. An infinite slab is illuminated by a pencil
beam pulse. Transmitted light is collected at different times and positions. A few trajectories and
normalized transmitted intensities are presented for illustrative purposes in the case of an optically
thin, index matched slab L = l′s = 1 mm (i.e. optical thickness = 1), shown to scale. The scattering
anisotropy g is set to 0. (b) An approximately Gaussian profile is transmitted at each time slice, whose
mean square width and integrated intensity respectively grows linearly and falls exponentially.

Assuming a fixed slab thickness of L0 = 1 mm we simulated different values of the optical
thickness (OT) ranging from 1 to 10 by varying the reduced scattering mean free path
l′s between 0.1 mm and 1 mm. In this case, the reciprocal of the optical thickness OT−1

is considered as the main parameter, representing a dimensionless figure for the reduced
scattering mean free path l′s. Each fixed-OT simulation has been run for 11 different values
of the anisotropy factor g between 0 and 0.99 and 16 values of the refractive index contrast
n ranging from 0.6 to 2.2, for a grand total of 2816 simulations of 109 photons each. The
full scriptability of MCPlusPlus largely streamlined the accumulation and sorting of the
simulations. For the sake of convenience, since Fresnel reflection coefficients depend solely
on the relative refractive index contrast n = nin/nout, we kept nin = 1 constant while varying
nout in order to have a consistent time scale over the whole set of simulations. The real time
scale of any single simulation can be recovered by simple multiplication by the actual value
of nin.

The output of the simulations is analyzed in terms of the transmittance MSW growth
rate and the total transmittance decay time, as summarized in Figures 5.3a and 5.3b, re-
spectively. It should be noted that these descriptors converge exactly to the same respective
values also when considering reflectance, and are therefore valid for both types of measure-
ments. In order to build the hyper-surfaces in the parameter space, we start by evaluating the
exponential decay time of simulated data in order to set, for each simulation, a time-scale
normalized to τ. Both the decay constant and the MSW rate are retrieved by fitting the data
only in a temporal range between 4τ < t < 9τ, which ensures that the fitting is performed
at times long enough to extract the asymptotic values of the parameters. Moreover, this
adds consistency to the fitting method itself between different simulations. In the case of

89



Lorenzo Pattelli

89

this transport regime [194, 200]. We would therefore expect that this late-time component
fulfills the validity assumptions of the DA even in the thin slab geometry.

In this section, we elucidate this point by performing an extensive Monte Carlo charac-
terization of light transport over a wide range of optical and geometric parameters, with the
aim of testing the validity of the diffusion approximation for decreasing optical thickness.
In paricular, as we have seen in Chapter 2, diffusion theory casts an incredibly simple
prediction on transverse transport which could be profitably applied in a thin slab geometry
(equation (2.104)), given that boundary and confinement effects are less relevant along
the slab’s main extension. As discussed in Chapter 4, strong numerical and experimental
evidence exist that studying transport along transverse directions enables a description that
is more robust against experimental uncertainties and easier to interpret within the diffusion
approximation [110, 157, 158, 201], as opposed to other methods based on the spatially
integrated transmission or its decay constant τ. Despite this, the vast literature available
for the slab geometry typically focuses on axial rather than transverse transport [68–70,
72, 84, 85, 102, 189], supposedly because the latter was difficult to access experimentally
in a direct way up to very recently. In this respect, our investigation fills the gap with the
extensive characterization already available in the literature regarding the breakdown of
the diffusion model along the axial direction, finally providing the richer 3-dimensional
picture of the transition between the ballistic and the diffusive regime. This characterization
allows to identify a set of transport descriptors enabling the building of a new, robust type
of lookup table whose advantages and working principles will be presented in the next
Section.

The typical configuration that we studied is that shown in Figure 5.2, with a pencil
beam pulse δ(r)δ(k− ki)δ(t) with ki = (0, 0, 1), impinging normally on a infinitely extended
scattering slab. According to the DA, this typically results in a Gaussian transmission
profile with a standard deviation growing linearly as w2(t) = 4DDAt with a slope determined
by the diffusion coefficient DDA = l′sv/3. This quantity is more generally referred to as the
mean square width (MSW), which can be defined for an arbitrary intensity distribution
I(ρ, t) through the relation (2.103)

w2(t) =

∫ ∞
0 ρ

2I(ρ, t)ρ dρ∫ ∞
0 I(ρ, t)ρ dρ

. (5.3)

Analogously, the integrated transmittance exhibits a typical exponential decay with a time
constant given by the relation (2.109)

1
τDA
=

π2DDA

(L0 + 2ze)2 + µav (5.4)

which depends explicitly on the physical thickness, the absorption coefficient, and the
boundary conditions through the extrapolated length ze.

In the simulations, energy packets propagate inside the scattering medium following a
standard random-walk algorithm for multi-layered structures implemented in MCPlusPlus.
Scattering step lengths are drawn following an exponential distribution while scattering
angles are generated using the well-known Heyney-Greenstein function (2.30). For each
transmitted and reflected packet, the time and point of exit from the sample is recorded.
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Figure 5.2. (a) Sketch of the investigated configuration. An infinite slab is illuminated by a pencil
beam pulse. Transmitted light is collected at different times and positions. A few trajectories and
normalized transmitted intensities are presented for illustrative purposes in the case of an optically
thin, index matched slab L = l′s = 1 mm (i.e. optical thickness = 1), shown to scale. The scattering
anisotropy g is set to 0. (b) An approximately Gaussian profile is transmitted at each time slice, whose
mean square width and integrated intensity respectively grows linearly and falls exponentially.

Assuming a fixed slab thickness of L0 = 1 mm we simulated different values of the optical
thickness (OT) ranging from 1 to 10 by varying the reduced scattering mean free path
l′s between 0.1 mm and 1 mm. In this case, the reciprocal of the optical thickness OT−1

is considered as the main parameter, representing a dimensionless figure for the reduced
scattering mean free path l′s. Each fixed-OT simulation has been run for 11 different values
of the anisotropy factor g between 0 and 0.99 and 16 values of the refractive index contrast
n ranging from 0.6 to 2.2, for a grand total of 2816 simulations of 109 photons each. The
full scriptability of MCPlusPlus largely streamlined the accumulation and sorting of the
simulations. For the sake of convenience, since Fresnel reflection coefficients depend solely
on the relative refractive index contrast n = nin/nout, we kept nin = 1 constant while varying
nout in order to have a consistent time scale over the whole set of simulations. The real time
scale of any single simulation can be recovered by simple multiplication by the actual value
of nin.

The output of the simulations is analyzed in terms of the transmittance MSW growth
rate and the total transmittance decay time, as summarized in Figures 5.3a and 5.3b, re-
spectively. It should be noted that these descriptors converge exactly to the same respective
values also when considering reflectance, and are therefore valid for both types of measure-
ments. In order to build the hyper-surfaces in the parameter space, we start by evaluating the
exponential decay time of simulated data in order to set, for each simulation, a time-scale
normalized to τ. Both the decay constant and the MSW rate are retrieved by fitting the data
only in a temporal range between 4τ < t < 9τ, which ensures that the fitting is performed
at times long enough to extract the asymptotic values of the parameters. Moreover, this
adds consistency to the fitting method itself between different simulations. In the case of
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Figure 5.3. Steps followed to generate the hyper-surfaces for (a) relative MSW slope and (b) decay-
time deviations. From top to bottom: subset of simulated time-resolved MSW and total transmittance
curves for n = 1.4 and g = 0.9 at different values of l′s/L0. Fitting is performed between 4 to 9
decay times. Discretized hyper-surfaces showing relative deviations of the investigated parameters
with respect to the DA. Each simulated n-slice (n = 1.4 shown) of the parameter space is processed
through a Loess fitting routine and finally reassembled to carry a gridded interpolation along the
index-contrast axis.
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the MSW slope, the limited fitting range allows to systematically exclude early-time light
transmitted before the onset of the diffusive regime, while the upper limit helps avoiding the
noise found at very long times due to insufficient statistics. It might be called into question
whether it is appropriate to use the decay rate τ as a time unit for the MSW evolution,
since the former is mainly determined by transport properties along the thickness direction,
while the latter occurs along the plane. A decay-time-based temporal range provides indeed
a convenient way of defining a consistent, self-tuning fitting window across the whole
dataset. This simple choice is also advocated under practical reasons, since the decay time is
undoubtedly the actual temporal unit that eventually dictates — both in real and numerical
experiments — the signal-to-noise ratio. In this respect, every diffusion coefficient within
our simulated phase space has been determined under equal noise conditions. No less
important, limiting our investigation to a long-time window is also relevant under a more
technical point of view: i.e. it renders irrelevant for all practical purposes the specific choice
of both the spatial source distribution and the phase function.

Values of τ and D obtained for each simulation are eventually arranged in the form
of a hyper-surface as shown in figures 5.3a and 5.3b, respectively. In order to neutralize
the noise originating from statistic fluctuations and fitting uncertainty, we consider each
simulated n-slice separately and smooth the data through a Loess fitting routine (range
parameter set to 0.25) as shown in the third row of plots. Smoothed slices are eventually
reassembled together to perform a cubic interpolation along the index-contrast axis to
obtain a hyper-surface for D and τ that can be evaluated seamlessly for any triplet in the
(n, g, OT−1) parameter space. Interpolation has been performed separately on the n ≤ 1
and n ≥ 1 regions of the parameter space due to the sharp first-derivative discontinuity
occurring at n = 1.

5.3.1. Mean square width expansion

The upper panel of Figure 5.3a shows a subset of simulated MSW data obtained for typical
optical properties of interest in the bio-optical field (n = 1.4, g = 0.9), which surprisingly
exhibit a linear asymptotic increase even at the lowest value of the optical thickness. As
previously discussed, the value of the MSW at each instant is exactly independent of
absorption, which has been therefore ignored from the simulations. The retrieved values
of D, evaluated as 1/4 of the variance slope, have been normalized by the expected value
DDA = l′sc/3 and arranged in a hyper-surface of relative deviations. The obtained volume is
sampled in a discrete set of points in the (n, g, OT−1) space, with a 1 : 1 correspondence
with the number of performed simulations. Noise coming either from limited statistics or
fitting uncertainties is largely suppressed by applying a local regression algorithm using
weighted linear least squares and a 2nd degree polynomial model as provided by the Loess
MATLAB model (Figure 5.3, third row). This allows to obtain an accurate, seamlessly
sampled volume suitable for finer interpolation, as shown in the final step of Figure 5.3a.

A few comments are in order. Firstly, the present investigation is intended to focus
on long-time/asymptotic transport. To this purpose, the diffusion coefficient D has been
evaluated by the linear slope of the mean square width (MSW) in a time window ranging
from 4 to 9 decay times, as determined from time-resolved curves. Depending mainly on
the optical thickness of the sample, there is an early-time range where the MSW exhibits
a super-linear increase. We carefully checked that the aforementioned fitting time range
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Figure 5.3. Steps followed to generate the hyper-surfaces for (a) relative MSW slope and (b) decay-
time deviations. From top to bottom: subset of simulated time-resolved MSW and total transmittance
curves for n = 1.4 and g = 0.9 at different values of l′s/L0. Fitting is performed between 4 to 9
decay times. Discretized hyper-surfaces showing relative deviations of the investigated parameters
with respect to the DA. Each simulated n-slice (n = 1.4 shown) of the parameter space is processed
through a Loess fitting routine and finally reassembled to carry a gridded interpolation along the
index-contrast axis.
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the MSW slope, the limited fitting range allows to systematically exclude early-time light
transmitted before the onset of the diffusive regime, while the upper limit helps avoiding the
noise found at very long times due to insufficient statistics. It might be called into question
whether it is appropriate to use the decay rate τ as a time unit for the MSW evolution,
since the former is mainly determined by transport properties along the thickness direction,
while the latter occurs along the plane. A decay-time-based temporal range provides indeed
a convenient way of defining a consistent, self-tuning fitting window across the whole
dataset. This simple choice is also advocated under practical reasons, since the decay time is
undoubtedly the actual temporal unit that eventually dictates — both in real and numerical
experiments — the signal-to-noise ratio. In this respect, every diffusion coefficient within
our simulated phase space has been determined under equal noise conditions. No less
important, limiting our investigation to a long-time window is also relevant under a more
technical point of view: i.e. it renders irrelevant for all practical purposes the specific choice
of both the spatial source distribution and the phase function.

Values of τ and D obtained for each simulation are eventually arranged in the form
of a hyper-surface as shown in figures 5.3a and 5.3b, respectively. In order to neutralize
the noise originating from statistic fluctuations and fitting uncertainty, we consider each
simulated n-slice separately and smooth the data through a Loess fitting routine (range
parameter set to 0.25) as shown in the third row of plots. Smoothed slices are eventually
reassembled together to perform a cubic interpolation along the index-contrast axis to
obtain a hyper-surface for D and τ that can be evaluated seamlessly for any triplet in the
(n, g, OT−1) parameter space. Interpolation has been performed separately on the n ≤ 1
and n ≥ 1 regions of the parameter space due to the sharp first-derivative discontinuity
occurring at n = 1.

5.3.1. Mean square width expansion

The upper panel of Figure 5.3a shows a subset of simulated MSW data obtained for typical
optical properties of interest in the bio-optical field (n = 1.4, g = 0.9), which surprisingly
exhibit a linear asymptotic increase even at the lowest value of the optical thickness. As
previously discussed, the value of the MSW at each instant is exactly independent of
absorption, which has been therefore ignored from the simulations. The retrieved values
of D, evaluated as 1/4 of the variance slope, have been normalized by the expected value
DDA = l′sc/3 and arranged in a hyper-surface of relative deviations. The obtained volume is
sampled in a discrete set of points in the (n, g, OT−1) space, with a 1 : 1 correspondence
with the number of performed simulations. Noise coming either from limited statistics or
fitting uncertainties is largely suppressed by applying a local regression algorithm using
weighted linear least squares and a 2nd degree polynomial model as provided by the Loess
MATLAB model (Figure 5.3, third row). This allows to obtain an accurate, seamlessly
sampled volume suitable for finer interpolation, as shown in the final step of Figure 5.3a.

A few comments are in order. Firstly, the present investigation is intended to focus
on long-time/asymptotic transport. To this purpose, the diffusion coefficient D has been
evaluated by the linear slope of the mean square width (MSW) in a time window ranging
from 4 to 9 decay times, as determined from time-resolved curves. Depending mainly on
the optical thickness of the sample, there is an early-time range where the MSW exhibits
a super-linear increase. We carefully checked that the aforementioned fitting time range
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was always largely excluding such non-linear time range in order to address safely the
asymptotic slope.

Secondly, it is well known that most biological soft tissues share a refractive index
equal or close to nin = 1.4 [202]. This is supposedly the reason why refractive index
variations have so far been disregarded in similar multi-parameter investigations [93, 167,
178, 182]. Nonetheless, we included the refractive index contrast as a simulation parameter
because, especially in the case of thin slabs, the range of interest for n is undoubtedly wider.
The case of small n can be of interest for samples that are enclosed in glass slides, or laid or
immersed in different substrates/solutions, whereas the higher values have been included
envisioning possible applications of our study to metal oxides and similar highly scattering
materials, which are extremely relevant, for instance, for coatings and in photovoltaics.

