Image from Google Jackets
Image from OpenLibrary

Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

Contributor(s): Material type: TextTextPublication details: Frontiers Media SA 2017Description: 1 electronic resource (296 p.)ISBN:
  • 978-2-88945-297-2
Subject(s): Online resources: Summary: An increasing population faces the growing demand for agricultural products and accurate global climate models that account for individual plant morphologies to predict favorable human habitat. Both demands are rooted in an improved understanding of the mechanistic origins of plant development. Such understanding requires geometric and topological descriptors to characterize the phenotype of plants and its link to genotypes. However, the current plant phenotyping framework relies on simple length and diameter measurements, which fail to capture the exquisite architecture of plants. The Research Topic Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences is the result of a workshop held at National Institute for Mathematical and Biological Synthesis (NIMBioS) in Knoxville, Tennessee. From 2.-4. September 2015 over 40 scientists from mathematics, computer science, engineering, physics and biology came together to set new frontiers in combining plant phenotyping with recent results from shape theory at the interface of geometry and topology. In doing so, the Research Topic synthesizes the views from multiple disciplines to reveal the potential of new mathematical concepts to analyze and quantify the relationship between morphological plant features. As such, the Research Topic bundles examples of new mathematical techniques including persistent homology, graph-theory, and shape statistics to tackle questions in crop breeding, developmental biology, and vegetation modeling. The challenge to model plant morphology under field conditions is a central theme of the included papers to address the problems of climate change and food security, that require the integration of plant biology and mathematics from geometry and topology research applied to imaging and simulation techniques. The introductory white paper written by the workshop participants identifies future directions in research, education and policy making to integrate biological and mathematical approaches and to strengthen research at the interface of both disciplines.
List(s) this item appears in: E-Books from Directory of Open Access Books
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Directory of Open Access Books Not For Loan

Open Access

An increasing population faces the growing demand for agricultural products and accurate global climate models that account for individual plant morphologies to predict favorable human habitat. Both demands are rooted in an improved understanding of the mechanistic origins of plant development. Such understanding requires geometric and topological descriptors to characterize the phenotype of plants and its link to genotypes. However, the current plant phenotyping framework relies on simple length and diameter measurements, which fail to capture the exquisite architecture of plants. The Research Topic Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences is the result of a workshop held at National Institute for Mathematical and Biological Synthesis (NIMBioS) in Knoxville, Tennessee. From 2.-4. September 2015 over 40 scientists from mathematics, computer science, engineering, physics and biology came together to set new frontiers in combining plant phenotyping with recent results from shape theory at the interface of geometry and topology. In doing so, the Research Topic synthesizes the views from multiple disciplines to reveal the potential of new mathematical concepts to analyze and quantify the relationship between morphological plant features. As such, the Research Topic bundles examples of new mathematical techniques including persistent homology, graph-theory, and shape statistics to tackle questions in crop breeding, developmental biology, and vegetation modeling. The challenge to model plant morphology under field conditions is a central theme of the included papers to address the problems of climate change and food security, that require the integration of plant biology and mathematics from geometry and topology research applied to imaging and simulation techniques. The introductory white paper written by the workshop participants identifies future directions in research, education and policy making to integrate biological and mathematical approaches and to strengthen research at the interface of both disciplines.

Creative Commons

There are no comments on this title.

to post a comment.

University of Rizal System
Email us at univlibservices@urs.edu.ph

Visit our Website www.urs.edu.ph/library

Powered by Koha