Looking at the obtained data, two features are immediately noticeable. Firstly, the
diffusion approximation appears to always underestimate the actual spreading rate, of
course recovering agreement for higher optical thicknesses as expected. A second, finer
feature occurs in the close proximity of n = 1, particularly evident at low g and OT values.
Both these features arise from the interplay between geometric and boundary conditions. In
particular, the presence of internal reflections in a thin layer geometry helps to selectively
hold inside the slab those energy packets that happen to draw statistically longer steps, as
we discuss in more detail in the following Chapter. To the purpose of solving the inverse
problem, it is worth noting that the MSW slope exhibits a distinct pattern of characteristic
deviations from the DA, which can be therefore exploited as a guide to unambiguously
retrieve the intrinsic microscopic transport properties of a given sample.

5.3.2. Decay time and absorption

The upper panels of Figure 5.3b show respectively a typical set of time-resolved transmit-
tance decays and the hyper-surface of relative deviations from the DA predictions. Two
main features are worth commenting when comparing these results to the previous MSW
characterization. First of all, the obtained decay time deviations are more significant,
reaching down to just a few percent of the expected value for the highest contrast n and
anisotropy factor g. It is indeed known that n > 1 refractive-index contrasts are more
diffucult to be taken into account even when applying appropriate boundary corrections and
even at higher optical thicknesses (see, for example, Figure 2.10). Secondly, as opposed
to the MSW case, deviations in both directions are possible, with the τ/τDA ratio taking
values both above and below 1. This might help explaining some experimental evidences
obtained in thin disordered samples that are still debated at a fundamental level [71, 85,
87, 203–205], as we will further discuss in the next Chapter. These findings stress the
importance of an accurate and precise modeling of the index contrast, which we think has
been often overlooked, for example when a symmetric averaged contrast is used to model
asymmetric experimental configurations [71, 85, 204].

Despite the vast literature regarding the validity range of the diffusion approximation
in the time domain [67–69, 72, 102, 147, 150, 206], a comprehensive understanding of
the interplay between optical thickness, refractive-index contrast and absorption is still
object of debate. It is a common assumption that the diffusion approximation fails gradually
with decreasing optical thickness, with OT = 8 being customarily considered as the lower
threshold under which the introduced error starts to be significant [72]. Nevertheless, as
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we have seen in Section 4.2, even in the absence of absorption a OT > 8 slab sample
with n ∼ 1.5 can exhibit a transmittance decay time such that the diffusion approximation
is unable to provide any real solution at all (see Figure 4.4c), thus suggesting that the
breakdown of the diffusion approximation might step in abruptly depending on the interplay
between different parameters other than the optical thickness. As we will show in the next
Section, as expected, the experimentally observed deviations are in perfect agreement with
our new set of simulations.

A few words should be spent on the role of absorption, which we have excluded from
the simulations even though it contributes to defining the value of the transmittance decay
time through equation (5.4). This does not imply any loss of generality, since also in the
case of the decay time, the presence of absorption can be accounted for exactly by shifting

1
τDA

→ 1
τDA
+ µav, (5.5)

τDA being the decay time in the non-absorbing case.
The problem with absorption is that both scattering and absorption can deplete specific

intensity from a given position, time and direction (an effect sometimes referred to as
absorption-to-scattering cross-talk). Hence, retrieving its unknown value from experimental
data has been to date a challenging task. In a quest for decoupling their effects, crude
approximations have been introduced even in the time domain, relying on the assumption
that the intensity decay time would eventually become independent of the scattering
coefficient at long time scales [207, 208], which however can lead to wrong estimations
unless an extremely large dynamic range is available [176, 209].

Besides that, it is often reported that the diffusion approximation is expected to hold only
for weakly absorbing media since the onset of the properly diffusive regime requires long
trajectories to contribute dominantly to transport properties, whereas these are selectively
suppressed by absorption [60]. This explains why absorption is often considered as a major
hindrance in the correct assessment of transport properties [79, 210, 211], if not even an
invalidating condition for certain optical parameter measurements [38, 212, 213]. For this
reason, techniques capable of directly accessing the MSW recently aroused a great deal
of interest given the absorption-independent nature of the variance expansion [42, 110,
148, 149, 157] that allows for the first time to decouple exactly absorption from scattering.
The full potential of MSW measuring techniques is still to be fully unraveled: as we will
demonstrate in the following, it can play a key role in accurately retrieving both parameters.

5.4. A Monte Carlo LUT based on spatio-temporal descriptors

As we have seen, the solutions to the RTE in the range of optical thicknesses comprised
between 0 and 1 exhibits some significant deviations from the DA and the similarity relation,
while at the same time retaining its main hallmarks such as the steadily linear MSW growth
rate. This results in a pair of multidimensional hyper-patterns, the joint evaluation of which
represents a characteristic signature of a given set of optical parameters. This observation
leads naturally to the definition of a lookup-table approach.

The main feature of the LUT routine that we designed is that, for the first time to our
knowledge, it relies on observable quantities that do not require any absolute measurement

93



Lorenzo Pattelli

93

was always largely excluding such non-linear time range in order to address safely the
asymptotic slope.

Secondly, it is well known that most biological soft tissues share a refractive index
equal or close to nin = 1.4 [202]. This is supposedly the reason why refractive index
variations have so far been disregarded in similar multi-parameter investigations [93, 167,
178, 182]. Nonetheless, we included the refractive index contrast as a simulation parameter
because, especially in the case of thin slabs, the range of interest for n is undoubtedly wider.
The case of small n can be of interest for samples that are enclosed in glass slides, or laid or
immersed in different substrates/solutions, whereas the higher values have been included
envisioning possible applications of our study to metal oxides and similar highly scattering
materials, which are extremely relevant, for instance, for coatings and in photovoltaics.

Looking at the obtained data, two features are immediately noticeable. Firstly, the
diffusion approximation appears to always underestimate the actual spreading rate, of
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particular, the presence of internal reflections in a thin layer geometry helps to selectively
hold inside the slab those energy packets that happen to draw statistically longer steps, as
we discuss in more detail in the following Chapter. To the purpose of solving the inverse
problem, it is worth noting that the MSW slope exhibits a distinct pattern of characteristic
deviations from the DA, which can be therefore exploited as a guide to unambiguously
retrieve the intrinsic microscopic transport properties of a given sample.

5.3.2. Decay time and absorption

The upper panels of Figure 5.3b show respectively a typical set of time-resolved transmit-
tance decays and the hyper-surface of relative deviations from the DA predictions. Two
main features are worth commenting when comparing these results to the previous MSW
characterization. First of all, the obtained decay time deviations are more significant,
reaching down to just a few percent of the expected value for the highest contrast n and
anisotropy factor g. It is indeed known that n > 1 refractive-index contrasts are more
diffucult to be taken into account even when applying appropriate boundary corrections and
even at higher optical thicknesses (see, for example, Figure 2.10). Secondly, as opposed
to the MSW case, deviations in both directions are possible, with the τ/τDA ratio taking
values both above and below 1. This might help explaining some experimental evidences
obtained in thin disordered samples that are still debated at a fundamental level [71, 85,
87, 203–205], as we will further discuss in the next Chapter. These findings stress the
importance of an accurate and precise modeling of the index contrast, which we think has
been often overlooked, for example when a symmetric averaged contrast is used to model
asymmetric experimental configurations [71, 85, 204].

Despite the vast literature regarding the validity range of the diffusion approximation
in the time domain [67–69, 72, 102, 147, 150, 206], a comprehensive understanding of
the interplay between optical thickness, refractive-index contrast and absorption is still
object of debate. It is a common assumption that the diffusion approximation fails gradually
with decreasing optical thickness, with OT = 8 being customarily considered as the lower
threshold under which the introduced error starts to be significant [72]. Nevertheless, as
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we have seen in Section 4.2, even in the absence of absorption a OT > 8 slab sample
with n ∼ 1.5 can exhibit a transmittance decay time such that the diffusion approximation
is unable to provide any real solution at all (see Figure 4.4c), thus suggesting that the
breakdown of the diffusion approximation might step in abruptly depending on the interplay
between different parameters other than the optical thickness. As we will show in the next
Section, as expected, the experimentally observed deviations are in perfect agreement with
our new set of simulations.

A few words should be spent on the role of absorption, which we have excluded from
the simulations even though it contributes to defining the value of the transmittance decay
time through equation (5.4). This does not imply any loss of generality, since also in the
case of the decay time, the presence of absorption can be accounted for exactly by shifting
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τDA being the decay time in the non-absorbing case.
The problem with absorption is that both scattering and absorption can deplete specific

intensity from a given position, time and direction (an effect sometimes referred to as
absorption-to-scattering cross-talk). Hence, retrieving its unknown value from experimental
data has been to date a challenging task. In a quest for decoupling their effects, crude
approximations have been introduced even in the time domain, relying on the assumption
that the intensity decay time would eventually become independent of the scattering
coefficient at long time scales [207, 208], which however can lead to wrong estimations
unless an extremely large dynamic range is available [176, 209].

Besides that, it is often reported that the diffusion approximation is expected to hold only
for weakly absorbing media since the onset of the properly diffusive regime requires long
trajectories to contribute dominantly to transport properties, whereas these are selectively
suppressed by absorption [60]. This explains why absorption is often considered as a major
hindrance in the correct assessment of transport properties [79, 210, 211], if not even an
invalidating condition for certain optical parameter measurements [38, 212, 213]. For this
reason, techniques capable of directly accessing the MSW recently aroused a great deal
of interest given the absorption-independent nature of the variance expansion [42, 110,
148, 149, 157] that allows for the first time to decouple exactly absorption from scattering.
The full potential of MSW measuring techniques is still to be fully unraveled: as we will
demonstrate in the following, it can play a key role in accurately retrieving both parameters.

5.4. A Monte Carlo LUT based on spatio-temporal descriptors

As we have seen, the solutions to the RTE in the range of optical thicknesses comprised
between 0 and 1 exhibits some significant deviations from the DA and the similarity relation,
while at the same time retaining its main hallmarks such as the steadily linear MSW growth
rate. This results in a pair of multidimensional hyper-patterns, the joint evaluation of which
represents a characteristic signature of a given set of optical parameters. This observation
leads naturally to the definition of a lookup-table approach.

The main feature of the LUT routine that we designed is that, for the first time to our
knowledge, it relies on observable quantities that do not require any absolute measurement
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and are well into the multiple scattering regime. This offers several advantages over existing
solutions mentioned in Section 5.1.

• both the asymptotic decay time and the mean square width slope can be measured
without any reference to the excitation intensity, therefore there is no need for an
absolute calibration of the source or the detector. Decay time determination is also
not strictly connected to any particular detection geometry, which stands in contrast
with other typical techniques often requiring a particular configuration of collection
fibers, integrating spheres or angular measurements.

• because of the asymptotic nature of both τ and w2(t), the actual temporal response
function or spatial excitation spot size are eventually irrelevant to their accurate
determination

• precise determination of the origin of the time axis (i.e., the exact time of pulse
injection), while being dramatically relevant in many analogue situations (see Figure
4.2), is here made completely irrelevant since both the decay time and the linear
increase of the mean square width do not exhibit any critical dependence on the exact
delay at which they are determined, provided that it is sufficiently large.

• with respect to MC-based fitting routines, a lookup-table routine is more suitable
for real-time solving of the inverse problem since it does not involve any iterative
procedure. While this guarantees ideal performance, on the downside we must
note that it is less clear how to define the uncertainty of retrieved values. Typical
approaches involve mapping the relative error on the retrieved parameters over a
broad range of independent simulations, in order to give a numerical estimation.

• several issues typically associated to fitting routines are also obviated. Once that
the two scalar descriptors are calculated with the proper, original binning, they can
be virtually rescaled arbitrarily without the risk of introducing any binning-related
artifact.

• the problem of correct bin positioning is also removed. Midpoint positioning adopted
in our case represents an exact solution for the linear increase of the MSW. While
this is not the case for a monoexponential decay, it can be again shown trivially that
midpoint positioning does leave the decay constant exactly unmodified.

• as we will show in the following, a possible use of our LUT routine is that of
retrieving µa and l′s. It must be nonetheless stressed again that none of the simulations
that compose our LUT need to include the effect of absorption, which stands in
contrast with the customary practice of most LUT approaches demonstrated to date.
This allows to deal with a simulation phase space of reduced dimensionality without
any loss of generality, which represents a enormous saving on the computational
burden of MC simulations.

• finally, since there is no need to directly simulate absorption nor add it after the
simulation, it is also not necessary to store exit times and positions on a single-packet
basis. This allows to hugely reduce the output size for each simulation and streamline
its handling, thus allowing for larger statistics to be collected.
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At this stage, our demonstrative MC-LUT routine is based on two descriptors and there-
fore allows to retrieve only pairs of transport parameters, e.g., l′s and g (and consequently
ls) assuming that absorption is known, or l′s and µa assuming a known value of g (which
is a common practice in similar works, especially those involving biological samples [93,
166, 167]). The effective refractive index and the thickness of the layer are also expected
as input parameters. A freely queryable version of the full dataset is available online with
a dedicated interface [@214]. To illustrate the steps involved in the LUT routine, we test
the retrieval procedure on two simulated samples with L = 1.3 mm, n = 1.38, g = 0.95,
ls = 45 µm and µa respectively equal to 0.2 mm−1 and 0 mm−1 (Figure 5.4). From these
simulations we extract the mean square width slope and the decay time, which are used as
inputs for the LUT routine.
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Figure 5.4. Demonstration of the MC-LUT routine. (a)-(b) Retrieving l′s and µa with known g. The
value of D retrieved from the MSW slope is marked on the corresponding n-slice of the parameter
space (dashed line). The intersection with the known value of g provides the best estimate for OT−1.
The expected decay time is read in the LUT at position τ(n, g,OT−1) and compared to the experimental
one to retrieve µa. (c)-(d) Retrieving l′s and g with known µa. Intersecting the iso-D and iso-τ curves
yields the estimated value of g.
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and are well into the multiple scattering regime. This offers several advantages over existing
solutions mentioned in Section 5.1.

• both the asymptotic decay time and the mean square width slope can be measured
without any reference to the excitation intensity, therefore there is no need for an
absolute calibration of the source or the detector. Decay time determination is also
not strictly connected to any particular detection geometry, which stands in contrast
with other typical techniques often requiring a particular configuration of collection
fibers, integrating spheres or angular measurements.

• because of the asymptotic nature of both τ and w2(t), the actual temporal response
function or spatial excitation spot size are eventually irrelevant to their accurate
determination

• precise determination of the origin of the time axis (i.e., the exact time of pulse
injection), while being dramatically relevant in many analogue situations (see Figure
4.2), is here made completely irrelevant since both the decay time and the linear
increase of the mean square width do not exhibit any critical dependence on the exact
delay at which they are determined, provided that it is sufficiently large.

• with respect to MC-based fitting routines, a lookup-table routine is more suitable
for real-time solving of the inverse problem since it does not involve any iterative
procedure. While this guarantees ideal performance, on the downside we must
note that it is less clear how to define the uncertainty of retrieved values. Typical
approaches involve mapping the relative error on the retrieved parameters over a
broad range of independent simulations, in order to give a numerical estimation.

• several issues typically associated to fitting routines are also obviated. Once that
the two scalar descriptors are calculated with the proper, original binning, they can
be virtually rescaled arbitrarily without the risk of introducing any binning-related
artifact.

• the problem of correct bin positioning is also removed. Midpoint positioning adopted
in our case represents an exact solution for the linear increase of the MSW. While
this is not the case for a monoexponential decay, it can be again shown trivially that
midpoint positioning does leave the decay constant exactly unmodified.

• as we will show in the following, a possible use of our LUT routine is that of
retrieving µa and l′s. It must be nonetheless stressed again that none of the simulations
that compose our LUT need to include the effect of absorption, which stands in
contrast with the customary practice of most LUT approaches demonstrated to date.
This allows to deal with a simulation phase space of reduced dimensionality without
any loss of generality, which represents a enormous saving on the computational
burden of MC simulations.

• finally, since there is no need to directly simulate absorption nor add it after the
simulation, it is also not necessary to store exit times and positions on a single-packet
basis. This allows to hugely reduce the output size for each simulation and streamline
its handling, thus allowing for larger statistics to be collected.
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At this stage, our demonstrative MC-LUT routine is based on two descriptors and there-
fore allows to retrieve only pairs of transport parameters, e.g., l′s and g (and consequently
ls) assuming that absorption is known, or l′s and µa assuming a known value of g (which
is a common practice in similar works, especially those involving biological samples [93,
166, 167]). The effective refractive index and the thickness of the layer are also expected
as input parameters. A freely queryable version of the full dataset is available online with
a dedicated interface [@214]. To illustrate the steps involved in the LUT routine, we test
the retrieval procedure on two simulated samples with L = 1.3 mm, n = 1.38, g = 0.95,
ls = 45 µm and µa respectively equal to 0.2 mm−1 and 0 mm−1 (Figure 5.4). From these
simulations we extract the mean square width slope and the decay time, which are used as
inputs for the LUT routine.
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Figure 5.4. Demonstration of the MC-LUT routine. (a)-(b) Retrieving l′s and µa with known g. The
value of D retrieved from the MSW slope is marked on the corresponding n-slice of the parameter
space (dashed line). The intersection with the known value of g provides the best estimate for OT−1.
The expected decay time is read in the LUT at position τ(n, g,OT−1) and compared to the experimental
one to retrieve µa. (c)-(d) Retrieving l′s and g with known µa. Intersecting the iso-D and iso-τ curves
yields the estimated value of g.
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As a first step of the LUT procedure the MSW and decay time hyper-surfaces are
(exactly) rescaled both in time and space to match the target thickness and refractive index
of the investigated sample. The original simulations were performed for a sample of
thickness L0 = 1 mm and unitary internal refractive index; dimensional analysis shows
that eventually the mean square width and decay-time hyper-surfaces are to be rescaled by
L/(L0nin) and ninL/L0 respectively. Successively, the interpolated hyper-surfaces are sliced
at the known value of the refractive-index contrast.

Let us start by considering the case where we assume a known value for g and try to
retrieve l′s and µa. A linear fit of the MSW data returns a growing rate of 337 750 µm2 ps−1,
corresponding to a D = 84 437 µm2 ps−1. This value can be represented as an iso-D level
on the sliced (g,OT−1)-surface, which yields directly the value of OT−1 by intersection
with g = 0.95 (Figure 5.4a). Notably, in case the scattering anisotropy is not known in
advance, plugging into the LUT reasonably bounded values helps getting an estimate of
how an uncertainty on g spreads over l′s and eventually µa. Following OT−1 determination,
it is sufficient to read the expected absorption-free decay time stored in τ(n, g,OT−1) from
the interpolated decay-time surface and compare it directly to the experimental value.
The discrepancy between their reciprocal values will directly give µav through equation
(5.5) (Figure 5.4b). Fitting the simulated transmitted intensity decay yields a decay time
of 11.234 ps from which we finally retrieve µa = 0.1997 mm−1 and l′s = 897 µm, to be
compared with the nominal values of µa = 0.2 mm−1 (δ ≈ −1.5 × 10−3) and l′s = ls/(1−g) =
900 µm (δ = −0.3 × 10−3).

The second implementation of the routine allows to retrieve l′s and g assuming that µa is
known. A common case is that of vanishing absorption, as it was the case for example with
the samples studied in Chapter 4. The evaluation of D is unaffected and yields the same
result of the absorbing sample. Now the corresponding iso-D curve can be superimposed on
the τ(n = 1.38) surface along with the experimental non-absorbing decay time of 21.936 ps
(dashed line in Figure 5.4c). Their intersection, which can be calculated for example by
spline interpolation along the iso-D line as shown in Figure 5.4d, finally gives the estimated
value of g. In this case we obtained l′s = 897 µm and g = 0.938 (δ = −1.2 × 10−2).

It is worth testing our LUT against the experimental data relative to the homogeneous
scattering slab that we characterized in Chapter 4 measuring both its MSW expansion
rate and the total transmittance decay time. Figure 5.5 shows the output of a LUT query
performed on the online interface, assuming a value of g ∼ 0.6 for the TiO2 nanoparticles.
We obtain an estimate of l′s = 25.7 µm for the reduced scattering mean free path, in good
agreement with the previously determined value of 25.5 µm retrieved with a brute-force
fit. As regards the value of absorption, the output value is slightly negative, corresponding
to a gain rather than an absorption length of few tens of cm. We interpret this result as a
numerical fluctuation consistent with null absorption.

Thorough evaluation of errors should be performed on a wide range of parameters,
both from simulations and experimental data, which is beyond the scope of this proof-
of-concept demonstration. Nonetheless it is clear that, especially at lower thicknesses
where the diffusion approximation is more defective, our routine offers very accurate
inversion capabilities as compared to other slab-geometry fitting and/or LUT approaches
[167]. Uncertainties as low as a few percent with respect to simulated data have been
demonstrated in other works for the semi-infinite geometry using integrated intensities as
the input parameters. It might be questioned whether this kind of uncertainty is meaningful,
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(a) input interface (b) output results

Figure 5.5. Online LUT input and output interfaces, available at http://www.lens.unifi.it/
quantum-nanophotonics/mcplusplus/lut/. Input data are taken from the homogeneous scat-
tering sample of Figure 4.1.

since integrating-sphere measurements themselves suffer of both random and systematic
errors of similar magnitude in the first place [93]. On the contrary, the slope of the mean
square width and the transmittance decay time can be typically determined with better
precision, accuracy and robustness, since their scalar value is a collective property of data
points in a curve rather than the straight output of a single measurement.

As a last point, it is interesting to discuss possible extensions of our routine applicability.
At least a third input descriptor in addition to the decay time and the MSW slope needs to
be identified in order to retrieve simultaneously all three transport parameters at once from
an unknown medium. A possible candidate could be represented by the asymptotic-tail
decay of a steady-state transmission profile, which is also easily measurable and should
exhibit a small but appreciable dependence on g at low optical thickness. For all practical
purposes, this asymptotic decay rate would feature all the previously listed advantages, with
the possible exception of the last one, because of the need to add absorption ex post. Other
relative parameters could be exploited, taking advantage of their g dependence, such as the
transmittance rising time [102], and many more if also diffusely reflected light is included
into the analysis, given that it is more affected by low-order scattering events occurring near
the source. Finally, the domain of the lookup-table could be easily extended to negative
values of g which, albeit less commonly found in typical applications, are known to be
possible even in random, uncorrelated assemblies of semiconductor scatterers [215].

To sum up, lookup-table methods are very general in their nature and consequently
can be profitably applied in a number of practical use cases. Of course, in order to tackle
more complex samples (e.g., multilayered or anisotropic slabs) more observables are
needed. Nonetheless, we believe that, whenever possible, mean-square width and decay-
time measurements should always be preferred and included in every LUT-based retrieval
routine because of their intrinsic robustness.
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macroscopic, measurable counterpart. This is particularly true for the slab geometry that
we analyzed so far. In fact, while on one hand it is common knowledge that diffusion theory
cannot describe light propagation in thin layers, on the other hand even in an optically
thin slab late-time transport will be eventually determined by a multiple-scattering process
whose characteristics are still largely unexplored. Indeed, as we have seen in the previous
Chapter, after a short transient, propagation along the slab plane converges towards a
diffusive regime even at an optical thickness of 1, exhibiting a linear MSW growth. Still,
when compared to the diffusive prediction, a significant deviation from the expected value
is found.

To our knowledge, the validity range of the simple linear prediction w2(t) = 4Dt =
4vl′st/3 has never been studied to date. The numerical results obtained in Figures 5.3a
and 5.3b show that a peculiar pattern of deviations is concentrated in the proximity of
n = 1. Figure 6.1a shows a representative series of curves taken on the upper surface
(n, g, 1) of the studied parameter volume, i.e., for a sample with L0 = l′s = 1 mm. The
first remarkable feature that leaps out is that the fitted MSW slope is always greater than
the value expected from diffusion theory, meaning that the diffusion coefficient appears
to be enhanced with decreasing optical thickness. A first, qualitative explanation for
this enhancement can be attempted based on the d-dimensional modeling of diffusion
as a random-walk process (2.88), which, given a step-length distribution p(�) with finite
moments 〈�〉 and

〈
�2
〉
, predicts a mean-square d-dimensional displacement growing as

2dDt with

D =
1

2d
v
〈�2〉
〈�〉 =

1
d

vl′s (6.1)

where the last equality holds for an exponential step-length distribution (SLD) with average
step length l′s [218]. As the optical thickness of the simulated slab decreases, transport
occurs in an increasingly planar geometry. Hence, as suggested by equation (6.1), the
effective diffusion coefficient D as inferred from the MSW slope might be up to 3/2 times
higher than its bulk nominal value. The perceived spatial dimensionality is also affected
by the refractive index contrast. Near n = 1, any energy packet leaving the sample at long
times will have performed an almost planar trajectory, akin to a purely two-dimensional
walk. On the contrary, strong boundary reflections allow trajectories to fold back into the
sample, which is therefore perceived more as a three-dimensional environment (which
also explains why the diffusive approximation recovers gradually for high values of the
refractive index contrast, see the middle panel of Figure 6.1a). A closer look at the data,
however, shows that diffusion exhibits a local minimum at n = 1, rather than a maximum,
with the D/DDA ratio exhibiting a sharp modulation across the index-matching condition.
Around n = 1, diffusion appears to be asymmetrically enhanced, reaching an absolute
maximum around n = 1.016 for g = 0.

Interestingly, a similar behavior to what we described for the MSW is also found in
the relative deviations of decay times from the diffusive prediction, as shown in Figure
6.1b, and is therefore not strictly limited to the propagation of light along the slab plane.
This point deserves particular attention, especially given that decay time measurements of
integrated transmittance have long been experimentally accessible and exploited to estimate
the diffusion coefficient via equation (5.4). A similar dependence on n with respect to the
previous case can be appreciated plotting the ratio between the decay time τ as fitted from
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Figure 6.1. From top to bottom: MSW expansion rate and decay time for a slab configuration with
l′s = L0, g = 0 and different refractive index contrasts, exhibiting (a) a perfectly linear growth and (b)
a monoexponential decay after a short transient. Dependence on n and g of the diffusion coefficient
D and decay constant τ as inferred from a linear fit of w2(t ≥ 4τ) and log T (t ≥ 4τ) for different
samples with OT = 1. Solid points represent the values retrieved from the fits shown in the upper
panel. Absolute positive (blue) and negative (red) deviations with respect to the DA prediction are
shown in the lower panels for different optical thicknesses. Solid lines serve as guides to the eye.
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Figure 6.1. From top to bottom: MSW expansion rate and decay time for a slab configuration with
l′s = L0, g = 0 and different refractive index contrasts, exhibiting (a) a perfectly linear growth and (b)
a monoexponential decay after a short transient. Dependence on n and g of the diffusion coefficient
D and decay constant τ as inferred from a linear fit of w2(t ≥ 4τ) and log T (t ≥ 4τ) for different
samples with OT = 1. Solid points represent the values retrieved from the fits shown in the upper
panel. Absolute positive (blue) and negative (red) deviations with respect to the DA prediction are
shown in the lower panels for different optical thicknesses. Solid lines serve as guides to the eye.
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the Monte Carlo simulations and the decay time τDA as computed, for a non absorbing
medium, as

τDA =
(L0 + 2ze)2

πDDA
. (6.2)

As opposed to the previous case, however, the τ/τDA ratio can evidently take values both
above and below 1, depending subtly on the scattering anisotropy and the refractive index
contrast of the slab. This observation might explain why retrieving the diffusion coefficient
from a decay time measurement using equation (6.2) is sometimes regarded as a poor
estimation, since this can lead to both over- or underestimated values [72]. This is further
illustrated in the lower panel of Figure 6.1b for a couple of representative cases exhibiting
opposite deviations that can persist even at higher optical thicknesses. This behavior is par-
ticularly interesting considering that, to date, experimental data and theoretical predictions
are inconsistent. While the former bring generally evidences suggesting that retrieving DDA
through a decay time measurement would lead to a decreasing diffusion coefficient with
decreasing thickness [87, 203], the latter have so far mainly provided arguments in favor of
the opposite behavior [72, 85, 204, 205]. In this respect, our simulations show that there
is a region in the parameter space where the τ/τDA ratio exceeds 1, which can lead to the
experimentally observed decreasing diffusion coefficient with decreasing thickness. The
analysis on the decay times confirms the importance of an accurate and precise modeling of
the index contrast, which we think has been often overlooked, for example by considering
a symmetric averaged contrast to model asymmetric experimental configurations [72, 85,
204].

6.2. Effective random-walk statistics

In order to explain the origin of the observed deviations for the in-plane transport, we
focus on three significant configurations (highlighted as filled symbols in Figure 6.1a)
representing key points of the observed peak for g = 0, i.e. n = 1, 1.016 and 1.1. These
three particular configurations were further investigated to collect detailed statistics at long
times, with 1014, 0.5 × 1014 and 1013 energy packets each. Performing simulations of such
unprecedented magnitude required the use of the improved statistical sampling described in
the previous Chapter and in Appendix B in order to accurately generate and represent the
large number of random variates involved in the simulations.

As suggested by equation (6.1), the most straightforward insight on the diffusion coef-
ficient D is obtained by directly looking at the distribution of the step-lengths performed
during the random walk. In principle, each trajectory is generated according to the same
exponential step-length distribution p(�) = exp(−�/ls)/ls (cfr. equation (2.89)). However,
we find that the finite thickness of the slab configuration induces a positive correlation
between a long permanence inside the sample and a higher probability of drawing longer
step lengths. Figure 6.2 shows the histograms of the step lengths and scattering angles
between two consecutive scattering events for those energy packets that were transmitted at
t = 90 ps (corresponding to a path length of ≈ 27L0) compared with their nominal distribu-
tions implemented in the Monte Carlo algorithm (dashed lines). The SLD (Figure 6.2a)
exhibits enhanced tails for all the three simulated refractive index contrasts, consistently
with the observed enhancement of the diffusion rate (cfr. equation (6.1)). In this thin slab
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Figure 6.2. Late-time modification of the step length and scattering angle distributions for an optically
thin slab with OT = 1, g = 0 and n = 1 1.016 and 1.1. (a) Probability distribution of step lengths
between consecutive scattering events performed by those energy packets that are transmitted at
t = 90 ps. The retrieved distributions exhibit heavier tails than the nominal one (dashed line). (b)
Scattering angles become unevenly sampled at late times as well, exhibiting pronounced backwards
and forward peaks.

geometry, the nominal step length distribution provided by the pseudo-random number
generator is sampled unevenly in such a way that all its moments are significantly modified:
despite the fact that a long step in a very thin sample will generally cause the packet to
exit the slab, those few packets that happen to remain inside will be able to reach long
surviving times without undergoing many scattering events. In the case of refractive index
contrasts close to 1, the distribution of the step lengths features a selective enhancement of
the longer values, which is slightly more marked for n = 1.016. This is due to the fact that,
even for such a small refractive index contrast, total internal reflection is already significant
(θc = 79.8°). If internal reflections are absent, extremely narrow angular conditions must
hold in order for the packet not to exit the slab. Conversely, even a tiny contrast allows to
largely relax such condition, introducing a significant increase in the survival probability of
a long-stepping energy packet while only marginally affecting others. In short, there is a
positive correlation between long steps and shallow incidence angles, whose effects become
apparent when such angles are the only ones undergoing total internal reflection (which
also explains why the enhancement shown in Figure 6.1a is asymmetric around n = 1). On
the other hand, with increasing contrast, more energy packets will be held inside the slab
irrespective of their incidence angle (and hence of the length of their step), thus weakening
the observed enhancement in the MSW growth rate.

Interestingly, the sampling of the angular variables is also modified at late times,
as shown in Figure 6.2b for the same set of simulations. While tracing each random
trajectory, the cosines of the scattering (polar) angles θ are generated uniformly in [−1, 1]
through the pseudo-random number generator. On the contrary, the observed asymptotic
cos θ distribution exhibits two peaks for backwards and forward scattering. This can be
intuitively understood by considering the fact that typical steps in a very long trajectory will
be mostly aligned with the slab plane. As such, scattering angles close to θ = 0° or 180°
guarantee that the trajectory will continue within the slab irrespective of what azimuthal
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experimentally observed decreasing diffusion coefficient with decreasing thickness. The
analysis on the decay times confirms the importance of an accurate and precise modeling of
the index contrast, which we think has been often overlooked, for example by considering
a symmetric averaged contrast to model asymmetric experimental configurations [72, 85,
204].

6.2. Effective random-walk statistics

In order to explain the origin of the observed deviations for the in-plane transport, we
focus on three significant configurations (highlighted as filled symbols in Figure 6.1a)
representing key points of the observed peak for g = 0, i.e. n = 1, 1.016 and 1.1. These
three particular configurations were further investigated to collect detailed statistics at long
times, with 1014, 0.5 × 1014 and 1013 energy packets each. Performing simulations of such
unprecedented magnitude required the use of the improved statistical sampling described in
the previous Chapter and in Appendix B in order to accurately generate and represent the
large number of random variates involved in the simulations.

As suggested by equation (6.1), the most straightforward insight on the diffusion coef-
ficient D is obtained by directly looking at the distribution of the step-lengths performed
during the random walk. In principle, each trajectory is generated according to the same
exponential step-length distribution p(�) = exp(−�/ls)/ls (cfr. equation (2.89)). However,
we find that the finite thickness of the slab configuration induces a positive correlation
between a long permanence inside the sample and a higher probability of drawing longer
step lengths. Figure 6.2 shows the histograms of the step lengths and scattering angles
between two consecutive scattering events for those energy packets that were transmitted at
t = 90 ps (corresponding to a path length of ≈ 27L0) compared with their nominal distribu-
tions implemented in the Monte Carlo algorithm (dashed lines). The SLD (Figure 6.2a)
exhibits enhanced tails for all the three simulated refractive index contrasts, consistently
with the observed enhancement of the diffusion rate (cfr. equation (6.1)). In this thin slab
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Figure 6.2. Late-time modification of the step length and scattering angle distributions for an optically
thin slab with OT = 1, g = 0 and n = 1 1.016 and 1.1. (a) Probability distribution of step lengths
between consecutive scattering events performed by those energy packets that are transmitted at
t = 90 ps. The retrieved distributions exhibit heavier tails than the nominal one (dashed line). (b)
Scattering angles become unevenly sampled at late times as well, exhibiting pronounced backwards
and forward peaks.

geometry, the nominal step length distribution provided by the pseudo-random number
generator is sampled unevenly in such a way that all its moments are significantly modified:
despite the fact that a long step in a very thin sample will generally cause the packet to
exit the slab, those few packets that happen to remain inside will be able to reach long
surviving times without undergoing many scattering events. In the case of refractive index
contrasts close to 1, the distribution of the step lengths features a selective enhancement of
the longer values, which is slightly more marked for n = 1.016. This is due to the fact that,
even for such a small refractive index contrast, total internal reflection is already significant
(θc = 79.8°). If internal reflections are absent, extremely narrow angular conditions must
hold in order for the packet not to exit the slab. Conversely, even a tiny contrast allows to
largely relax such condition, introducing a significant increase in the survival probability of
a long-stepping energy packet while only marginally affecting others. In short, there is a
positive correlation between long steps and shallow incidence angles, whose effects become
apparent when such angles are the only ones undergoing total internal reflection (which
also explains why the enhancement shown in Figure 6.1a is asymmetric around n = 1). On
the other hand, with increasing contrast, more energy packets will be held inside the slab
irrespective of their incidence angle (and hence of the length of their step), thus weakening
the observed enhancement in the MSW growth rate.

Interestingly, the sampling of the angular variables is also modified at late times,
as shown in Figure 6.2b for the same set of simulations. While tracing each random
trajectory, the cosines of the scattering (polar) angles θ are generated uniformly in [−1, 1]
through the pseudo-random number generator. On the contrary, the observed asymptotic
cos θ distribution exhibits two peaks for backwards and forward scattering. This can be
intuitively understood by considering the fact that typical steps in a very long trajectory will
be mostly aligned with the slab plane. As such, scattering angles close to θ = 0° or 180°
guarantee that the trajectory will continue within the slab irrespective of what azimuthal
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Figure 6.3. (a) Time evolution of the ratio
〈
�2
〉
/2 〈�〉 appearing in equation (6.1) and of 〈cos θ〉

resulting from the simulations. Each point is obtained considering only the energy packets transmitted
within the corresponding time bin. Dashed lines represent the nominal values for the two distributions.
(b) Time evolution of the SLD for n = 1 for energy packets transmitted at t = 10, 20, 30, 40, 50, 60,
70, 80 and 90 ps. Gray and purple curves show respectively the histogram of the step lengths drawn
through the PRNG and of the steps taken inside the sample. The two only differ for the last step of
each trajectory.

angle is drawn. Actually, since a typical step will not be in general perfectly parallel to the
interfaces, a scattering angle of θ ≈ 180° should provide higher chances of staying inside
the sample, hence its higher probability. This results in a cos θ distribution with a slightly
negative average value (Figure 6.3a, left axis), which also plays a role in determining the
effective diffusion properties exhibited by the sample.

With reference to equation (6.1), we plot the quantity
〈
�2
〉
/2 〈�〉 in Figure 6.3a (right

axis), along with its nominal value of 1 (dashed line). At long times, each curve seems
to saturate to an asymptotic value, suggesting the existence of a well-defined effective
diffusion coefficient. The random-walk based picture of diffusion as expressed by equation
(6.1) is qualitatively supported by the fact that also this figure of merit is enhanced for
n = 1.016 (red curve), in accordance with Figure 6.1a. In principle, the overall diffusion
process will be influenced by both the modified step-length and angular statistics, which
in the investigated configurations appear to have opposite effects, as also shown in Figure
6.3a. While the latter would indeed tend to slightly slow down diffusion, the predominant
effect is coming from the step lengths being substantially increased, leading to the observed
enhanced in-plane diffusion especially for n = 1.016. Notably, different configurations
might lead to a different balance between these two effects, which also appear to saturate
to their respective asymptotic values on slightly different time scales, further illustrating
the need for additional investigations even for the simple model of a homogeneous and
isotropic single slab.

The asymptotic nature of the effective diffusion coefficient in a thin slab is further
highlighted in Figure 6.3b, where the time evolution of the SLD is shown for n = 1 (the
n = 1.016 and 1.1 cases are analogous). The time-resolved distributions seem to converge
towards a single asymptotic envelope distribution with a well-defined asymptotic decay rate
which seems to be uniquely determined by the properties of the sample. It is interesting to
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Figure 6.4. (a) MSW expansion for the transmittance of a slab with (n = 1.5, g = 0, OT−1 = 0.1). As
already discussed, in-plane propagation is slightly enhanced with respect to the DA 4DDAt prediction.
This deviation is apparently not supported by the asymptotic (b) step-length distribution (exhibiting a
slightly lighter long-step tail than expected) and (c) scattering angle distribution (favoring backwards
angles), that we approximate here as the effective distributions after a delay t = 15τ.

compare the histogram of the actual steps performed inside the sample (blue curves) with
the histogram of the ones drawn through the PRNG (gray curves). The two differ only for
the last step, whose length is respectively considered either partially (up to the interface) or
totally. At late times the two sets of curves become indistinguishable since, as expected,
the contribution of the last step to the whole trajectory becomes eventually statistically
negligible.

As a result of the transport statistics being directly altered by the sample configuration,
an optically thin sample generally appears to be less scattering than it actually is. In other
words, once the diffusive regime is reached, energy packets propagate as if scatterers were
further apart than they actually are, i.e., with an effective transport mean free path greater
than the one intrinsic to the material. Indeed, because of the asymptotic nature of these
effects, only a small fraction of the incoming light is actually subject to this effective
transport mean free path when studying thin samples. Yet, the effect is largely accessible
experimentally [219] and, as we have seen in Section 4.2, similar deviations are can in
fact be found even in more turbid media. As a matter of fact, the asymptotic nature of this
effective transport regime makes it even more relevant from an experimental point of view,
since it is often believed that the standard DA becomes progressively safer to apply as later
times becomes accessible. Moreover, other applications can be envisioned where multiple
scattering in thin layers or confined geometries, even if limited to a very small fraction of
incident light, could play a significant role [220, 221].

Albeit smaller, it is interesting to investigate whether the discrepancies that we dis-
cussed in Chapter 4 for the homogeneous slab arise from the same mechanism that we have
described, which would suggest that modifications to the transport statistics can be still
appreciable in more turbid media. At the same time, it is also interesting to determine how
these deviations are gradually suppressed going towards optically thicker media. To this pur-
pose, we performed a new simulation of a slab sample with ls = l′s = 0.1 mm and L0 = 1 mm
(OT = 10), using a refractive index contrast of n = 1.5 similar to that of our experimental
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Figure 6.3. (a) Time evolution of the ratio
〈
�2
〉
/2 〈�〉 appearing in equation (6.1) and of 〈cos θ〉

resulting from the simulations. Each point is obtained considering only the energy packets transmitted
within the corresponding time bin. Dashed lines represent the nominal values for the two distributions.
(b) Time evolution of the SLD for n = 1 for energy packets transmitted at t = 10, 20, 30, 40, 50, 60,
70, 80 and 90 ps. Gray and purple curves show respectively the histogram of the step lengths drawn
through the PRNG and of the steps taken inside the sample. The two only differ for the last step of
each trajectory.

angle is drawn. Actually, since a typical step will not be in general perfectly parallel to the
interfaces, a scattering angle of θ ≈ 180° should provide higher chances of staying inside
the sample, hence its higher probability. This results in a cos θ distribution with a slightly
negative average value (Figure 6.3a, left axis), which also plays a role in determining the
effective diffusion properties exhibited by the sample.

With reference to equation (6.1), we plot the quantity
〈
�2
〉
/2 〈�〉 in Figure 6.3a (right

axis), along with its nominal value of 1 (dashed line). At long times, each curve seems
to saturate to an asymptotic value, suggesting the existence of a well-defined effective
diffusion coefficient. The random-walk based picture of diffusion as expressed by equation
(6.1) is qualitatively supported by the fact that also this figure of merit is enhanced for
n = 1.016 (red curve), in accordance with Figure 6.1a. In principle, the overall diffusion
process will be influenced by both the modified step-length and angular statistics, which
in the investigated configurations appear to have opposite effects, as also shown in Figure
6.3a. While the latter would indeed tend to slightly slow down diffusion, the predominant
effect is coming from the step lengths being substantially increased, leading to the observed
enhanced in-plane diffusion especially for n = 1.016. Notably, different configurations
might lead to a different balance between these two effects, which also appear to saturate
to their respective asymptotic values on slightly different time scales, further illustrating
the need for additional investigations even for the simple model of a homogeneous and
isotropic single slab.

The asymptotic nature of the effective diffusion coefficient in a thin slab is further
highlighted in Figure 6.3b, where the time evolution of the SLD is shown for n = 1 (the
n = 1.016 and 1.1 cases are analogous). The time-resolved distributions seem to converge
towards a single asymptotic envelope distribution with a well-defined asymptotic decay rate
which seems to be uniquely determined by the properties of the sample. It is interesting to
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Figure 6.4. (a) MSW expansion for the transmittance of a slab with (n = 1.5, g = 0, OT−1 = 0.1). As
already discussed, in-plane propagation is slightly enhanced with respect to the DA 4DDAt prediction.
This deviation is apparently not supported by the asymptotic (b) step-length distribution (exhibiting a
slightly lighter long-step tail than expected) and (c) scattering angle distribution (favoring backwards
angles), that we approximate here as the effective distributions after a delay t = 15τ.

compare the histogram of the actual steps performed inside the sample (blue curves) with
the histogram of the ones drawn through the PRNG (gray curves). The two differ only for
the last step, whose length is respectively considered either partially (up to the interface) or
totally. At late times the two sets of curves become indistinguishable since, as expected,
the contribution of the last step to the whole trajectory becomes eventually statistically
negligible.

As a result of the transport statistics being directly altered by the sample configuration,
an optically thin sample generally appears to be less scattering than it actually is. In other
words, once the diffusive regime is reached, energy packets propagate as if scatterers were
further apart than they actually are, i.e., with an effective transport mean free path greater
than the one intrinsic to the material. Indeed, because of the asymptotic nature of these
effects, only a small fraction of the incoming light is actually subject to this effective
transport mean free path when studying thin samples. Yet, the effect is largely accessible
experimentally [219] and, as we have seen in Section 4.2, similar deviations are can in
fact be found even in more turbid media. As a matter of fact, the asymptotic nature of this
effective transport regime makes it even more relevant from an experimental point of view,
since it is often believed that the standard DA becomes progressively safer to apply as later
times becomes accessible. Moreover, other applications can be envisioned where multiple
scattering in thin layers or confined geometries, even if limited to a very small fraction of
incident light, could play a significant role [220, 221].

Albeit smaller, it is interesting to investigate whether the discrepancies that we dis-
cussed in Chapter 4 for the homogeneous slab arise from the same mechanism that we have
described, which would suggest that modifications to the transport statistics can be still
appreciable in more turbid media. At the same time, it is also interesting to determine how
these deviations are gradually suppressed going towards optically thicker media. To this pur-
pose, we performed a new simulation of a slab sample with ls = l′s = 0.1 mm and L0 = 1 mm
(OT = 10), using a refractive index contrast of n = 1.5 similar to that of our experimental
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Figure 6.5. Time evolution of the ratio
〈
�2
〉
/2 〈�〉 and of 〈cos θ〉 for a slab sample with

(n = 1.5, g = 0, OT−1 = 0.1). Both figures converge asymptotically to a value that is lower than
the nominal value of the simulation (dashed lines).

slab sample (see Section 4.2). As we have seen in Chapter 5, the MSW expansion rate
of such sample is slightly higher than that predicted by the DA. However, inspecting the
step-length and scattering angle distribution reveals an apparently contradictory picture. As
Figure 6.4 shows, while the MSW grows at a rate that is appreciably faster (of the order of
%) of that expected, this does not reflect in the asymptotic (t = 15τ) step-length nor in the
scattering-angle distributions. As a matter of fact, the former is only slightly modified with
respect to the nominal exponential, perhaps even exhibiting a lower probability of taking
long steps, while the latter is slightly biased towards backwards scattering angles, which
also goes in the direction of a smaller diffusion rate. This behavior is further confirmed by
looking at the full evolution of the 〈�2〉 /2 〈�〉 and 〈cos θ〉 descriptors (Figure 6.5), showing
clearly that the asymptotic average step length and scattering angle are both smaller than
expected. This interestingly shows how subtle deviations are still clearly present even at
an optical thickness of OT = 10 where the DA is commonly employed, and that they are
persistent at extremely long delays. In addition to this, the simulated data reveal a further
layer of complexity in the effective transport regime that arises in bounded media, which
we will address in the following.

6.3. A walk on the wild side of diffusion

In the following subsections, we briefly discuss a few preliminary results regarding un-
expected properties of transport in bounded media, which became apparent thanks to the
magnitude of the simulations that we performed to calculate the exact solution to the
transport problem.
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6.3.1. Anisotropic transport in isotropic media

As we have seen in the previous Section, our investigation on the random-walk statistics
arising in the slab geometry revealed a subtle interplay occurring between the actual
thickness of the slab, the refractive index contrast and the scattering anisotropy, determining
a transport regime that is basically diffusive on long time scales but which cannot be
described in terms of the simple diffusive approximation. A different and asymptotic
regime naturally emerges from the overall optical and geometric boundary conditions of
the sample, and is univocally determined by them through yet unknown relations. In this
respect, our findings recall a recently published work where it is analogously demonstrated
that the link between microscopic (i.e., the scattering coefficient) and macroscopic (i.e.,
the diffusion coefficient) transport parameters remains unknown for diffusive anisotropic
media [152]. Analogously, our results show that this link should be further investigated
even in the isotropic case, especially for weakly scattering media. In particular, concerning
microscopic optical properties such as g or l′s, it seems appropriate to introduce a distinction
between an intrinsic and an effective counterpart, where the former is the one that we are
typically interested in retrieving while the latter might have a very different value and nature
(e.g., tensorial instead of scalar) depending on incidental geometric conditions.

Driven by this observation, we performed a new analysis of our dataset, taking into
account the translation symmetry of the problem along the xy-plane of the slab, collecting
separate statistics on the step-length components taken along the different axes. In order to
do so, it is convenient to derive the nominal probability density function (PDF) for the step
components. This can be easily done in the simple isotropic (g = 0) case, where angles
are sampled uniformly on a sphere. This allows to consider interchangeably the (fixed)
reference frame of the slab and the (rotating) reference of the simulated energy packet. A
generic step-length component will be therefore given by

�i = � cos θ, with i = x, y, z (6.3)

which enables us to derive the probability density function p(�i) as that of the product of
the two independent random variables � and cos θ.

In general, the cumulative distribution function (CDF) for the product variable X = UV
can be written as

P(UV ≤ x) =
∫

P(UV ≤ x|U = u)pU(u) du =
∫

P(uV ≤ x)pU(u) du

=

∫
P
(
V ≤ x

u

)
pU(u) du =

∫
PV

( x
u

)
pU(u) du . (6.4)

A convenient choice is that of using the cumulative distribution of the exponential distri-
bution (2.60), which is non-null only for � > 0, and the PDF of the uniform distribution,
which has a limited support. By plugging their expressions into equation (6.4), following
integration by parts eventually we obtain

P(X ≤ x) =
∫ 1

0
1 − exp (−µs x/u ) du = 1 −

∫ 1

0
exp (−µs x/u ) du
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(n = 1.5, g = 0, OT−1 = 0.1). Both figures converge asymptotically to a value that is lower than
the nominal value of the simulation (dashed lines).

slab sample (see Section 4.2). As we have seen in Chapter 5, the MSW expansion rate
of such sample is slightly higher than that predicted by the DA. However, inspecting the
step-length and scattering angle distribution reveals an apparently contradictory picture. As
Figure 6.4 shows, while the MSW grows at a rate that is appreciably faster (of the order of
%) of that expected, this does not reflect in the asymptotic (t = 15τ) step-length nor in the
scattering-angle distributions. As a matter of fact, the former is only slightly modified with
respect to the nominal exponential, perhaps even exhibiting a lower probability of taking
long steps, while the latter is slightly biased towards backwards scattering angles, which
also goes in the direction of a smaller diffusion rate. This behavior is further confirmed by
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clearly that the asymptotic average step length and scattering angle are both smaller than
expected. This interestingly shows how subtle deviations are still clearly present even at
an optical thickness of OT = 10 where the DA is commonly employed, and that they are
persistent at extremely long delays. In addition to this, the simulated data reveal a further
layer of complexity in the effective transport regime that arises in bounded media, which
we will address in the following.

6.3. A walk on the wild side of diffusion
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expected properties of transport in bounded media, which became apparent thanks to the
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transport problem.

106

6.3.1. Anisotropic transport in isotropic media

As we have seen in the previous Section, our investigation on the random-walk statistics
arising in the slab geometry revealed a subtle interplay occurring between the actual
thickness of the slab, the refractive index contrast and the scattering anisotropy, determining
a transport regime that is basically diffusive on long time scales but which cannot be
described in terms of the simple diffusive approximation. A different and asymptotic
regime naturally emerges from the overall optical and geometric boundary conditions of
the sample, and is univocally determined by them through yet unknown relations. In this
respect, our findings recall a recently published work where it is analogously demonstrated
that the link between microscopic (i.e., the scattering coefficient) and macroscopic (i.e.,
the diffusion coefficient) transport parameters remains unknown for diffusive anisotropic
media [152]. Analogously, our results show that this link should be further investigated
even in the isotropic case, especially for weakly scattering media. In particular, concerning
microscopic optical properties such as g or l′s, it seems appropriate to introduce a distinction
between an intrinsic and an effective counterpart, where the former is the one that we are
typically interested in retrieving while the latter might have a very different value and nature
(e.g., tensorial instead of scalar) depending on incidental geometric conditions.

Driven by this observation, we performed a new analysis of our dataset, taking into
account the translation symmetry of the problem along the xy-plane of the slab, collecting
separate statistics on the step-length components taken along the different axes. In order to
do so, it is convenient to derive the nominal probability density function (PDF) for the step
components. This can be easily done in the simple isotropic (g = 0) case, where angles
are sampled uniformly on a sphere. This allows to consider interchangeably the (fixed)
reference frame of the slab and the (rotating) reference of the simulated energy packet. A
generic step-length component will be therefore given by

�i = � cos θ, with i = x, y, z (6.3)

which enables us to derive the probability density function p(�i) as that of the product of
the two independent random variables � and cos θ.

In general, the cumulative distribution function (CDF) for the product variable X = UV
can be written as

P(UV ≤ x) =
∫

P(UV ≤ x|U = u)pU(u) du =
∫

P(uV ≤ x)pU(u) du

=

∫
P
(
V ≤ x

u

)
pU(u) du =

∫
PV

( x
u

)
pU(u) du . (6.4)

A convenient choice is that of using the cumulative distribution of the exponential distri-
bution (2.60), which is non-null only for � > 0, and the PDF of the uniform distribution,
which has a limited support. By plugging their expressions into equation (6.4), following
integration by parts eventually we obtain

P(X ≤ x) =
∫ 1

0
1 − exp (−µs x/u ) du = 1 −

∫ 1

0
exp (−µs x/u ) du

107



Imaging light transport at the femtosecond scale: a walk on the wild side of diffusion

108

10−10

10−6

10−2
p(
�)

0 5 10 15 20

10−10

10−6

10−2

�i/ls

p(
� i

)

(a)

10−14

10−9

10−4

p(
�2

)

0 200 400
10−14

10−9

10−4

�2i /l
2
s

p(
�2 i

)
(b)

Figure 6.6. Comparison between derived and simulated probability density functions of (a) step
lengths and (b) squared step lengths and their components as obtained from a single trajectory of 1010

steps in an infinitely extended volume.

= 1 − exp (−µsx) + µsxΓ(0, µsx) (6.5)

where Γ(0, x) is the incomplete gamma function (also reported as the exponential integral
function E1(x)). The probability density function is then easily found as the derivative

p(x) =
dPX(x)

dx
= µsΓ(0, µsx). (6.6)

Once we have obtained the PDF, the probability functions for the squared variables is also
simply found by exploiting the fact that the step lengths and the length of its components
are positive quantities. By doing so, we can generally write

pξ2 (x) =
d
dx

P(ξ2 ≤ x) =
d
dx

P(ξ ≤ √x) =
dPξ
d
√

x
= p(
√

x)
1

2
√

x
, (6.7)

which gives

p�2 (x) =
µs

2
√

x
exp
(
−µs
√

x
)

(6.8)

p�2i (x) =
µs

2
√

x
Γ(0,−µs

√
x) (6.9)

respectively for �2 and �2i . The relevant distributions that we obtained along with their first
moments are listed in the following table:
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Figure 6.7. (a) Decomposition of the SLD shown in Figure 6.4b into its x and z components, revealing
how they are differently affected by the presence of the plane boundary. The expression (6.6) for
an unbounded medium is shown for comparison. Due to internal reflections, at long times also the
z-component SLD continues smoothly beyond L0. (b) Decomposition of the squared-step-length
distribution, compared with equation (6.9), showing a qualitatively similar behavior.

X p(x) 〈x〉
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Γ(0,
√
�/ls) 2l2s/3

A comparison between these expressions and the step-length distributions of an
isotropic trajectory in an unbounded medium is shown in Figure 6.6.

By analyzing the late-time step-length distribution of our OT = 10 simulation in terms
of their x and z components (y is statistically equivalent to x), an interesting picture emerges.
Figure 6.7 illustrates the difference between the in-plane and axial components of the steps
of those packets transmitted at long times. Despite the fact that the simulated system is
isotropic and isotropically scattering, an anisotropic transport regime establishes at long
times characterized by a constrained step-length distribution along z. However, also the
step lengths along the plane are modified, as can be more clearly appreciated from Figure
6.8 where we have plotted the 〈�2i 〉 /2 〈�i〉 ratio. This unexpected over-compensation for
the decreased ‘diffusivity’ along z is what determines the enhanced MSW growth that we
have found in Figures 6.4 and 5.3. Nonetheless, the overall effect is still that of a decreased
probability of taking long steps, due to the more marked reduction of 〈�2z 〉 /2 〈�z〉. Notably,
the onset of this anisotropic transport regime does not seem to affect the shape of the
transmitted profiles, whose excess kurtosis converges normally to 0 (Figure 6.8b).

As expected, even more pronounced deviations can be found in the previously presented
OT = 1 configurations, yet with a qualitatively similar behavior (Figure 6.9), where the z
component is particularly suppressed due to the low refractive index contrast. In such a
confined configuration, in fact, long trajectories will be composed of steps mainly lying in
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where Γ(0, x) is the incomplete gamma function (also reported as the exponential integral
function E1(x)). The probability density function is then easily found as the derivative
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respectively for �2 and �2i . The relevant distributions that we obtained along with their first
moments are listed in the following table:
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By analyzing the late-time step-length distribution of our OT = 10 simulation in terms
of their x and z components (y is statistically equivalent to x), an interesting picture emerges.
Figure 6.7 illustrates the difference between the in-plane and axial components of the steps
of those packets transmitted at long times. Despite the fact that the simulated system is
isotropic and isotropically scattering, an anisotropic transport regime establishes at long
times characterized by a constrained step-length distribution along z. However, also the
step lengths along the plane are modified, as can be more clearly appreciated from Figure
6.8 where we have plotted the 〈�2i 〉 /2 〈�i〉 ratio. This unexpected over-compensation for
the decreased ‘diffusivity’ along z is what determines the enhanced MSW growth that we
have found in Figures 6.4 and 5.3. Nonetheless, the overall effect is still that of a decreased
probability of taking long steps, due to the more marked reduction of 〈�2z 〉 /2 〈�z〉. Notably,
the onset of this anisotropic transport regime does not seem to affect the shape of the
transmitted profiles, whose excess kurtosis converges normally to 0 (Figure 6.8b).

As expected, even more pronounced deviations can be found in the previously presented
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confined configuration, in fact, long trajectories will be composed of steps mainly lying in
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Figure 6.8. Time evolution of the (a) anisotropic 〈�2i 〉 /2 〈�i〉 ratios, revealing how an enhanced
in-plane MSW expansion is compatible with an overall negative anisotropy factor g and smaller
probability of taking long steps, as shown in Figure 6.5. In-plane and axial components undergo
opposite modifications, with a more marked suppression along z accompanied by a net increase along
x and y. (b) These modifications do not seem to affect the shape of the transmitted profile, whose
excess kurtosis γ2 still vanishes with time.

the plane of the slab, with the extreme case of matched refractive index contrast where no
step can be taken having an axial component larger than the thickness of the slab.

At this stage, to our knowledge, there is no analytical model available to describe how
this anisotropic transport regime sets in depending on the optical thickness and the refractive
index contrast of the slab. In particular, even though this regime is largely determined by
the presence and type of boundaries, its effect is fundamentally different from apparently
similar boundary effects described in the literature [75, 76], which can be usually taken into
account through some refined extrapolated boundary conditions. This cannot be the case
here, since extrapolated boundary conditions correct significantly quantities such as the total
transmittance which, conversely, would be negligibly affected by asymptotic modifications
of the effective diffusion coefficient, especially in thicker media. This does not mean that
the effect that we described cannot be accessed experimentally. On the contrary, we can
now interpret the small discrepancy measured for our homogeneous sample in Chapter 4
as a direct experimental evidence of the onset of this anisotropic regime. State-of-the-art
detectors used in time-resolved configuration are able to access 8 decades of dynamic range
[219], corresponding to a suppression greater than ∼ e18, a range within which even our
weakly scattering configurations have almost reached their asymptotic regime.

6.3.2. Anomalous diffusion in homogeneous media

In the previous Chapters, we have often used the mean-square width (i.e., the second
moment of the time-resolved profiles) as a convenient descriptor of transport. However,
as we have seen in Section 4.3 for a few extreme cases, only the profile shape conveys
the full information for a proper characterization. An interesting trade-off which has been
recently considered in the literature of continuous-time random walks (CTRWs), consists
of analyzing the spatio-temporal evolution of the profiles at different (continuous) moments
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Figure 6.9. Time evolution of the (a) anisotropic 〈�2i 〉 /2 〈�i〉 ratio for the different refractive index
contrasts of the OT = 1 configurations. (b) Despite the much larger deviations observed, also in this
case the excess kurtosis seems to converge towards 0 without any finite offset.

[222, 223]. As a matter of fact, many transport processes exhibit moments of displacements
with asymptotic behavior

〈|x|q〉 ∼ tqν(q), (6.10)

and the study of qν(q) as a function of q provides a more complete characterization of the
process than does the single scalar 2ν(2). In standard diffusive and anomalous diffusive
processes, the function ν(q) is actually a constant (i.e., ν = 1/2 in the normal diffusive case,
ν > 1/2 for superdiffusion and ν = 1 for ballistic propagation). However, characterizing the
dichotomy between normal and anomalous diffusion based only on the value of ν(2) fails
at providing the full picture [223], and one should look further than 〈|x|2〉(t). Ideally, the
complete information is represented by the Green’s function or propagator of the process.
Often this is not possible to obtain exactly, though asymptotic methods can be exploited to
provide useful approximations in the form of similarity solutions. These are expressed, in
the limit of t → ∞ by the self-similar collapse relation

p(x, t) ≈ t− 1/νP
( x
t 1/ν

)
. (6.11)

In the case of normal diffusion ν = 2 and P is a Gaussian, while in the superdiffusive
case there are examples in which P is a Lévy density [224]. The approximation (6.11) is
valid only in the central scaling region (CSR), i.e., excluding the non-scaling tails of the
distribution which are populated by ‘particles’ that have undergone exceptionally large
displacements. The concept of strong self-similarity can be introduced to identify those
systems where ν(q) = 1/ν , ∀q, as it is the case for normal diffusion and Lévy flights. On
the contrary, weak self-similarity refers to propagation dynamics giving rise to non-trivial
ν(q) functions. Typically, the small-q part of ν(q) (which passes through the origin of the
(ν(q), q) plane) refers to the central scaling region of the asymptotic profile containing
the majority of the ‘particles’, while the large-q range is determined by relatively few
tail individuals which have traveled exceptionally far. For this reason, as confirmed by
analytical, numerical and experimental evidence, in most known systems ν(q)q is a piece-
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in-plane MSW expansion is compatible with an overall negative anisotropy factor g and smaller
probability of taking long steps, as shown in Figure 6.5. In-plane and axial components undergo
opposite modifications, with a more marked suppression along z accompanied by a net increase along
x and y. (b) These modifications do not seem to affect the shape of the transmitted profile, whose
excess kurtosis γ2 still vanishes with time.

the plane of the slab, with the extreme case of matched refractive index contrast where no
step can be taken having an axial component larger than the thickness of the slab.

At this stage, to our knowledge, there is no analytical model available to describe how
this anisotropic transport regime sets in depending on the optical thickness and the refractive
index contrast of the slab. In particular, even though this regime is largely determined by
the presence and type of boundaries, its effect is fundamentally different from apparently
similar boundary effects described in the literature [75, 76], which can be usually taken into
account through some refined extrapolated boundary conditions. This cannot be the case
here, since extrapolated boundary conditions correct significantly quantities such as the total
transmittance which, conversely, would be negligibly affected by asymptotic modifications
of the effective diffusion coefficient, especially in thicker media. This does not mean that
the effect that we described cannot be accessed experimentally. On the contrary, we can
now interpret the small discrepancy measured for our homogeneous sample in Chapter 4
as a direct experimental evidence of the onset of this anisotropic regime. State-of-the-art
detectors used in time-resolved configuration are able to access 8 decades of dynamic range
[219], corresponding to a suppression greater than ∼ e18, a range within which even our
weakly scattering configurations have almost reached their asymptotic regime.

6.3.2. Anomalous diffusion in homogeneous media

In the previous Chapters, we have often used the mean-square width (i.e., the second
moment of the time-resolved profiles) as a convenient descriptor of transport. However,
as we have seen in Section 4.3 for a few extreme cases, only the profile shape conveys
the full information for a proper characterization. An interesting trade-off which has been
recently considered in the literature of continuous-time random walks (CTRWs), consists
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case the excess kurtosis seems to converge towards 0 without any finite offset.

[222, 223]. As a matter of fact, many transport processes exhibit moments of displacements
with asymptotic behavior

〈|x|q〉 ∼ tqν(q), (6.10)

and the study of qν(q) as a function of q provides a more complete characterization of the
process than does the single scalar 2ν(2). In standard diffusive and anomalous diffusive
processes, the function ν(q) is actually a constant (i.e., ν = 1/2 in the normal diffusive case,
ν > 1/2 for superdiffusion and ν = 1 for ballistic propagation). However, characterizing the
dichotomy between normal and anomalous diffusion based only on the value of ν(2) fails
at providing the full picture [223], and one should look further than 〈|x|2〉(t). Ideally, the
complete information is represented by the Green’s function or propagator of the process.
Often this is not possible to obtain exactly, though asymptotic methods can be exploited to
provide useful approximations in the form of similarity solutions. These are expressed, in
the limit of t → ∞ by the self-similar collapse relation
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In the case of normal diffusion ν = 2 and P is a Gaussian, while in the superdiffusive
case there are examples in which P is a Lévy density [224]. The approximation (6.11) is
valid only in the central scaling region (CSR), i.e., excluding the non-scaling tails of the
distribution which are populated by ‘particles’ that have undergone exceptionally large
displacements. The concept of strong self-similarity can be introduced to identify those
systems where ν(q) = 1/ν , ∀q, as it is the case for normal diffusion and Lévy flights. On
the contrary, weak self-similarity refers to propagation dynamics giving rise to non-trivial
ν(q) functions. Typically, the small-q part of ν(q) (which passes through the origin of the
(ν(q), q) plane) refers to the central scaling region of the asymptotic profile containing
the majority of the ‘particles’, while the large-q range is determined by relatively few
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Figure 6.10. (a) Time evolution of moments q ∈ [0.2, 6.2] calculated for the transmitted profiles of
the n = 1.5, OT = 10 sample. A linear fit of ln 〈ρq〉 versus ln t

τ
is performed in the range between

8 < t/τ < 16 where the asymptotic power-law growth is established. (b) The obtained exponents
reveal a strongly self-similar and diffusive regime, as expected for a turbid, homogeneous medium.
Ballistic (qν(q) = 1) and diffusive (qν(q) = 1/2) lines are drawn as guides to the eye.

wise linear function experiencing a change of slope at a certain value of q = qc [222, 223,
225, 226]. This is the typical behavior exhibited, for instance, by Lévy walks [227, 228].
For most systems studied in the literature, the large-q branch is therefore characterized
by a ballistic growth (ν(q) = 1) which sets in for those high moments that are eventually
dominated by the few particles that propagate ballistically. On the contrary, the presence of
ballistically expanding tails does not necessarily imply any form of weak self-similarity.
The simple telegrapher model is one such example that is both normally diffusive and
strongly self-similar: its tail structure is not self-similar at all times, but its contribution to
the profile is mild enough that as t → ∞ all moments are still determined by the CSR. As
a final note, the value of qc at which the slope of weakly self-similar systems can change
depending on the parameters of the transport process involved. If this occurs before q = 2,
measuring the expansion rate of the MSW would actually probe the non-scaling tails rather
than the density in the CSR. In other words, a system might still exhibit a perfectly linear
2ν(2) = 1 while being both weakly self-similar and anomalously diffusive. Therefore, a full
characterization beyond the simple second moment is always recommended to correctly
identify the nature of transport.

In the following, we present a preliminary discussion of the numerical results that we
obtained based on the previous simulations on slab geometry systems, considering the
asymptotic behavior for different moments of the transmitted profiles using |x| = ρ. A first,
relevant test case is that of the OT = 10 slab that we used as an analogue of our experimental
sample of Section 4.2. As we have seen, this system is characterized by an asymptotic
transport regime that is slightly anisotropic, but still diffusive. This is confirmed by the
late-t analysis of the moments as shown in Figure 6.10. In the analysis, the power-law
exponents for each moment can be more accurately obtained by performing a linear fit of
ln 〈ρq〉 versus ln t

τ
, considering only late times between ln 8 ≤ ln t

τ
≤ ln 16 where statistical

noise is negligible and transport has already reached its asymptotic regime. As expected,
analysis of the fractional moments confirms both the diffusive and the strongly self-similar
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Figure 6.11. Time evolution of moments q ∈ [0.2, 6.2] calculated for the transmitted profiles of the
optically thin samples (OT = 1) with refractive index contrast values of (a) n = 1, (b) n = 1.016 and
(c) n = 1.1. A linear fit of ln 〈ρq〉 versus ln t

τ
is performed in the range between 8 < t/τ < 16 where

the asymptotic power-law growth is established.

nature of light transport in the turbid slab, with all exponents lying on the analytic diffusive
line 〈ρq〉 = tq/2.

The situation is more interesting when we turn to our optically thin configurations,
which we have simulated with further increased statistics. In this case, plotting the expansion
of the profiles for different widths reveals that the asymptotic regime is reached at even later
times, as can also be appreciated by the slow convergence of the step-length distributions
to their asymptotic form (see, for instance, Figure 6.2). To this purpose, the power-law
exponents have been retrieved in a range of delays between ln 16 ≤ ln t

τ
≤ ln 20, beyond

which simulation noise starts to be appreciable (Figure 6.11). In particular, when plotting the
full behavior of qν(q) we can actually appreciate that none of the sample is truly diffusive,
and that slight deviations in the linearity that are barely appreciable by considering just
the second moment (Figure 6.1a) actually fit into a weakly superdiffusive pattern, as can
be appreciated in Figure 6.12a. This result is quite surprising given that the velocities of
packets in the simulation is constant and the variance of the SLD is finite and is probably
due to the time-dependent nature of the SLD. We have fitted the fractional exponents
q ∈ [0.2, 1.2] of Figure 6.12a to characterize the scaling properties of the CSR, obtaining a
good linear agreement. Notably, even in the small-q range a small superdiffusive behavior is
to be found for all refractive index contrasts, with ν(q ≤ 1.2) = νCSR = 0.5605(3), 0.5644(3)
and 0.5461(7) respectively for n = 1, 1.016 and 1.1.

By analyzing the moments in terms of their self-similarity, however, differences be-
tween the configurations emerge. In Figure 6.12b, we plot the relative deviation between
the line qνCSR(n) extrapolated to higher values of q and the simulated data, highlighting
a clear qualitative difference arising in the presence of a refractive-index contrast. In
particular, while the index-matched configuration seems to exhibit a strongly self-similar
(and superdiffusive) behavior, the other configurations show linearly increasing relative
deviations. This is not only a hallmark of weak self-similarity, but is also signaling that the
commonly studied piece-wise linear type of weak self-similarity does not apply to this case.
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reveal a strongly self-similar and diffusive regime, as expected for a turbid, homogeneous medium.
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strongly self-similar: its tail structure is not self-similar at all times, but its contribution to
the profile is mild enough that as t → ∞ all moments are still determined by the CSR. As
a final note, the value of qc at which the slope of weakly self-similar systems can change
depending on the parameters of the transport process involved. If this occurs before q = 2,
measuring the expansion rate of the MSW would actually probe the non-scaling tails rather
than the density in the CSR. In other words, a system might still exhibit a perfectly linear
2ν(2) = 1 while being both weakly self-similar and anomalously diffusive. Therefore, a full
characterization beyond the simple second moment is always recommended to correctly
identify the nature of transport.

In the following, we present a preliminary discussion of the numerical results that we
obtained based on the previous simulations on slab geometry systems, considering the
asymptotic behavior for different moments of the transmitted profiles using |x| = ρ. A first,
relevant test case is that of the OT = 10 slab that we used as an analogue of our experimental
sample of Section 4.2. As we have seen, this system is characterized by an asymptotic
transport regime that is slightly anisotropic, but still diffusive. This is confirmed by the
late-t analysis of the moments as shown in Figure 6.10. In the analysis, the power-law
exponents for each moment can be more accurately obtained by performing a linear fit of
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The situation is more interesting when we turn to our optically thin configurations,
which we have simulated with further increased statistics. In this case, plotting the expansion
of the profiles for different widths reveals that the asymptotic regime is reached at even later
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to their asymptotic form (see, for instance, Figure 6.2). To this purpose, the power-law
exponents have been retrieved in a range of delays between ln 16 ≤ ln t

τ
≤ ln 20, beyond

which simulation noise starts to be appreciable (Figure 6.11). In particular, when plotting the
full behavior of qν(q) we can actually appreciate that none of the sample is truly diffusive,
and that slight deviations in the linearity that are barely appreciable by considering just
the second moment (Figure 6.1a) actually fit into a weakly superdiffusive pattern, as can
be appreciated in Figure 6.12a. This result is quite surprising given that the velocities of
packets in the simulation is constant and the variance of the SLD is finite and is probably
due to the time-dependent nature of the SLD. We have fitted the fractional exponents
q ∈ [0.2, 1.2] of Figure 6.12a to characterize the scaling properties of the CSR, obtaining a
good linear agreement. Notably, even in the small-q range a small superdiffusive behavior is
to be found for all refractive index contrasts, with ν(q ≤ 1.2) = νCSR = 0.5605(3), 0.5644(3)
and 0.5461(7) respectively for n = 1, 1.016 and 1.1.

By analyzing the moments in terms of their self-similarity, however, differences be-
tween the configurations emerge. In Figure 6.12b, we plot the relative deviation between
the line qνCSR(n) extrapolated to higher values of q and the simulated data, highlighting
a clear qualitative difference arising in the presence of a refractive-index contrast. In
particular, while the index-matched configuration seems to exhibit a strongly self-similar
(and superdiffusive) behavior, the other configurations show linearly increasing relative
deviations. This is not only a hallmark of weak self-similarity, but is also signaling that the
commonly studied piece-wise linear type of weak self-similarity does not apply to this case.
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Figure 6.12. (a) Fractional exponents obtained by the linear fits of Figure 6.11, revealing a superdiffu-
sive characteristic of transport in the optically-thin, low-contrast slab configuration. Error bars (not
shown), calculated as the 95 % confidence intervals returned by a linear least square method, are
approximately the same size of the symbols. A linear fit in the small-q range [0.2, 1.2] reveals a linear
superdiffusive behavior with ν(q ≤ 1.2) = νCSR = 0.5605(3), 0.5644(3) and 0.5461(7) respectively
for n = 1, 1.016 and 1.1. Fitted lines are extrapolated to higher moments as guides to the eye. (b)
Relative residuals between the values of qν(q) obtained from the simulations and the extrapolated
linear scaling νCSR(n), highlighting the presence of weakly self-similar anomalous diffusion in the
presence of a mismatch refractive index.

On the contrary, a second order dependence on q seems also to be taken into account.
As we discussed in the introduction, the piece-wise model of weakly self-similar

diffusion refers just to the simple case where the ballistic tails of the propagator eventually
represent the prevailing contribution in the determination of higher moments. However,
this regime is unlikely to be relevant for our samples. The transmitted profiles recorded at
16 ≤ t/τ ≤ 20 certainly do not exhibit any ballistic peak on the tails, and basically all energy
packets transmitted within that time range have experienced at least a few scattering events,
given the large but finite magnitude of our simulations. This might explain why the piece-
wise linear model fails at describing this configuration, which apparently requires the need
of a superlinear term. As a matter of fact, it is believed that weak self-similarity might occur
in several forms, of which the piece-wise linear model is only one simple case. Nonetheless,
the literature on general, non piece-wise linear examples of weakly self-similar diffusion is
extremely limited, and focused on very different models with no losses, power-law SLDs
and propagation velocities drawn from a distribution with a time-growing variance [229].
It is possible that the time-varying characteristic (which, in our case, regards the SLD
rather than the velocities) is the key element giving rise to more general weakly self-similar
dynamics. In this respect, light transport in a simple homogeneous, isotropic scattering slab
might represent an interesting physical platform for the experimental study of a broader
array of transport regimes than expected. To this end, an optimal trade-off should be sought
after between the refractive index contrast, the absolute and the relative optical thickness of
the sample, in order to design an experiment where a weakly self-similar transport regime
is reached compatibly with the instrumental sensitivity and quantitative accuracy available
for spatio-temporal imaging techniques. In fact, as of now, the slow convergence to the
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asymptotic transport regime exhibited in optically thin systems represents a challenging
issue, even from the point of view of numerical simulations.

Now that the study of transport phenomena has grown to such a mature research field
spanning over many different branches of science, it is perhaps surprising that such a
rich transport physics, comprising important and complex concepts as anisotropy, weakly
self-similar scaling and anomalous diffusion, can all be found and studied in such a simple
and explored model as the single plane-parallel homogeneous slab with isotropic, annealed
disorder.
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A. Derivations

A.1. Derivation of the radiative transfer equation

In this appendix we review a possible derivation of the radiative transfer equation (RTE)
using Poynting’s theorem for energy conservation. Let us start considering the time-
averaged expression (2.12) that we derived in section 2.1

1
v
∂ 〈S(r)〉 · s j

∂t
+

〈
dPabs

dV

〉
(s · s j) + s j · ∇(〈S(r)〉 · s j) = 0, (A.1)

which ensures that energy conservation is rotationally invariant and holds in any particular
direction s j. This equation is still valid also in the presence of a time-varying dependence
(i.e., a modulation of the source) on a time-scale that is slower than the electromagnetic
oscillation ω. On the other hand, we must remember that it is based on the assumption that
the electric and magnetic fields are mutually orthogonal, and therefore holds only in the
far-field of the particles.

In order to obtain the RTE we will apply energy conservation to a small volume δV
(cfr. Fig. 2.3) containing N particles. Integrating equation (A.1) over δV we obtain

∫
δV

(s · s j)
[
1
v
∂

∂t
S (r − r′) +

〈
dPabs

dV

〉
+ s j · ∇r′S (r − r′)

]
d3r′ = 0 (A.2)

where S (r) is the magnitude of the time-averaged Poynting vector at r.

Inside the sample volume δV we can decompose the energy flux 〈S〉 as the sum of the
contribution of a scattered flux 〈Ssc〉 and an incident flux 〈Sinc〉, where the latter is now a
general function accounting for the incoming flux from outside δV . If the volume δV is
negligible with respect to the volume V − δV � δV that is responsible for 〈Sinc〉, we can
assume that ∫

δV
〈Sinc〉 · s j dV �

∫
δV
〈Ssc〉 · s j dV (A.3)

which is an analogue to the dipolar approximation for multiple scattering of small particles,
in that it neglects any self-induction term and assumes that the incident field on each particle
is simply given by the sum of all scattered fields excluded its own. Analogously, given the
small size of δV , we can make the assumption that the incident field at any point inside
such sample volume can be approximated to the volume-averaged incident flow

〈Sinc(r)〉 · s � ‖Sinc(r)‖v (A.4)

where s is the direction of the flow of energy at r, as usual.

Using these approximations, the first and second term of equation (A.2) can be rewritten
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as

1
v
∂

∂t

∫
δV
〈S〉 · s j dV � 1

v
∂

∂t
‖Sinc‖vwr(s j)δV (A.5)

∫
δV

〈
dPabs

dV

〉
(s · s j) dV � Nσa‖Sinc‖vwr(s j), (A.6)

in terms of the volume-averaged incident flux, where wr(s j) is the probability distribution
of the energy flux to each angle defined in equation (2.39), N is the number of particles in
δV and σa is their absorption cross-section (2.23).

On the other hand, the third term of equation (A.2) becomes
∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ = wr(s j)‖∇r′Sinc · s j‖ vδV

+ wr(s j)
∫
δV

s j · ∇r′S sc(r − r′) d3r′
(A.7)

where we have introduced the volume-averaged change in 〈S〉 as

‖∇r′Sinc · s j‖ v =
1
δV

∫
δV

s j · ∇r′S inc(r − r′) d3r′ . (A.8)

At this point, assuming that the far-field approximation is valid within δV (which we already
used in order for the cross-sections to be additive in equation (A.6)) and yet that δV is small
enough to consider r � r′, we can interchange ∇r ↔ ∇r′ and write

‖∇Sinc · s j‖ v � s j · ∇‖Sinc‖v. (A.9)

Plugging this substitution into equation (A.7) we obtain

∫
δV

(s · s j)s j · ∇r′S (r − r′) d3r′ =

wr(s j)s j · ∇‖Sinc(r)‖vδV + wr(s j)
∫
δV

s j · ∇r′S sc(r − r′) d3r′ (A.10)

where the last term is that accounting for the scattered flux, both outgoing and inwards
from outside δV . We can apply Gauss’ theorem provided that both these terms are properly
represented
∫
δV

s j · ∇r′S sc(r − r′) d3r′ =
∫
Σ

S (out)
sc (r − r′)s j · s′ dS ′ −

∫
Σ

S (in)
sc (r − r′)s j · s′ dS ′ (A.11)

where Σ is the surface enclosing δV . The first term can be written as the sum of the
contributions from the N scattering particles in δV , while the inward flux represents the
contribution from the whole outer volume V − δV . To obtain an expression for such inward
flux, we can exploit the fact that we have a medium with average optical properties which
are homogeneous at every position. We can therefore assume that at each boundary between
neighboring volume elements δV , the total inward and outward flux can be considered
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equivalent. For each point r lying on the surface Σ we can then write that

∫
Σ

S (in)
sc (r − r′)s j · s′ dS ′ �

N∑
i=1

∫
Σ

(〈Ssc(r)〉i · si
)

s j · s′ dS ′ (A.12)

where 〈Ssc(r)〉i is the energy flux scattered by the i-th particle inside δV , given by equation
(2.36). Making use of the approximation (A.4) we obtain

∫
Σ

S (in)
sc (r − r′)s j · s′ dS ′ � σtot

N∑
i=1

‖Sinc(r)‖v
∫
Σ

wr(si)
p(si, s j)

|r′ − ri|2
dS ′

� Nσtot‖Sinc(r)‖v
∫

4π
wr(s′)p(s′, s j) dΩ′ ,

(A.13)

where in the last step we have identified dS ′
/
|r − ri|2 as the solid angle dΩ, since the total

flux traversing Σ will not depend on the position of the particles within δV .
At this point we have obtained the expressions for all the terms appearing in equation

(A.2), which can be rewritten as

1
v
∂

∂t
‖Sinc‖vwr(s j)δV + Nσa‖Sinc‖vwr(s j) + s j · ∇‖Sinc‖vwr(s j)δV

+ Nσs‖Sinc‖vwr(s j) − Nσtot

∫
4π
‖Sinc‖vwr(s′)p(s′, s j) dΩ′ (A.14)

and normalized by δV to remove the dependence from the arbitrary averaging volume

1
v
∂

∂t
‖Sinc‖vwr(s j) + µa‖Sinc‖vwr(s j) + s j · ∇‖Sinc‖vwr(s j)

+ µs‖Sinc‖vwr(s j) − µtot

∫
4π
‖Sinc‖vwr(s′)p(s′, s j) dΩ′ . (A.15)

Equation (A.15) is the radiative transport equation for the time-averaged incoming energy
flux 〈Sinc〉 flowing in direction s j, averaged over a volume δV . It is important to note that
the factor µtot from the last term appears through our definition of the phase function (2.27).
It is the product µtot p(s, s0) that yields the contribution which is solely due to scattering, i.e.
the absorption term related to the phase function that appears through µtot = µs + µa has no
direct physical meaning.

By defining the specific intensity as

I(r, t, s) =
1

4π
‖Sinc‖vwr(s), (A.16)

equation (A.15) recovers its well-known appearance

1
v
∂I(r, t, s)
∂t

+ s · ∇I(r, t, s) − (µs + µa)I(r, t, s) − µtot

∫
4π

I(r, t, s′)p(s, s′) dΩ′ = 0. (A.17)

It is convenient to summarize the main approximations that we applied in order to
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1
v
∂
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1
v
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It is convenient to summarize the main approximations that we applied in order to

135



Imaging light transport at the femtosecond scale: a walk on the wild side of diffusion

136

reach equation (A.15). Namely they are

• average of the energy flow: 〈Sinc(r)〉 � ‖Sinc(r)‖v = 1
δV

∫
δV S (r − r′) d3r′

• average of the incoming energy flow much larger than the local average scattered flow
much greater than local average scattered flow: 1

δV

∫
δV 〈Sinc〉·s dV � 1

δV

∫
δV 〈Ssc〉·s dV

• average of the gradient of the energy flow: ‖∇Sinc · s j‖ � ∇‖Sinc‖v, which directly
implies that

∫
δV ∇r′S (r − r′) d3r′ � ∇r

∫
δV S (r − r′) d3r′

• incoherent scattering: 〈Ssc〉 � ∑N
i=1 〈Ssc〉i

• statistically equivalent properties throughout the medium: µa,s =
N
δVσa,s � Ntot

V σa,s

• far-field approximation: 〈Ssc〉i � 〈Sinc(ri)〉 p(si,s)
|r−ri |2 dS (see equation (2.21))

• neglect depolarization: ∇(∇ · E) � 0

Together, these assumptions give an idea of the required size of the averaging volume δV .
In order to satisfy the conditions that we set throughout this derivation, δV should be a
volume much smaller the total system, but still sufficiently large to contain a large number
of particles in order to be characterized by statistically meaningful optical properties.

A.2. Derivation of the diffusion equation

In this appendix we provide more details on the derivation of the diffusion equation
following the P1 approximation. In order to obtain the expansion (2.72) from the guess
(2.71), we have to determine the expressions for the functions f0 and f1. The isotropic term
can be obtained by plugging equation (2.71) into our definition of U(r, t)

U(r, t) = f0(r, t)
∫
Ω

dΩ + f1(r, t)
∫
Ω

s j · s dΩ . (A.18)

Using
∫
Ω

dΩ = 4π and
∫
Ω

s j · s dΩ = 2π
∫ 1
−1 cos θ d cos θ = 0 we obtain f0(r, t) = U(r, t)

as expected. Analogously, we can use our ansatz in the definition of F(r, t), which we
assumed to be pointed in direction s j, to obtain

F(r, t)·s j = f0(r, t)
∫
Ω

s j ·s dΩ+ f1(r, t)
∫
Ω

(s j ·s)2 dΩ = 2π
∫ 1

−1
cos2 θ d cos θ =

4π
3

(A.19)

and therefore f1(r, t) = F(r, t)4π/3.
The second approximation leading to the diffusive equation concerns the derivation

of the time-dependent Fick’s law, which is obtained by multiplying the RTE by s and
integrating over the whole solid angle. By doing so, we obtain the following terms

1
v
∂

∂t
F(r, t) +

∫
Ω

(
s · ∇
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

])
s dΩ + µtotF(r, t)

− µtot

∫
Ω,Ω′

p(s, s′)
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

]
s dΩ′ dΩ =

∫
Ω

q(r, t, s)s dΩ (A.20)
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where we have introduced the terms of the P1 expansion (2.72). In the second term of this
expression we have two integrals of the form

∫
Ω

(s · A)s dΩ =
4π
3

A (A.21)
∫
Ω

[s · ∇(A · s)]s dΩ = 0 (A.22)

which are valid for any A independent of s. This whole term therefore reduces to∇U(r, t)/3.

Regarding the fourth term, it is the integral in dΩ of

µs

4π
U(r, t) + µtot

3
4π

∫
Ω′

p(s, s′)F(r, t) · s′ dΩ′

=
µs

4π
U(r, t) + µtot

3
4π

F(r, t)
∫
Ω′

p(s, s′)s j · s′ dΩ′ . (A.23)

where in the last term we would need the product s · s′ rather than s j · s′ to recover the first
moment g of the phase function. We can reach this expression by recasting s j · s′ in terms
of s j · s

s j · s′ = (s · s′)(s j · s) +
√

1 − (s · s′)2
√

1 − (s j · s)2 (A.24)

which eventually yields
∫
Ω′

p(s · s′)s j · s′ dΩ′ = (s j · s)
∫
Ω′

p(s · s′)s · s′ dΩ′ = (s j · s)
µs

µtot
g. (A.25)

The fourth term becomes then
∫
Ω

[
µs

4π
U(r, t) +

3gµs

4π
F(r, t) · s

]
dΩ = µsgF(r, t). (A.26)

Putting all the pieces together we finally obtain

1
v
∂

∂t
F(r, t) +

∇U(r, t)
3

+ (µtot − gµs)F(r, t) =
∫
Ω

q(r, t, s)s dΩ (A.27)

At this stage, we introduce the second main assumption, namely that the temporal
variation of the flux is negligible with respect to the vector itself

1
µ′sv

∣∣∣∣∣
∂F(r, t)
∂t

∣∣∣∣∣ � |F(r, t)|. (A.28)

It is worth commenting further this approximation, since by removing the temporal depen-
dence of F(r, t) we are effectively invalidating one of the fundamental similarity relations
of the RTE, relating the specific intensity in the presence of absorption with the specific
intensity in a non-absorbing medium (2.53). A few authors point out that the diffusion ap-
proximation is expected to hold for light that has undergone a multitude of scattering events,
and therefore absorption frustrates the diffusive regime in that it selectively extinguishes
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reach equation (A.15). Namely they are

• average of the energy flow: 〈Sinc(r)〉 � ‖Sinc(r)‖v = 1
δV

∫
δV S (r − r′) d3r′
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δV

∫
δV 〈Sinc〉·s dV � 1

δV

∫
δV 〈Ssc〉·s dV
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∫
δV ∇r′S (r − r′) d3r′ � ∇r

∫
δV S (r − r′) d3r′

• incoherent scattering: 〈Ssc〉 � ∑N
i=1 〈Ssc〉i

• statistically equivalent properties throughout the medium: µa,s =
N
δVσa,s � Ntot

V σa,s

• far-field approximation: 〈Ssc〉i � 〈Sinc(ri)〉 p(si,s)
|r−ri |2 dS (see equation (2.21))
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U(r, t) = f0(r, t)
∫
Ω

dΩ + f1(r, t)
∫
Ω

s j · s dΩ . (A.18)
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∫
Ω

dΩ = 4π and
∫
Ω

s j · s dΩ = 2π
∫ 1
−1 cos θ d cos θ = 0 we obtain f0(r, t) = U(r, t)
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F(r, t)·s j = f0(r, t)
∫
Ω

s j ·s dΩ+ f1(r, t)
∫
Ω

(s j ·s)2 dΩ = 2π
∫ 1

−1
cos2 θ d cos θ =

4π
3

(A.19)

and therefore f1(r, t) = F(r, t)4π/3.
The second approximation leading to the diffusive equation concerns the derivation

of the time-dependent Fick’s law, which is obtained by multiplying the RTE by s and
integrating over the whole solid angle. By doing so, we obtain the following terms

1
v
∂

∂t
F(r, t) +

∫
Ω

(
s · ∇
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

])
s dΩ + µtotF(r, t)

− µtot

∫
Ω,Ω′

p(s, s′)
[

1
4π

U(r, t) +
3

4π
F(r, t) · s

]
s dΩ′ dΩ =

∫
Ω

q(r, t, s)s dΩ (A.20)

136

where we have introduced the terms of the P1 expansion (2.72). In the second term of this
expression we have two integrals of the form

∫
Ω

(s · A)s dΩ =
4π
3

A (A.21)
∫
Ω

[s · ∇(A · s)]s dΩ = 0 (A.22)
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3
4π
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Figure A.1. (a) Schematic of the boundary between a scattering and a non scattering region. Snell’s
law relates the incident and reflected angles at the interface. (b) Radiometric quantities such as
F(r, t) are conveniently decomposed along the tangential and normal direction to the boundary. The
decomposition has a cylindrical symmetry around φ. (c) Coefficient A(n) plotted for different values
of the refractive index contrast.

the light that could propagate into the diffusive regime. In a steady state detection scheme,
the acquired signal would be dominated by low-order scattering and be poorly modeled by
the diffusive approximation [7, 59].

By doing so, and assuming an isotropic source q(r, t, s) = q(r, t)/4π, Fick’s law is
obtained as

F(r, t) = − 1
µtot − gµs

∇U(r, t)
3

= −1
v

DP1∇U(r, t) (A.29)

with DP1 =
v

3(µtot−gµs)
= v

3(µa+µ′s)
as the diffusion coefficient in the P1 approximation.

A.3. Boundary conditions at the interface of a scattering medium

The radiative transfer boundary condition between a scattering and a non scattering material
is summarized by equation (2.92)

−
∫

s·q<0

I(r, t, s)(s · q) dΩ =
∫

s·q>0

R(θi)I(r, t, s)(s · q) dΩ (A.30)

where I(r, t, s) is the specific intensity at the boundary Σ of the diffusive medium, R(θi) is
the Fresnel reflection coefficient for unpolarized light and q is the unit vector normal to Σ in
r (see Figure A.1a). In order to solve the integrals in equation (A.30) we substitute the P1
expansion of the specific intensity (2.72) and decompose the flux as F(r, t) = Fuu + Fqq
(Figure A.1b), where u is a unit vector tangential to Σ and s·q = cos θi and u·s = sin θi cos φ,
obtaining respectively
∫

s·q<0

I(r, t, s)(s · q) dΩ =
1

4π

∫

s·q<0

[U + 3F · s](s · q) dΩ
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=
U
4π

π∫

π/2

cos θi sin θi dθi +
3

4π
Fu

∫

2π

(u · s)(s · q) dΩ +
3

4π
Fu

∫

2π

(s · q)2 dΩ

= −U
4
+

3
4π

Fu

2π∫

0

dφ

π∫

π/2

cos φ cos θi sin2 θi dθi +
3

4π
Fq

2π∫

0

dφ

π∫

π/2

cos2 θi sin θi dθi

= −U
4
+

3
4π

(
Fq

2π
3

)
(A.31)

and
∫

s·q>0

R(θi)I(r, t, s)(s · q) dΩ =
∫

s·q>0

R(θi)[U + 3F · s](s · q) dΩ

=
U
2

π/2∫

0

R(θi) cos θi sin θi dθi +
3

4π
Fq

2π∫

0

dφ

π/2∫

0

R(θi)(s · q)2 dΩ

=
U
2

π/2∫

0

R(θi) cos θi sin θi dθi +
3
2

Fq

2π∫

0

R(θi) cos2 θi sin θi dθi (A.32)

where we have used the fact that, for symmetry reasons

∫
2π

R(θi)(u · s)(s · q) dΩ =
∫ 2π

0
dφ
∫ π/2

0
R(θi) cos φ sin2 θi cos θi dθi = 0. (A.33)

Substituting the expressions obtained in (A.31) and (A.32) into (A.30) and denoting the
coefficient A as

A =
1 + 3

∫ π/2
0 R(θi) cos2 θi sin θi dθi

1 − 2
∫ π/2

0 R(θi) cos θi sin θi dθi
, (A.34)

we finally obtain the partial current boundary condition (PCBC) at the interface between a
diffusive and a transparent media

[
U(r, t) − 2AF(r, t) · q]r∈Σ = 0. (A.35)
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B. Large-scale generation of exponentially distributed
random numbers

In this appendix we discuss and evaluate the effect of floating-point representation on
the precision of generated random numbers, and how this negatively impacts the correct
sampling of the statistics of an exponential distribution. A basic approach to substantially
mitigate this effect is presented, which we have implemented in MCPlusPlus.

In a computer, floating-point numbers can be represented with different precision.
Typical examples are the float and double representations, using respectively 32 and
64 bits. Since there is only a finite number of possible sequences of bits, only a finite list
of numbers in R can be actually represented. In order to cover efficiently many orders of
magnitude, all standard floating-point representations are organized exponentially, with
some bits reserved for the significand part and some for the exponent. This means that
the ‘density’ of available representations is uniform on a logarithmic scale, i.e., with an
exponentially increasing accuracy towards 0.

In Monte Carlo methods, as discussed in subsection 2.1.6, a statistical distribution is
sampled using uniformly distributed random numbers ξ ∈ [0, 1), exploiting the definition
of the inverse cumulative distribution. These random numbers are built as follows: the
raw stream of bits obtained from the PRNG is interpreted in groups of 32 to form positive
numbers uint, i.e., all integer numbers ζ from 0 to n = 232 − 1 = 4 294 967 295. Ideally,
this list of integers can be turned into a list of equispaced fractions 0 ≤ ξ < 1 as

ξ =
ζ

232 (B.1)

which must be cast into a suitable floating-point representation. However, as discussed
before, fractions closer to 0 will be more precisely represented than fractions close to 1 and
in general, the cast operation will involve some rounding of the exact value of the fraction
to the closest available floating-point representation. As an example, let us consider the
smallest and highest fractions that can be ideally defined

ξ0 =
0

232 = 0

ξ1 =
1

232 ∼ 0.000 000 000 232 830 643 653 869 629 . . .

ξ2 =
2

232 ∼ 0.000 000 000 465 661 287 307 739 258 . . .

...

ξn−1 =
232 − 2

232 ∼ 0.999 999 999 534 338 712 692 260 742 . . .

ξn =
232 − 1

232 ∼ 0.999 999 999 767 169 356 346 130 371 . . .
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A problem becomes already apparent at this stage. Even if we were able to represent
these fractions with infinite precision, the fact that we cannot generate a random number
arbitrarily close to 1 introduces a truncation in all derived distributions, and especially in
the exponential case. If we recall equation (2.61)

� = −ls ln(1 − ξ) (B.2)

and substitute ξ = ξn we obtain the maximum step length that can be drawn as �max ∼
−ls ln(1 − ξn) ∼ 22.180 71 × ls, at which a truncation occurs. This can be easily understood
if we imagine having a 232-faced die. If we want the die to be fair, than there should be
no face having a probability lower (or higher) of 2−32 to be drawn. In fact, 2−32 is exactly
equal to the probability of taking a step longer than �max.

The situation becomes even worse if we cannot properly represent ξn with sufficient
precision. This is the case, for example, when we cast the fractions to a 32-bit float
precision, as it is sometimes done in GPU software to take advantage of their optimal
performance. While the lower non-null fraction can be represented exactly as

sign

0
exponent

01011111
mantissa

00000000000000000000000 =
1

232

the largest possible representation < 1 is given by

sign

0
exponent

01011110
mantissa

11111111111111111111111 = (20 + 2−1 + · · · + 2−22 + 2−23) × 2−1

which is actually equal to 0.999 999 940 395, rather than 0.999 999 999 767. If we plug
this value into equation (B.2), we actually obtain an even smaller �max of just ∼ 16.6 × ls,
corresponding to a probability of 2−24. This means that the effects of truncation start
to be appreciable when more than ∼ 107 steps are drawn. Conversely, when casting to
64-bit double, all fractions ξi can be represented accurately and the nominal truncation
� ≤ 22.18 × ls holds. It should be noted that in double representation, numbers much
closer to 1 than 0.999 999 999 767 can in principle be represented (double notation offers
approximately 16 significant digits). The problem is that they cannot be drawn uniformly
between [0, 1) if only 232 values are to be used.

Therefore, the effect of truncation comes from the combination of two effects: one is
the coarse discretization of the [0, 1) interval imposed by a 32-bit PRNG, and the other is the
(possible) lack of accurate internal representations of these floating-point values. Several
strategies are possible to lift or at least mitigate this truncation effect. In the following, we
describe one straightforward and general method to increase significantly the accuracy of
the simulation, which we adopted in MCPlusPlus. However other approximate techniques
could in principle be implemented specifically for the exponential distribution, exploiting
its characteristic memorylessness. The first correction consist of switching from a 32
to a 64-bit PRNG, meaning that the random bit stream generated by the PRNG will be
interpreted in groups of 64, i.e., as a positive ulong integer ζ = [0, 264 − 1]. This will
of course halve the PRNG output rate which, however, impacts negligibly on the overall
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simulation time. Now the closest fraction to 1 becomes

ξn =
264 − 1

264 ∼ 0.999 999 999 999 999 999 945 789 891 (B.3)

leading ideally to a doubled step-length truncation of �max ∼ 44.36 × ls. Step lengths longer
than this would occur with a probability of ∼ 10−20, allowing to draw safely a much larger
number of steps, and therefore to simulate more energy packets. As in the previous case,
however, care has to be taken to check if this fraction can be represented accurately. In the
common double notation, this is not the case: the closest double number preceding 1 is
given by

sign

0
exponent

01111111110
mantissa

111111 · · · 111111 = (20 + 2−1 + · · · + 2−51 + 2−52) × 2−1

which amounts to just ∼ 0.999 999 999 999 999 888 977 697 537 → �max ∼ 36.7 × ls. Fol-
lowing the analogy with the previous case, to avoid this misrepresentation, both the equis-
paced fractions obtained by the 64-bit PRNGs and the logarithm of equation (B.2) can be
temporarily cast to 128-bit long double precision where more than 34 significant digits are
available. As can be imagined, arithmetic operations performed with 128-bit precision are
much more expensive even on CPUs. However, after that the step lengths have been drawn,
their values and in general the whole simulation can be normally run in double precision,
since the only critical operation is the passage from the uniform ξ to the exponentially
distributed �.
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performance. While the lower non-null fraction can be represented exactly as

sign

0
exponent

01011111
mantissa

00000000000000000000000 =
1

232

the largest possible representation < 1 is given by

sign

0
exponent

01011110
mantissa

11111111111111111111111 = (20 + 2−1 + · · · + 2−22 + 2−23) × 2−1

which is actually equal to 0.999 999 940 395, rather than 0.999 999 999 767. If we plug
this value into equation (B.2), we actually obtain an even smaller �max of just ∼ 16.6 × ls,
corresponding to a probability of 2−24. This means that the effects of truncation start
to be appreciable when more than ∼ 107 steps are drawn. Conversely, when casting to
64-bit double, all fractions ξi can be represented accurately and the nominal truncation
� ≤ 22.18 × ls holds. It should be noted that in double representation, numbers much
closer to 1 than 0.999 999 999 767 can in principle be represented (double notation offers
approximately 16 significant digits). The problem is that they cannot be drawn uniformly
between [0, 1) if only 232 values are to be used.

Therefore, the effect of truncation comes from the combination of two effects: one is
the coarse discretization of the [0, 1) interval imposed by a 32-bit PRNG, and the other is the
(possible) lack of accurate internal representations of these floating-point values. Several
strategies are possible to lift or at least mitigate this truncation effect. In the following, we
describe one straightforward and general method to increase significantly the accuracy of
the simulation, which we adopted in MCPlusPlus. However other approximate techniques
could in principle be implemented specifically for the exponential distribution, exploiting
its characteristic memorylessness. The first correction consist of switching from a 32
to a 64-bit PRNG, meaning that the random bit stream generated by the PRNG will be
interpreted in groups of 64, i.e., as a positive ulong integer ζ = [0, 264 − 1]. This will
of course halve the PRNG output rate which, however, impacts negligibly on the overall
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simulation time. Now the closest fraction to 1 becomes

ξn =
264 − 1

264 ∼ 0.999 999 999 999 999 999 945 789 891 (B.3)

leading ideally to a doubled step-length truncation of �max ∼ 44.36 × ls. Step lengths longer
than this would occur with a probability of ∼ 10−20, allowing to draw safely a much larger
number of steps, and therefore to simulate more energy packets. As in the previous case,
however, care has to be taken to check if this fraction can be represented accurately. In the
common double notation, this is not the case: the closest double number preceding 1 is
given by

sign

0
exponent

01111111110
mantissa

111111 · · · 111111 = (20 + 2−1 + · · · + 2−51 + 2−52) × 2−1

which amounts to just ∼ 0.999 999 999 999 999 888 977 697 537 → �max ∼ 36.7 × ls. Fol-
lowing the analogy with the previous case, to avoid this misrepresentation, both the equis-
paced fractions obtained by the 64-bit PRNGs and the logarithm of equation (B.2) can be
temporarily cast to 128-bit long double precision where more than 34 significant digits are
available. As can be imagined, arithmetic operations performed with 128-bit precision are
much more expensive even on CPUs. However, after that the step lengths have been drawn,
their values and in general the whole simulation can be normally run in double precision,
since the only critical operation is the passage from the uniform ξ to the exponentially
distributed �.
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